• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substitutions of vertex configuration of Ammann–Beenker tiling in framework of Ammann lines

    2022-08-31 09:55:20JiaRongYe葉家容WeiShenHuang黃偉深andXiuJunFu傅秀軍
    Chinese Physics B 2022年8期
    關(guān)鍵詞:葉家

    Jia-Rong Ye(葉家容), Wei-Shen Huang(黃偉深), and Xiu-Jun Fu(傅秀軍)

    School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: quasicrystals,Ammann–Beenker tiling,Ammann lines,substitution rules

    1. Introduction

    A variety of quasicrystals have been fabricated in experiment and widely investigated in theory since the pioneer work by Shechtmanet al.[1]Because of their nontrivial properties,quasicrystals have been of growing interest for the past decades. Quasiperiodic structures have been employed in many fields,which leads to abundant new features. Recently,researchers have studied many physical properties based on different theoretical models ranging from one-dimensional(1D)to three-dimensional(3D)quasicrystals. The high-order harmonic generation in a Fibonacci quasicrystal was simulated and the electron dynamics on the attosecond time scale was investigated.[2]A tenfold symmetric photonic quasicrystal was proposed and linear propagation of light wave was studied.[3]A two-dimensional(2D)octagonal quasicrystal was modeled and the plane elasticity problems were studied by the symplectic approach.[4]A 3D multilayered quasicrystal was constructed and the static response and free vibration analysis was presented.[5]

    2D quasicrystals are materials in which atoms are arranged quasiperiodically on a plane and are repeated periodically along the perpendicular direction of the plane. Even though many rotational symmetries are permitted in mathematics, only fivefold, eightfold, tenfold and twelvefold symmetric structures have been observed in real quasicrystals. As a prototype model, the Penrose tiling, which possesses fivefold symmetry, has been extensively studied in the past and many meaningful results have been presented. However,other quasiperiodic models have received relatively little attention.This paper is devoted to studying the structural properties of an eightfold symmetric quasiperiodic lattice, the Ammann–Beenker tiling.

    The construction methods of the Ammann–Beenker tiling(AB tiling)were proposed and its fundamental characteristics were presented in the early literature.[6–8]Because of the complexity and rich content of the quasilattice,the structural properties of the AB tiling have aroused continuous interest of scientists in recent years. For instance, by analyzing the coordination numbers of the vertex of the AB tiling, it is proved that there exists a limit growth form for the vertex graph of the tiling.[9]Based on the square and rhombus inflationdeflation,the self-similar transformation of the vertex configuration of the AB tiling was obtained.[10]Guided by the local matching rules and configuration selection,an improved algorithm for aggregation of square and rhombus tiles to generate an octagonal quasilattice was proposed.[11]

    The novel physical properties in the AB tiling structure have also been discovered recently. For example,the disorderinduced chiral Majorana edge mode and helical Majorana edge mode in a quasicrystal of the AB tiling type were revealed and it was demonstrated that the edge modes are robust against weak disorder in the quasicrystalline lattice.[12]For the case of AB tiling, the level-spacing statistics for noninteracting Hamiltonians were studied, showing that the spectral properties can be well described by the universal Gaussian orthogonal random matrix ensemble.[13]A vertex tight-binding model on the AB lattice was investigated,and strictly localized states in the center of the spectrum were found.[14]A tight-binding model for superconductor on the AB tiling was constructed and topological phases protected by quasicrystalline symmetries were established.[15]Significant progress of topological states in AB tiling quasicrystals has been made.[16–19]

    2. AB tiling and Ammann lines

    An intuitive method to produce the AB tiling is the socalled self-similar transformation of squares and 45?rhombuses. As shown in Fig. 1(a), an original square is divided into nine parts consisting of one small square, four small rhombuses and four halves of small square. One half small square will combine the adjacent half square resulting from the transformation outside the original square,and thus forming a full square. Counting for the number of tiles enclosed by the original square, we note that a square will produce three small squares and four small rhombuses after one transformation. Similarly,a rhombus will produce two small squares and three small rhombuses after one transformation as shown in Fig.1(b). Successive use of the self-similar transformation results in a finite AB tiling.

    Fig.1. Self-similar transformation for(a)a square and(b)a 45?rhombus,with thick line and thin line representing tiles before and after the transformation,respectively.

    Fig.2. Four sets of Ammann lines formed by connecting diagonals of each square, with red lines denoting one of the grids consisting of parallel lines with two spacings L and S between adjacent lines.

    3. Vertex types and orientations along Ammann lines

    The distribution of sites in a quasilattice never simply repeat themselves as that in a crystalline lattice but rather in a quasiperiodic way. In order to reveal the structural properties,vertex configuration analysis is often used,which reflects the local order. A vertex configuration refers to a cluster of nearest-neighbor tiles that share a common vertex. The angle of the vertex of a single tile can beπ/4 or 3π/4 for a rhombus andπ/2 for a square,and the sum of the angles around a vertex must be 2π. Considering only the local combination of the tiles, there would be 19 types of different configurations.However, some of them do not exist in a perfect AB tiling.If the arrows on the sides of tiles are also taken into account,there are seven vertex types in the AB tiling named A,B,C,D,E,F,and G,which correspond respectively to Figs.3(a)–3(g).The vertices C and D have the same tiles and arrangement,but the three arrows on the horizontal sides of two squares are in the opposite directions.

    In the following, we are going to study the vertex distribution along the Ammann lines including their orientations,so we define the direction from the left to the right horizontally as the direction of a vertex configuration, by choosing a reference line labeled by 0 on each vertex as shown in Fig.3.The possible values of the angle between an Ammann line and the reference line of a vertex can benπ/4 withn=0, 1, 2,3, 4, 5, 6, and 7. Thus, a vertex, including both its type and the orientation on a designated Ammann line can be specified by a letter and an integer, in which the former represents its type and the latter denotes its orientation. For vertex of type A,only one Ammann line passes through it and there are two relative directions between the Amman line and the reference line. So A0 and A4 are used to distinguish these two scenarios in Fig.3(a). For the vertex of type B,two Ammann lines including their directions make four angles with the reference line, so B0, B1, B4, and B5 are used in Fig. 3(b). The other four vertices of type C-F and their orientations relative to different Ammann lines are shown in Figs.3(c)–3(f). The vertex configuration of type G is special in that it has eightfold symmetry,so there is no need to label its direction by an additional integer.

    Fig.3.Seven types of vertex configurations and their orientations relative to a specific Ammann line.The numbers represent the angles between the horizontal reference line and an Ammann line,which are integer multiples of π/4.

    4. Self-similar transformation of vertices

    The self-similar transformations shown in Fig. 1 display the new tiles developed from a single square or rhombus.When the transformations are applied to all the tiles around a vertex, the resulting tiles form new vertices and their distribution correlations can be obtained from the process. The transformation rules guarantee that the new tiles occupying original two neighboring tiles overlap each other without mismatching. The number and concentration of the seven types of vertex configurations after a transformation were studied in previous work and analytical expressions was derived.[11]However, the orientations of the vertex distribution have not been considered. In a quasilattice,both the long-range translational order and the orientational order are of significance. In the framework of the Ammann lines,it is convenient to study the correlations of vertex distribution and orientation.

    Figure 4 shows the patterns before and after the transformation. In Fig.4(a),four new vertices along the horizontal direction(Ammann line)are generated after the transformation from a vertex of type A.They are labeled as A0,D4,C0,and A4,respectively,observed from left to right. This means that the reference lines defined in Fig. 3 for each individual vertex make angles of 0,π,0,andπwith the horizontal Ammann line,respectively.In Fig.4(b),four new vertices along the horizontal direction are of types A,E,B,and B,respectively,and the angles between the reference line and the Ammann line are respectively,π/4,5π/4,andπ,so they are labeled as A0,E1,B5,and B4,respectively.Only the new vertices along the horizontal Ammann lines are shown. There are new vertices along other Ammann lines which are not drawn in the figure. By a series of investigations and calculations,all the vertices developed after a self-similar transformation into the seven types of vertex are obtained and listed in Table 1.

    Fig. 4. Self-similar transformation of seven types of vertex. There are more than one Ammann line in each pattern, and only the vertices along the horizontal Ammann line are shown.

    Table 1. Distribution of vertices after self-similar transformation. Each row lists a vertex before transformation (initial vertex) and vertices along one of Ammann lines after e transformation.

    5. Vertex substitution along Ammann lines

    In the 1D case, a quasiperiodic sequence can be generated by successive substitutions according to certain rules.For example,the rules A→AB and B→A produce a Fibonacci sequence ABAABAABAABB···. In the 2D AB tiling, the sequence of spacingsLandSbetween adjacent parallel Ammann lines follow the substitution rulesL →LLSandS →L, but it does not include the information of vertex configurations.Here we investigate the substitutions of vertices along an Ammann line. A self-similar transformation on an AB tiling produces not only new tiles of square and rhombus but also new Ammann lines. The Ammann lines cross the center of the squares. According to the self-similar transformation shown in Fig.1(a),a new square appears after the transformation,so the original Ammann lines keep invariant during the transformation.If we observe the vertices along such an Ammann line,after the self-similar transformation,one of the new Ammann lines coincides with the original Ammann line. The new vertices along this Ammann line follow certain substitution rules.

    The self-similar transformation shown in Fig.4 and listed in Table 1 can be used to construct the substitution rules. We start from B0 which is a type B vertex and the Ammann line gets through it in the same direction as its reference line. The first transformation produces four vertices associated with orientations,A0,E1,B5,and B4,as shown in Fig.5. The second transformation for these four vertices will be A0→(A0, D4,C0, A4), E1→(C0, A4, G, A0, E6), B5→(A0, E6, B0, B1),and B4→(B0,B1,E5,A4),with 17 vertices in total. However,two vertices (C0, A4) resulting from original A0 overlap the adjacent vertices(C0,A4)from E1,and so is the case for the other neighboring vertices. So the vertices in the next generation are(A0,D4,C0,A4,G,A0,E6,B0,B1,E5,A4)and the total number is 17?2×3=11 as shown in Fig.5.

    Fig.5.Arrangement of vertices when substitutions are applied to B0 vertices twice. Resulting configurations are of the first-and the second-generation.

    Now the substitution rules of vertices along an Ammann line are described as follows. Starting from any initial vertex listed in the first(third)column of Table 1,the substitution is implemented according to the second(fourth)column,generating 4 or 5 new vertices. In the next step of substitution, all the new vertices resulting from the first vertex are kept, and the leading two vertices resulting from the other initial vertices are neglected. Taking the above B0 vertex for example,the first-generation vertices are(A0,E1,B5,B4),the secondgeneration vertices are (A0, D4, C0, A4, G, A0, E6, B0, B1,E5,A4),the third-generation vertices are(A0,D4,C0,A4,G,A0,F4,A0,C4,D0,A4,G,A0,D4,C0,A4,G,A0,E1,B5,B4, E2, A4, G, A0, C4, D0, A4), and the fourth-generation vertices are(A0,D4,C0,A4,G,A0,F4,A0,C4,D0,A4,G,A0,D4,C0,A4,G,A0,D4,C0,A4,F0,A4,G,A0,C4,D0,A4, G, A0, D4, C0, A4, G, A0, F4, A0, C4, D0, A4, G, A0,D4,C0,A4,G,A0,E6,B0,B1,E5,A4,G,A0,C4,D0,A4,G,A0,D4,C0,A4,F0,A4,G,A0,C4,D0,A4).

    The vertex distribution in a large patch of the AB tiling is shown in Fig. 6. This pattern is generated by two times of self-similar transformation starting from a vertex of type G,which has eightfold rotational symmetry. Only the vertices and their orientations along a set of parallel Ammann lines are indicated.

    Fig. 6. Vertex distributions of AB tiling for a finite pattern with eightfold symmetry, with vertex types and orientations relative to a set of parallel Ammann lines indicated.

    6. Discussion

    The above results reveal the vertex correlations by considering both the local configurations and the orientations relative to the Ammann lines. They display an intuitive understanding of the eightfold quasiperiodic structure and also provide implications for growing a quasiperiodic tiling according to the local rules. One of the fundamental concerns of the quasicrystal models is how the quasiperiodic structures are formed. As is well known, there are different methods to construct a quasiperiodic lattice, including the deflationinflation, the higher-dimensional projection, and the general dual method. However,the formation of a real quasicrystal is not so easy and the growth mechanisms of quasicrystals have not been fully understood. In previous studies, growth algorithms of the Penrose tiling based on the local configurations were developed[21]which can produce an ideal quasiperiodic tiling with fivefold symmetry. As for the AB tiling, a growth algorithm based on three growth rules were proposed and perfect tiling has been obtained.[10]However, this algorithm is applicable only to an eightfold symmetric seed cluster. The present work reveals strong correlations among vertices along Ammann line, which may serve as an arrangement confinement of tiles and improve the growth rule for a perfect AB tiling.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.11674102).

    猜你喜歡
    葉家
    美麗的葉家堰
    跑馬嶺
    葉家山西周編鐘的年代及所反映的若干問(wèn)題
    仰止高山“葉家樣”——贊葉毓中“俊逸豪麗”新畫(huà)格
    藝術(shù)品(2018年5期)2018-06-29 02:14:56
    我相
    冬爺爺來(lái)了
    六尺巷的故事
    拍賣(mài)時(shí)間的女孩
    意林(2015年16期)2015-10-21 12:49:45
    啟動(dòng)搬遷避害是惠民造假獲得補(bǔ)助歪腦筋
    無(wú)可逃遁
    決策(2010年6期)2010-03-09 01:05:48
    极品教师在线免费播放| 亚洲av成人精品一区久久| 香蕉丝袜av| 日本五十路高清| 午夜日韩欧美国产| 日本三级黄在线观看| 亚洲精品久久国产高清桃花| 香蕉av资源在线| 麻豆久久精品国产亚洲av| 国产精品1区2区在线观看.| 国产亚洲精品av在线| 欧洲精品卡2卡3卡4卡5卡区| 成年免费大片在线观看| 亚洲一区高清亚洲精品| 偷拍熟女少妇极品色| 中文字幕人成人乱码亚洲影| 欧美+亚洲+日韩+国产| 久久久久久久久中文| 日韩欧美在线二视频| 青草久久国产| 亚洲人成网站在线播放欧美日韩| 午夜福利在线观看免费完整高清在 | 99久久综合精品五月天人人| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区久久| 日本五十路高清| 日韩国内少妇激情av| 淫妇啪啪啪对白视频| 亚洲 欧美一区二区三区| 亚洲国产中文字幕在线视频| 嫩草影院入口| 日韩欧美三级三区| 动漫黄色视频在线观看| 麻豆一二三区av精品| 在线看三级毛片| 精品久久久久久久末码| 色综合站精品国产| 最新中文字幕久久久久 | 男人舔奶头视频| 亚洲av五月六月丁香网| 欧美另类亚洲清纯唯美| 欧美色视频一区免费| 精品国产乱码久久久久久男人| 精品国产美女av久久久久小说| 999精品在线视频| 免费在线观看视频国产中文字幕亚洲| 校园春色视频在线观看| 久久久久国产一级毛片高清牌| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 成人鲁丝片一二三区免费| 日本免费a在线| 18禁国产床啪视频网站| 女人高潮潮喷娇喘18禁视频| 久久国产乱子伦精品免费另类| 嫩草影视91久久| av中文乱码字幕在线| 国产精品国产高清国产av| 国产成人精品久久二区二区免费| 亚洲av成人一区二区三| 欧美高清成人免费视频www| 在线观看舔阴道视频| 天堂网av新在线| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩卡通动漫| 国产高清视频在线观看网站| 精品久久久久久,| 午夜福利18| av欧美777| 99精品欧美一区二区三区四区| 哪里可以看免费的av片| 午夜福利欧美成人| 精品福利观看| 色尼玛亚洲综合影院| 国模一区二区三区四区视频 | 在线视频色国产色| av天堂在线播放| 亚洲自偷自拍图片 自拍| svipshipincom国产片| tocl精华| 亚洲精品中文字幕一二三四区| 国产精品,欧美在线| 午夜福利欧美成人| 亚洲国产看品久久| 热99在线观看视频| 国产精品久久久久久久电影 | or卡值多少钱| 免费电影在线观看免费观看| 久久99热这里只有精品18| 久久人人精品亚洲av| 在线十欧美十亚洲十日本专区| 中文字幕最新亚洲高清| 成人性生交大片免费视频hd| 亚洲av电影在线进入| 国产野战对白在线观看| 全区人妻精品视频| 黄色成人免费大全| 免费在线观看视频国产中文字幕亚洲| 久久久国产成人精品二区| 久久久水蜜桃国产精品网| 欧美又色又爽又黄视频| 无限看片的www在线观看| 在线播放国产精品三级| 国产私拍福利视频在线观看| 午夜免费成人在线视频| 久久久久久九九精品二区国产| 欧美激情久久久久久爽电影| 国产成人av教育| 亚洲av日韩精品久久久久久密| 深夜精品福利| 亚洲自拍偷在线| 精品国产美女av久久久久小说| av国产免费在线观看| 麻豆久久精品国产亚洲av| 午夜两性在线视频| 一区二区三区激情视频| 欧美+亚洲+日韩+国产| 女人高潮潮喷娇喘18禁视频| 在线观看免费视频日本深夜| 午夜久久久久精精品| bbb黄色大片| 后天国语完整版免费观看| 香蕉国产在线看| 可以在线观看的亚洲视频| 中亚洲国语对白在线视频| 久久精品影院6| 国产主播在线观看一区二区| 不卡一级毛片| 亚洲专区国产一区二区| 九九在线视频观看精品| 身体一侧抽搐| 人妻夜夜爽99麻豆av| 又黄又粗又硬又大视频| 偷拍熟女少妇极品色| 久久中文字幕人妻熟女| 1024香蕉在线观看| 午夜免费观看网址| 国产精品香港三级国产av潘金莲| 少妇丰满av| 国产成人系列免费观看| 国产精品1区2区在线观看.| 久久久久久久久中文| 国产激情欧美一区二区| 一级毛片精品| 亚洲精华国产精华精| 亚洲av日韩精品久久久久久密| 久久婷婷人人爽人人干人人爱| 久久精品人妻少妇| 国产亚洲精品久久久久久毛片| 熟妇人妻久久中文字幕3abv| 啦啦啦韩国在线观看视频| 精品99又大又爽又粗少妇毛片 | 色哟哟哟哟哟哟| 麻豆成人av在线观看| 无限看片的www在线观看| 亚洲av成人精品一区久久| 久久久国产成人精品二区| 国产淫片久久久久久久久 | 欧美性猛交╳xxx乱大交人| 免费av毛片视频| av中文乱码字幕在线| 国产一区二区三区视频了| 亚洲最大成人中文| 看片在线看免费视频| 国产综合懂色| 婷婷丁香在线五月| 国产成人一区二区三区免费视频网站| 久久天躁狠狠躁夜夜2o2o| 久久久精品欧美日韩精品| 色吧在线观看| 精品乱码久久久久久99久播| 国产精品av视频在线免费观看| 99久久精品热视频| 亚洲国产欧洲综合997久久,| 91麻豆精品激情在线观看国产| 熟女电影av网| 757午夜福利合集在线观看| 男女那种视频在线观看| 亚洲欧洲精品一区二区精品久久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧洲精品一区二区精品久久久| 成人18禁在线播放| 久久精品国产99精品国产亚洲性色| 黄色丝袜av网址大全| 亚洲在线观看片| 啦啦啦韩国在线观看视频| 中文资源天堂在线| 一区二区三区国产精品乱码| 观看免费一级毛片| 成人三级做爰电影| 老司机午夜福利在线观看视频| 精品久久久久久成人av| 久久久久性生活片| 亚洲五月婷婷丁香| 国产成人精品久久二区二区91| 听说在线观看完整版免费高清| 88av欧美| 日韩三级视频一区二区三区| 国产高清视频在线观看网站| 国产一区二区三区在线臀色熟女| av视频在线观看入口| 日韩欧美免费精品| 91在线精品国自产拍蜜月 | 天天躁狠狠躁夜夜躁狠狠躁| av中文乱码字幕在线| 亚洲真实伦在线观看| 少妇丰满av| 亚洲熟妇熟女久久| 国产成人精品久久二区二区91| tocl精华| 精品国产乱码久久久久久男人| 久久精品综合一区二区三区| 天天添夜夜摸| 麻豆av在线久日| 亚洲人与动物交配视频| 午夜精品久久久久久毛片777| 欧美成人性av电影在线观看| 噜噜噜噜噜久久久久久91| 亚洲狠狠婷婷综合久久图片| 成年女人永久免费观看视频| 久久久久久九九精品二区国产| 97碰自拍视频| 色噜噜av男人的天堂激情| 亚洲真实伦在线观看| 国产午夜福利久久久久久| 久久香蕉精品热| 成年版毛片免费区| 亚洲国产精品合色在线| 国产午夜精品论理片| 99久久精品一区二区三区| 成人一区二区视频在线观看| 国产高清三级在线| 亚洲第一电影网av| 一卡2卡三卡四卡精品乱码亚洲| www国产在线视频色| 老司机午夜福利在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影不卡..在线观看| 99久久综合精品五月天人人| 亚洲精品456在线播放app | 国产精品九九99| av视频在线观看入口| 成人无遮挡网站| 亚洲五月天丁香| 中亚洲国语对白在线视频| 又大又爽又粗| 狂野欧美激情性xxxx| 久久久久性生活片| 欧美另类亚洲清纯唯美| 国产欧美日韩精品一区二区| 欧美精品啪啪一区二区三区| 国产爱豆传媒在线观看| 免费看a级黄色片| 美女大奶头视频| 午夜a级毛片| 99在线人妻在线中文字幕| 国模一区二区三区四区视频 | 久久热在线av| 国产成+人综合+亚洲专区| 国产毛片a区久久久久| 99视频精品全部免费 在线 | 国产午夜精品久久久久久| 亚洲五月婷婷丁香| 狂野欧美白嫩少妇大欣赏| e午夜精品久久久久久久| 成人av在线播放网站| 成年女人毛片免费观看观看9| 久久久久久久久免费视频了| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品国产高清国产av| 我的老师免费观看完整版| 一个人看的www免费观看视频| 国产精品亚洲一级av第二区| 全区人妻精品视频| 亚洲 国产 在线| 丁香欧美五月| 在线免费观看的www视频| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 母亲3免费完整高清在线观看| 成人无遮挡网站| 日本免费a在线| 午夜精品久久久久久毛片777| 国产97色在线日韩免费| 熟女人妻精品中文字幕| 高潮久久久久久久久久久不卡| 国产精品亚洲一级av第二区| 香蕉久久夜色| 欧美高清成人免费视频www| 亚洲av成人不卡在线观看播放网| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 国产激情偷乱视频一区二区| 久久国产精品影院| 亚洲激情在线av| 亚洲av日韩精品久久久久久密| 免费看日本二区| 成年版毛片免费区| 88av欧美| 啪啪无遮挡十八禁网站| 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 精华霜和精华液先用哪个| 舔av片在线| 欧美性猛交╳xxx乱大交人| 一进一出好大好爽视频| 亚洲aⅴ乱码一区二区在线播放| 日本撒尿小便嘘嘘汇集6| 欧美乱码精品一区二区三区| 日韩免费av在线播放| 色综合亚洲欧美另类图片| a级毛片a级免费在线| 日本一二三区视频观看| 国产单亲对白刺激| 一区二区三区国产精品乱码| 成年女人看的毛片在线观看| 男女下面进入的视频免费午夜| 最近视频中文字幕2019在线8| 成人av在线播放网站| 国产97色在线日韩免费| 国产aⅴ精品一区二区三区波| 看黄色毛片网站| 成人国产综合亚洲| 老熟妇仑乱视频hdxx| 午夜福利高清视频| 国产精品,欧美在线| 国产精品女同一区二区软件 | 男人舔女人的私密视频| 精华霜和精华液先用哪个| 日本精品一区二区三区蜜桃| 一个人免费在线观看的高清视频| 国产精品久久久久久人妻精品电影| 一本一本综合久久| 久久久久国产一级毛片高清牌| 欧美中文综合在线视频| 成人欧美大片| 激情在线观看视频在线高清| 色哟哟哟哟哟哟| 搡老岳熟女国产| 男女床上黄色一级片免费看| 亚洲九九香蕉| 美女 人体艺术 gogo| 亚洲人成网站高清观看| 日韩国内少妇激情av| 午夜福利高清视频| 天堂动漫精品| 毛片女人毛片| 国产在线精品亚洲第一网站| 9191精品国产免费久久| 一二三四在线观看免费中文在| 丁香欧美五月| 亚洲性夜色夜夜综合| cao死你这个sao货| 精品无人区乱码1区二区| 欧美日本视频| 日本五十路高清| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 亚洲第一电影网av| 香蕉久久夜色| 国产男靠女视频免费网站| 成人午夜高清在线视频| 亚洲成a人片在线一区二区| 人人妻人人看人人澡| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 国产精品久久视频播放| 精品一区二区三区视频在线 | www日本黄色视频网| 九色成人免费人妻av| 免费观看的影片在线观看| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 搡老岳熟女国产| 综合色av麻豆| 精品久久久久久久末码| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 在线国产一区二区在线| 波多野结衣高清无吗| 一个人免费在线观看的高清视频| 亚洲五月天丁香| 国产激情久久老熟女| 国产免费男女视频| 国产精品久久久久久久电影 | 一个人看视频在线观看www免费 | 免费看光身美女| 99国产极品粉嫩在线观看| 亚洲国产欧美人成| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 久久精品夜夜夜夜夜久久蜜豆| 一个人观看的视频www高清免费观看 | 国产一区二区三区视频了| 哪里可以看免费的av片| 亚洲avbb在线观看| 成人永久免费在线观看视频| 一进一出好大好爽视频| 国产日本99.免费观看| 午夜福利在线观看免费完整高清在 | 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 夜夜躁狠狠躁天天躁| 午夜福利高清视频| 十八禁人妻一区二区| 国产欧美日韩精品一区二区| 中文字幕人成人乱码亚洲影| 亚洲欧美日韩高清专用| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 毛片女人毛片| 91在线观看av| 久久精品国产亚洲av香蕉五月| 母亲3免费完整高清在线观看| 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 亚洲成人久久性| 精品久久久久久久毛片微露脸| 精品一区二区三区四区五区乱码| 亚洲无线观看免费| 午夜福利18| 黄片大片在线免费观看| 中文字幕最新亚洲高清| 成年版毛片免费区| www日本黄色视频网| 香蕉丝袜av| xxxwww97欧美| 亚洲午夜理论影院| h日本视频在线播放| 亚洲国产精品sss在线观看| 舔av片在线| 精品一区二区三区四区五区乱码| 看免费av毛片| 身体一侧抽搐| 亚洲18禁久久av| 午夜福利视频1000在线观看| 高清在线国产一区| 亚洲欧美日韩东京热| 国产三级在线视频| 国产精品自产拍在线观看55亚洲| 一级作爱视频免费观看| 免费观看精品视频网站| 999精品在线视频| 亚洲精品色激情综合| bbb黄色大片| 麻豆一二三区av精品| av天堂在线播放| 成人特级av手机在线观看| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 91在线精品国自产拍蜜月 | 俺也久久电影网| 日日夜夜操网爽| 久久亚洲精品不卡| 成人无遮挡网站| 亚洲在线自拍视频| 午夜福利高清视频| 国产一区二区激情短视频| 国产亚洲欧美98| www日本在线高清视频| 热99在线观看视频| 麻豆国产av国片精品| 国产午夜精品论理片| 最新中文字幕久久久久 | 日韩av在线大香蕉| 国产精品电影一区二区三区| 嫩草影视91久久| 观看美女的网站| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 中文字幕熟女人妻在线| 熟女少妇亚洲综合色aaa.| 三级国产精品欧美在线观看 | 亚洲第一电影网av| 久久久久久九九精品二区国产| 一个人免费在线观看电影 | 日韩免费av在线播放| 亚洲av电影在线进入| 午夜福利成人在线免费观看| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 欧美一级毛片孕妇| 国产精品国产高清国产av| 免费电影在线观看免费观看| 99热6这里只有精品| h日本视频在线播放| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 国产精品 欧美亚洲| 免费av不卡在线播放| 色吧在线观看| 免费在线观看成人毛片| 熟女电影av网| 日韩欧美免费精品| 色综合婷婷激情| 亚洲激情在线av| 国产成人一区二区三区免费视频网站| 免费看光身美女| 日韩欧美一区二区三区在线观看| 午夜激情福利司机影院| 国产免费男女视频| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 中文资源天堂在线| 国产精品一区二区三区四区久久| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 综合色av麻豆| 成人一区二区视频在线观看| 热99在线观看视频| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av| 日韩欧美免费精品| 精品久久久久久久久久免费视频| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| www.熟女人妻精品国产| 无限看片的www在线观看| 日韩 欧美 亚洲 中文字幕| 偷拍熟女少妇极品色| 国产成人av激情在线播放| 午夜福利欧美成人| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 久久精品影院6| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 精品免费久久久久久久清纯| 两个人看的免费小视频| 精品电影一区二区在线| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 日本五十路高清| 99在线视频只有这里精品首页| 国产亚洲精品一区二区www| 精品国产三级普通话版| 精品欧美国产一区二区三| 亚洲在线观看片| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 国产亚洲精品一区二区www| 1024香蕉在线观看| 首页视频小说图片口味搜索| 国产精品久久久久久久电影 | 日韩精品青青久久久久久| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| www日本黄色视频网| 国产真实乱freesex| 亚洲va日本ⅴa欧美va伊人久久| 国产av不卡久久| 亚洲av成人精品一区久久| 成人三级黄色视频| 热99re8久久精品国产| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 亚洲专区字幕在线| 国产91精品成人一区二区三区| 伦理电影免费视频| 国产成人系列免费观看| 1024手机看黄色片| 欧美日韩瑟瑟在线播放| 亚洲国产欧美人成| 欧美高清成人免费视频www| 久久天堂一区二区三区四区| 美女 人体艺术 gogo| h日本视频在线播放| 亚洲五月天丁香| 国产精品亚洲美女久久久| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 亚洲av免费在线观看| 久久热在线av| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 老汉色av国产亚洲站长工具| 日日夜夜操网爽| 亚洲狠狠婷婷综合久久图片| 欧美乱色亚洲激情| 亚洲欧美日韩卡通动漫| 婷婷精品国产亚洲av| 日韩高清综合在线| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| av在线蜜桃| 成人无遮挡网站| 无限看片的www在线观看| 88av欧美| 久久伊人香网站| 成人三级黄色视频| 久久久国产成人精品二区| www日本黄色视频网| 狂野欧美激情性xxxx| 亚洲精品一区av在线观看| www国产在线视频色| 最好的美女福利视频网| 国产成人av教育| 午夜免费成人在线视频| 精品一区二区三区视频在线 | 床上黄色一级片|