• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of a new BP2 two-dimensional material

    2022-08-31 09:55:28ZhizhengGu顧志政ShuangYu于爽ZhirongXu徐知榮QiWang王琪TianxiangDuan段天祥XinxinWang王鑫鑫ShijieLiu劉世杰HuiWang王輝andHuiDu杜慧
    Chinese Physics B 2022年8期

    Zhizheng Gu(顧志政) Shuang Yu(于爽) Zhirong Xu(徐知榮) Qi Wang(王琪)Tianxiang Duan(段天祥) Xinxin Wang(王鑫鑫) Shijie Liu(劉世杰)Hui Wang(王輝) and Hui Du(杜慧)

    1Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications,School of Physics and Engineering,Henan University of Science and Technology,Luoyang 471023,China

    2State Key Laboratory of Superhard Materials,Jilin University,Changchun 130012,China

    Keywords: two-dimensional material,density functional theory,direct band gap,strain

    1. Introduction

    Since graphene was synthesized in 2004,[1]twodimensional(2D)materials have received extensive attention.In recent years, researchers have made a series of important progress in 2D materials, and discovered many new 2D materials. The common 2D materials can generally be classified as follows: transition metal dichalcogenides,[2,3]transition metal oxides,[4,5]and graphene analogues,[6,7]2D V–V binary materials.[8]Two-dimensional materials have diverse band structures, covering various types of insulators,[9,10]semiconductors,[11–13]semimetal,[1,14,15]conductors,[16]and superconductors.[17]In the fields of electronic components,[18]catalysts[19]and photovoltaic solar energy,[20]2D materials have already displayed practical applications.

    Bulk boron phosphide (BP) is a typical semiconductor material with wide band gap, which has a wide range of applications in solid-state neutron detectors and other fields.[21]Recently, researchers have synthesized large-size sphalerite BP single crystal,[22]which not only has very high hardness,good thermal stability,high thermal conductivity,but also has a suitable band gap (about 2 eV). Therefore, BP is considered to be an ideal material for realizing a new generation of semiconductor devices under extreme conditions.[23–25]The 2D material of B–P system has also attracted people’s attention. Theoretically, Wanget al.[26]predicted a hexagonal 2D BP structure. Liuet al.[27]and Wanget al.[28]reported several novel 2D materials in BP5, which have excellent electronic properties and good mechanical properties. Experimentally,a 2D hexagonal BP film was fabricated on SiO2and AlN substrates.[29]These results have made us very curious about the 2D B–P system,and we are eager to explore whether it has other new materials with better performance.

    Here, we have conducted a systematic study on the 2D BP system and predicted a new 2D material(PMM2)by using first principles.The phonon spectrum and molecular dynamics(MD) simulation results show that the structure has dynamic stability and good thermal stability(above 600 K).The PMM2 structure has an indirect band gap. When a suitable strain is applied, the structure can exhibit other electronic properties,such as direct band gap semiconductor and metal. The above excellent performance also makes the PMM2 have potential application prospects in optoelectronic devices.

    2. Methods

    For the 2D structure search of BP2system, we utilize the CALYPSO code.[30,31]We use Viennaab initiosimulation package (VASP)[32,33]for structural optimization, electronic properties and other related calculations. We use the projector augmented wave (PAW) method[34]to treat the ion potential (2s2p1for B and 3s23p3for P). In order to ensure the accuracy of the calculation, we use the cutoff energy of 600 in all calculations, and we integrate the reciprocal space with a resolution of 2π×0.03 ?A?1by using the Monkhorst–Pack Brillouion zone scheme.We use the Conjugated gradient algorithm to relax the 2D PMM2 structure with the force components of 10?3eV·?A?1,and the convergence criterion of the total energy is 1.0×10?6eV.In order to avoid the influence of adjacent layers,we add a 15 ?A vacuum layer to the 2D structure. We use phonopy code to calculate the phonon spectrum of the 2D structure to determine its dynamic stability.[35]Firstprinciples MD simulations are conducted with the canonical ensemble(NVT)ensemble at different temperatures to further study the thermal stability of the 2D PMM2 structure,including 300 K, 400 K, 500 K, 600 K, 700 K, 800 K and 900 K.In order to ensure the accuracy of the calculation,a 4×6×1 supercell (144 atoms) are used. The first-principle molecular dynamics simulations lasted for 8 ps with the time step of 1 fs.

    3. Results and discussion

    Using the CALYPSO software, we carry out a detailed structure search and design of the BP2system, and obtain a new 2D layered structure (space group PMM2), as shown in Fig. 1. The lattice constants of the PMM2 structure area=3.2552 ?A andb=4.9839 ?A, respectively. The structure is not a single atomic layer structure,but has a certain spatial configuration with a thickness of 3.2119 ?A. All the B atoms are equivalent and form a stable four-coordinate configuration.On the other hand,there are two kinds of equivalent atoms for the P atom, which form three-coordinate and four-coordinate in space,respectively. In this layered structure,there are three types of bonding, including B–B, P–P, and B–P, and the corresponding bond lengths are 1.797 ?A, 2.174 ?A, and 2.017 ?A,respectively.

    Fig.1. Top(a)and side[(b),(c)]views of the 2D PMM2. The big and small spheres are P and B atoms,respectively.

    Next,we calculate the phonon spectrum of the 2D PMM2 structure to verify its dynamic stability. As shown in Fig. 2,it can be observed that there is no imaginary frequency in the entire Brillouin zone, which also indicates that the 2D PMM2 structure is dynamic stable. In order to further evaluate the mechanical stability of the 2D PMM2 structure, we calculate the linear elastic constants asC11=83.8 GPa,C22=124.9 GPa,C12=22.2 GPa andC66=42.6 GPa. According to the Born–Huang standard,[36]they meet the conditions ofC11C22?C212>0 andC66>0, which indicate that the 2D PMM2 structure is mechanical stable.

    Fig.2. Phonon spectra(left)and partial phonon density of state(right)of PMM2 sheets.

    For an ideal material, excellent thermal stability is also an essential requirement. First-principles MD simulations are conducted with the canonical ensemble (NVT) ensemble at different temperatures to further study the thermal stability of the 2D PMM2 structure. As shown in Fig.3(a),at 300 K,the bond length and bond angle of the structure change slightly,but they are not enough to destroy the original chemical bond.In order to further study the temperature effect on the stability of the structure, we conduct MD studies at higher temperatures. As shown in Fig. 3(b), when the temperature rises to 600 K, although the position of each atom fluctuates greatly,the structure can maintain the original bond style. When the temperature is 700 K,the B–B bond begins to break.

    Fig.3. The MD simulations for the PMM2 at the temperature of 300 K(a) and 600 K (b). The insets are the top and side views of the 2D PMM2 structure at the end of the MD simulation.

    Ideal nanomaterials generally need to have good mechanical properties. The evolutions of the stress versus the strains are calculated to characterize mechanical properties of the 2D PMM2. The strain is defined by the following formula:(m ?m0)/m. Themis the lattice parameter when there is strain, and them0is the lattice parameter when there is no strain. First,we calculate the stress versus strain curve of the 2D PMM2 under biaxial strain,as shown by the blue curve in Fig.4.The compression and tension biaxial strains that the 2D PMM2 can withstand are?4% and 14%, respectively. Subsequently, we calculate the data of the PMM2 under uniaxial strain.Since the two axial directions in the plane are not equivalent,the stress–strain curves are calculated along theaandbdirections, as shown in Fig. 4. In the specific calculation of uniaxial strain,we apply strain in one of the directions,while the lattice in the other direction is allowed to relax freely. The maximum compressive strain the 2D PMM2 can withstand is 8%whether it is in theaorbdirection.When a tensile strain is added,the maximum tensile strain in thea-axis is 12%,and the corresponding maximum stress is 2.85 GPa, while the maximum tensile strain in theb-axis is 24%,and the corresponding maximum stress is 5.12 GPa. The above data shows that the mechanical properties of the 2D PMM2 structure are very excellent,similar to graphene and MoS2.[37,38]

    Fig.4. The evolution of the stress in the 2D PMM2 versus the biaxial and uniaxial strains.

    To characterize the electronic properties of the PMM2 structure,we calculate the band structures and density of states(DOS).The band structure of the 2D PMM2 is obtained by the PBE method, as shown in Fig. 5 (the left panel black curve),which has an indirect band gap of 0.11 eV. Next, we use the HSE06 method[39]to recalculate the band structure of PMM2 in order to obtain a more accurate value of the band gap, as shown in the red curve on the left of Fig. 5. The calculation results show that the PMM2 has a band gap with 0.79 eV,and band structures obtained by the two methods have similar shapes. Subsequently,we calculate the DOS of the 2D PMM2 structure. The PDOS demonstrates that the VBM and CBM are mainly contributed by p-orbital of phosphorus and boron atoms. As shown in Fig. S3, the calculated ELF shows that there is a covalent interaction between P and P,B and P.

    Fig.5.The calculated band structures(left panel)of 2D PMM2 at PBE level(black),HSE level(red)and the DOS(right panel)using PBE method.

    Uniaxial or biaxial strain can effectively adjust the electronic properties of the structure, and this method has been widely confirmed in experiments.[40,41]According to the stress–strain curve in Fig.4,we have obtained the stable strain range of the 2D PMM2 structure. Next,we carry out the study of strain-tuning the band gap of PMM2.

    Fig.6. Band gap vs in-plane biaxial strain(a)and uniaxial strain along the a direction(b)for the PMM2.

    First, we conduct a study on the electronic properties of 2D PMM2 under different biaxial strains. Figure 6 shows that when the tensile strain is applied,the PMM2 structure still has an indirect band gap; while the band gap of the 2D PMM2 structure gradually increases and reaches the maximum when the strain reaches 8%, and then starts to decrease approximately linearly. When the strains are 8%–14%, the PMM2 exhibits a direct band gap of 1.39–0.93 eV at HSE06 (0.57–0.15 eV at PBE).Under the control of compressive strain,the bandgap of PMM2 gradually decreases. Uniaxial strain is easier than biaxial strain to change the symmetry of the material and to obtain new properties. First, we calculate the regulation effect of uniaxial strain along thea-axis on the electronic properties. Figure 6(b)shows that the regulation of electronic properties by uniaxial strain is very similar to that of biaxial strain. When the strains are 8%–12%, the PMM2 exhibits a direct band gap of 1.14–0.85 eV at HSE06 (0.38–0.10 eV at PBE).Under the control of compressive strain,the bandgap of PMM2 gradually decreases. We also study strain effect alongb-axis as shown in Fig.S1 in the supplementary materials. In the entire strain range of?8%to 24%,the structure has always maintained an indirect band gap.

    Next, we compare the band structure under different biaxial strains to obtain the physical mechanism of strain regulating electronic properties, as shown in Fig. 7. When no strain is applied,PMM2 has an indirect band gap. We denote the conduction band minimum(CBM)and valence band maximum(VBM)of the PMM2 by points A and C,and the second high valence band and second low conduction band by B and D, respectively. When the biaxial strain gradually increases,point B begins to gradually increase, and point D begins to decrease. When the biaxial strain reaches 8%, points B and D become the new CBM and VBM,which also indicates that the PMM2 has been transformed into a direct band gap semiconductor. When a larger strain is applied to the PMM2, the energy at point D gradually decreases, so there is a tendency for the band gap to decrease. The regulation mechanism of uniaxial strain on electronic properties is very similar to that of biaxial strain(see Fig.S2 in the supplementary materials).

    Two-dimension ferroelectricity has attracted intensive interest over the past several years.[42]By carefully analyzed the structural features of the PMM2 structure, we find that the monolayer is non-centrosymmetric, and the electronegativity of phosphorus atoms is greater than that of boron atoms. As a result,a spontaneous polarization occurs in PMM2 monolayer with the direction of polarization along thebdirection.The estimated intensity of polarization is 0.74×10?12C/m by using the Berry phase approaches,[43,44]which also indicates that the BP2structure is a two-dimensional ferroelectric material.

    Fig.7. Biaxial strain manipulated indirect-to-direct band gap of 2D PMM2.

    4. Conclusion and perspectives

    In summary, we have predicted a new 2D PMM2 structure, which has an indirect band gap. The analysis of the phonon dispersive curves shows that the 2D PMM2 is dynamic stable. The study of molecular dynamics shows that the 2D PMM2 can be stable under high temperature, even at 600 K.Most importantly,when a suitable strain is applied,the structure can exhibit other electronic properties,such as direct band gap semiconductor. In addition, the small strain can tune the band gap value of the PMM2 structure to around 1.4 eV,which is very close to the ideal band gap of solar materials. The electronic properties of the adjustable band gap and excellent mechanical properties make the 2D PMM2 structure have a good application prospect in the field of optoelectronic devices and photovoltaic materials.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12004102 and 11847094),the China Postdoctoral Science Foundation(Grant No.2020M670836),the Open Project of State Key Laboratory of Superhard Materials in Jilin University(Grant No.201703),and Student Research Training Program of Henan University of Science and Technology(Grant No.WLSRTP202118).

    久久这里有精品视频免费| 成人综合一区亚洲| 在线 av 中文字幕| 日韩强制内射视频| 国产精品三级大全| 搡女人真爽免费视频火全软件| 观看av在线不卡| 日本色播在线视频| freevideosex欧美| 哪个播放器可以免费观看大片| 最新的欧美精品一区二区| 成人毛片60女人毛片免费| 热99久久久久精品小说推荐| 久久精品人人爽人人爽视色| 国产伦理片在线播放av一区| 国产有黄有色有爽视频| 天天躁夜夜躁狠狠久久av| 中文天堂在线官网| 欧美日韩精品成人综合77777| 久久久久人妻精品一区果冻| 热re99久久精品国产66热6| 国产午夜精品一二区理论片| 2022亚洲国产成人精品| 免费大片18禁| 晚上一个人看的免费电影| 国产成人一区二区在线| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 又粗又硬又长又爽又黄的视频| 国产无遮挡羞羞视频在线观看| 久久久久网色| 夜夜骑夜夜射夜夜干| 精品久久久精品久久久| 成人无遮挡网站| 亚洲精品美女久久av网站| 啦啦啦啦在线视频资源| 婷婷成人精品国产| 欧美亚洲日本最大视频资源| 大香蕉97超碰在线| 午夜91福利影院| 好男人视频免费观看在线| 99久国产av精品国产电影| 狂野欧美白嫩少妇大欣赏| 999精品在线视频| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 精品亚洲成国产av| 两个人的视频大全免费| 亚洲国产精品一区三区| 人妻系列 视频| 18+在线观看网站| 日韩一本色道免费dvd| 国产男女内射视频| av女优亚洲男人天堂| 美女中出高潮动态图| 久久99一区二区三区| 中文精品一卡2卡3卡4更新| 国产精品久久久久成人av| 午夜福利视频在线观看免费| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 最近2019中文字幕mv第一页| 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 简卡轻食公司| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 一本大道久久a久久精品| 免费少妇av软件| 永久免费av网站大全| 日韩av免费高清视频| 国产片特级美女逼逼视频| 久久婷婷青草| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 欧美成人午夜免费资源| 插逼视频在线观看| 多毛熟女@视频| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 母亲3免费完整高清在线观看 | 在线观看人妻少妇| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 一本一本综合久久| 一区二区日韩欧美中文字幕 | 一区在线观看完整版| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 国产免费福利视频在线观看| 18禁在线播放成人免费| 亚洲图色成人| 男的添女的下面高潮视频| √禁漫天堂资源中文www| 少妇 在线观看| 国产成人一区二区在线| 女人精品久久久久毛片| 免费黄色在线免费观看| 亚洲中文av在线| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 日本黄大片高清| 97在线视频观看| a级毛色黄片| 精品少妇黑人巨大在线播放| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 国产又色又爽无遮挡免| 黑人欧美特级aaaaaa片| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品一区三区| 中文字幕av电影在线播放| 亚洲欧美中文字幕日韩二区| 欧美 日韩 精品 国产| 99久久精品一区二区三区| 最近中文字幕2019免费版| 亚洲av成人精品一二三区| 一本久久精品| 午夜视频国产福利| 免费播放大片免费观看视频在线观看| av女优亚洲男人天堂| 亚洲精品一二三| 日本午夜av视频| 好男人视频免费观看在线| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 能在线免费看毛片的网站| 青春草视频在线免费观看| 国产极品天堂在线| 午夜老司机福利剧场| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 免费看av在线观看网站| 高清午夜精品一区二区三区| 搡老乐熟女国产| 国产精品蜜桃在线观看| 黑丝袜美女国产一区| 亚洲国产欧美在线一区| 欧美3d第一页| 永久网站在线| 丰满迷人的少妇在线观看| 18禁动态无遮挡网站| 老司机影院毛片| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美 | 热99国产精品久久久久久7| 久久久久久人妻| 伦精品一区二区三区| 免费观看在线日韩| 午夜日本视频在线| 成人国产麻豆网| 精品久久久久久久久av| 久久国产精品大桥未久av| 少妇的逼水好多| 久久av网站| 老司机影院毛片| 免费高清在线观看视频在线观看| 精品午夜福利在线看| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 日韩在线高清观看一区二区三区| 边亲边吃奶的免费视频| 在线观看三级黄色| 99热这里只有是精品在线观看| 大香蕉久久网| 97在线视频观看| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人添人人爽欧美一区卜| 欧美精品高潮呻吟av久久| 亚洲精品视频女| 国产免费视频播放在线视频| 亚洲精华国产精华液的使用体验| 亚洲欧美成人综合另类久久久| 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 日日撸夜夜添| 99热这里只有是精品在线观看| .国产精品久久| 日本猛色少妇xxxxx猛交久久| 飞空精品影院首页| 男女啪啪激烈高潮av片| 人妻人人澡人人爽人人| 国产在线视频一区二区| 各种免费的搞黄视频| 国产日韩欧美视频二区| 日本黄大片高清| 在线观看美女被高潮喷水网站| 丁香六月天网| 观看av在线不卡| 在线 av 中文字幕| 老司机影院毛片| 伦理电影免费视频| 亚洲av成人精品一区久久| 制服诱惑二区| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 国产视频首页在线观看| 久久人人爽人人片av| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 久久ye,这里只有精品| 精品人妻熟女av久视频| 国产伦理片在线播放av一区| 午夜av观看不卡| 色视频在线一区二区三区| 999精品在线视频| 岛国毛片在线播放| 美女国产视频在线观看| 精品一区二区三区视频在线| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 国产高清国产精品国产三级| 性色av一级| 黄色配什么色好看| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 婷婷色av中文字幕| 国产不卡av网站在线观看| 午夜日本视频在线| 一级毛片电影观看| av在线播放精品| 美女视频免费永久观看网站| 老司机影院毛片| 亚洲伊人久久精品综合| 亚洲国产欧美日韩在线播放| 男女边摸边吃奶| videossex国产| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| 亚洲av综合色区一区| 午夜福利网站1000一区二区三区| 性色avwww在线观看| 国产成人一区二区在线| 91久久精品国产一区二区三区| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| 国产 精品1| 亚洲成人av在线免费| 中国国产av一级| 精品亚洲成a人片在线观看| 成人手机av| 日本欧美国产在线视频| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 国产午夜精品久久久久久一区二区三区| 免费观看的影片在线观看| 国产成人freesex在线| 高清av免费在线| 老熟女久久久| 一区在线观看完整版| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 色视频在线一区二区三区| h视频一区二区三区| 美女国产视频在线观看| 高清毛片免费看| 免费人妻精品一区二区三区视频| 最近的中文字幕免费完整| 国产av精品麻豆| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说 | 女性被躁到高潮视频| 成年人免费黄色播放视频| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久久丰满| 欧美日韩在线观看h| 中文乱码字字幕精品一区二区三区| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 日韩在线高清观看一区二区三区| 国产男女内射视频| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 久久久久久人妻| 秋霞伦理黄片| 一本色道久久久久久精品综合| 18禁观看日本| 日本午夜av视频| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| av电影中文网址| 国产精品.久久久| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 18禁裸乳无遮挡动漫免费视频| 精品99又大又爽又粗少妇毛片| 大香蕉久久成人网| 国产日韩欧美视频二区| 午夜日本视频在线| 97精品久久久久久久久久精品| 欧美xxⅹ黑人| 中文字幕精品免费在线观看视频 | 国产伦精品一区二区三区视频9| 久久99热6这里只有精品| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| av有码第一页| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 人人妻人人澡人人看| 蜜桃国产av成人99| 国产一区二区三区av在线| 亚洲国产最新在线播放| 熟女av电影| 亚洲精品自拍成人| 欧美日本中文国产一区发布| 精品久久久久久电影网| 精品国产国语对白av| 久热这里只有精品99| 国产熟女午夜一区二区三区 | 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡 | 哪个播放器可以免费观看大片| 国内精品宾馆在线| 国产熟女欧美一区二区| 一本久久精品| 永久网站在线| 女性被躁到高潮视频| 免费观看在线日韩| 女性被躁到高潮视频| 永久网站在线| 99久久精品国产国产毛片| 插逼视频在线观看| 国内精品宾馆在线| 人成视频在线观看免费观看| 最近2019中文字幕mv第一页| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 男女啪啪激烈高潮av片| 三级国产精品片| 最新的欧美精品一区二区| 亚洲av免费高清在线观看| 精品人妻熟女毛片av久久网站| 一边亲一边摸免费视频| 国产精品久久久久久精品古装| 全区人妻精品视频| 国产成人av激情在线播放 | 国产极品天堂在线| 一级毛片我不卡| 久久毛片免费看一区二区三区| 亚洲美女视频黄频| 国产精品99久久99久久久不卡 | 国产免费福利视频在线观看| 青青草视频在线视频观看| 乱码一卡2卡4卡精品| 男人操女人黄网站| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久| 99久久综合免费| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 国产免费现黄频在线看| 好男人视频免费观看在线| 国产高清不卡午夜福利| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| av电影中文网址| 日本免费在线观看一区| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 青春草视频在线免费观看| 国产精品99久久久久久久久| 色哟哟·www| 嫩草影院入口| 秋霞伦理黄片| 日本黄大片高清| 制服人妻中文乱码| 国产精品一区www在线观看| 99国产综合亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 久久久久国产网址| 制服人妻中文乱码| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 春色校园在线视频观看| 国产在线视频一区二区| 午夜久久久在线观看| 丰满饥渴人妻一区二区三| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 成年女人在线观看亚洲视频| 精品一区二区免费观看| 国产精品久久久久久精品古装| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 亚洲无线观看免费| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区 | 波野结衣二区三区在线| 99九九线精品视频在线观看视频| 天天影视国产精品| 最新中文字幕久久久久| 人妻系列 视频| 夜夜看夜夜爽夜夜摸| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 国产免费一区二区三区四区乱码| 大话2 男鬼变身卡| 少妇熟女欧美另类| 一区在线观看完整版| 亚洲精品乱码久久久v下载方式| 日日撸夜夜添| 亚洲精品久久成人aⅴ小说 | h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产黄色免费在线视频| 欧美 日韩 精品 国产| 亚洲怡红院男人天堂| 国产日韩欧美亚洲二区| 国产国拍精品亚洲av在线观看| 国产成人午夜福利电影在线观看| 日韩成人av中文字幕在线观看| av有码第一页| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 在线观看www视频免费| 日韩中字成人| 老女人水多毛片| 精品久久久久久久久av| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 91精品国产九色| 亚洲伊人久久精品综合| 在线观看免费视频网站a站| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 亚洲欧美清纯卡通| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 最近最新中文字幕免费大全7| 免费人成在线观看视频色| 久久影院123| 国产在线免费精品| 免费日韩欧美在线观看| 久久99精品国语久久久| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 国产精品99久久久久久久久| 一级毛片我不卡| 母亲3免费完整高清在线观看 | 91精品国产国语对白视频| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 久久久久网色| 国产成人精品无人区| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线| videossex国产| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 考比视频在线观看| 又粗又硬又长又爽又黄的视频| 久久婷婷青草| 日韩强制内射视频| 亚洲人成网站在线观看播放| 男女高潮啪啪啪动态图| 18+在线观看网站| 激情五月婷婷亚洲| 一区二区日韩欧美中文字幕 | 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 国产av精品麻豆| 国产精品久久久久久av不卡| 国产在线视频一区二区| 国产成人av激情在线播放 | 少妇被粗大猛烈的视频| 欧美日韩亚洲高清精品| 国产极品粉嫩免费观看在线 | 久久女婷五月综合色啪小说| 18禁在线无遮挡免费观看视频| 亚洲成色77777| 能在线免费看毛片的网站| 免费看光身美女| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 精品少妇久久久久久888优播| 中国美白少妇内射xxxbb| 中文字幕最新亚洲高清| 日本欧美视频一区| 桃花免费在线播放| 狠狠精品人妻久久久久久综合| 制服诱惑二区| 一本一本综合久久| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 午夜免费男女啪啪视频观看| 夫妻午夜视频| 午夜影院在线不卡| 久久久久久久久大av| 99久久人妻综合| 国产极品粉嫩免费观看在线 | 熟女av电影| 精品一区在线观看国产| 秋霞伦理黄片| 精品久久久久久久久av| 精品久久久噜噜| 97超视频在线观看视频| 国产乱人偷精品视频| 久久久久久伊人网av| av在线app专区| 国产一区亚洲一区在线观看| 免费少妇av软件| 精品久久久久久久久av| 少妇被粗大的猛进出69影院 | 亚洲av.av天堂| 国产亚洲av片在线观看秒播厂| 爱豆传媒免费全集在线观看| 成人综合一区亚洲| 免费av中文字幕在线| 日韩在线高清观看一区二区三区| 久久人人爽av亚洲精品天堂| 人妻制服诱惑在线中文字幕| 亚洲成人手机| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 男的添女的下面高潮视频| 亚洲欧美日韩另类电影网站| 成人手机av| 18禁观看日本| 一级毛片 在线播放| 天天影视国产精品| 免费av中文字幕在线| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 老司机影院毛片| 99久久精品国产国产毛片| 人成视频在线观看免费观看| 秋霞在线观看毛片| 如日韩欧美国产精品一区二区三区 | 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| 亚洲av中文av极速乱| 久久久精品区二区三区| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 中国三级夫妇交换| 日韩一区二区视频免费看| 黄片播放在线免费| 久久久国产精品麻豆| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 亚洲欧美精品自产自拍| 51国产日韩欧美| 国产精品无大码| 黑人巨大精品欧美一区二区蜜桃 | 中国三级夫妇交换| 黄色欧美视频在线观看| 狂野欧美激情性xxxx在线观看| 不卡视频在线观看欧美| 国产免费一区二区三区四区乱码| 男女免费视频国产| 人妻系列 视频| 日韩精品有码人妻一区| 日本91视频免费播放| 国产国拍精品亚洲av在线观看| 91精品一卡2卡3卡4卡| 国产高清有码在线观看视频| 老司机影院毛片| 国产片特级美女逼逼视频| 久久热精品热| 国产精品一区www在线观看| av播播在线观看一区| 亚洲不卡免费看| av又黄又爽大尺度在线免费看| 18+在线观看网站| 观看美女的网站| 看十八女毛片水多多多| 久久久久网色| 国产黄色免费在线视频| a级毛色黄片| 国产熟女午夜一区二区三区 | 一区二区av电影网| 免费黄频网站在线观看国产| 国产精品免费大片| 国产成人一区二区在线| av国产久精品久网站免费入址| 我的老师免费观看完整版| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 一级爰片在线观看| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| videossex国产| 中文字幕人妻丝袜制服| 中文乱码字字幕精品一区二区三区| 母亲3免费完整高清在线观看 | 午夜激情av网站| 亚洲激情五月婷婷啪啪| 国产亚洲一区二区精品| 亚洲欧洲国产日韩| 日本欧美视频一区| 国产精品女同一区二区软件| 国产男女超爽视频在线观看|