• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Substitutions of vertex configuration of Ammann–Beenker tiling in framework of Ammann lines

    2022-08-31 09:55:20JiaRongYe葉家容WeiShenHuang黃偉深andXiuJunFu傅秀軍
    Chinese Physics B 2022年8期
    關(guān)鍵詞:葉家

    Jia-Rong Ye(葉家容), Wei-Shen Huang(黃偉深), and Xiu-Jun Fu(傅秀軍)

    School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: quasicrystals,Ammann–Beenker tiling,Ammann lines,substitution rules

    1. Introduction

    A variety of quasicrystals have been fabricated in experiment and widely investigated in theory since the pioneer work by Shechtmanet al.[1]Because of their nontrivial properties,quasicrystals have been of growing interest for the past decades. Quasiperiodic structures have been employed in many fields,which leads to abundant new features. Recently,researchers have studied many physical properties based on different theoretical models ranging from one-dimensional(1D)to three-dimensional(3D)quasicrystals. The high-order harmonic generation in a Fibonacci quasicrystal was simulated and the electron dynamics on the attosecond time scale was investigated.[2]A tenfold symmetric photonic quasicrystal was proposed and linear propagation of light wave was studied.[3]A two-dimensional(2D)octagonal quasicrystal was modeled and the plane elasticity problems were studied by the symplectic approach.[4]A 3D multilayered quasicrystal was constructed and the static response and free vibration analysis was presented.[5]

    2D quasicrystals are materials in which atoms are arranged quasiperiodically on a plane and are repeated periodically along the perpendicular direction of the plane. Even though many rotational symmetries are permitted in mathematics, only fivefold, eightfold, tenfold and twelvefold symmetric structures have been observed in real quasicrystals. As a prototype model, the Penrose tiling, which possesses fivefold symmetry, has been extensively studied in the past and many meaningful results have been presented. However,other quasiperiodic models have received relatively little attention.This paper is devoted to studying the structural properties of an eightfold symmetric quasiperiodic lattice, the Ammann–Beenker tiling.

    The construction methods of the Ammann–Beenker tiling(AB tiling)were proposed and its fundamental characteristics were presented in the early literature.[6–8]Because of the complexity and rich content of the quasilattice,the structural properties of the AB tiling have aroused continuous interest of scientists in recent years. For instance, by analyzing the coordination numbers of the vertex of the AB tiling, it is proved that there exists a limit growth form for the vertex graph of the tiling.[9]Based on the square and rhombus inflationdeflation,the self-similar transformation of the vertex configuration of the AB tiling was obtained.[10]Guided by the local matching rules and configuration selection,an improved algorithm for aggregation of square and rhombus tiles to generate an octagonal quasilattice was proposed.[11]

    The novel physical properties in the AB tiling structure have also been discovered recently. For example,the disorderinduced chiral Majorana edge mode and helical Majorana edge mode in a quasicrystal of the AB tiling type were revealed and it was demonstrated that the edge modes are robust against weak disorder in the quasicrystalline lattice.[12]For the case of AB tiling, the level-spacing statistics for noninteracting Hamiltonians were studied, showing that the spectral properties can be well described by the universal Gaussian orthogonal random matrix ensemble.[13]A vertex tight-binding model on the AB lattice was investigated,and strictly localized states in the center of the spectrum were found.[14]A tight-binding model for superconductor on the AB tiling was constructed and topological phases protected by quasicrystalline symmetries were established.[15]Significant progress of topological states in AB tiling quasicrystals has been made.[16–19]

    2. AB tiling and Ammann lines

    An intuitive method to produce the AB tiling is the socalled self-similar transformation of squares and 45?rhombuses. As shown in Fig. 1(a), an original square is divided into nine parts consisting of one small square, four small rhombuses and four halves of small square. One half small square will combine the adjacent half square resulting from the transformation outside the original square,and thus forming a full square. Counting for the number of tiles enclosed by the original square, we note that a square will produce three small squares and four small rhombuses after one transformation. Similarly,a rhombus will produce two small squares and three small rhombuses after one transformation as shown in Fig.1(b). Successive use of the self-similar transformation results in a finite AB tiling.

    Fig.1. Self-similar transformation for(a)a square and(b)a 45?rhombus,with thick line and thin line representing tiles before and after the transformation,respectively.

    Fig.2. Four sets of Ammann lines formed by connecting diagonals of each square, with red lines denoting one of the grids consisting of parallel lines with two spacings L and S between adjacent lines.

    3. Vertex types and orientations along Ammann lines

    The distribution of sites in a quasilattice never simply repeat themselves as that in a crystalline lattice but rather in a quasiperiodic way. In order to reveal the structural properties,vertex configuration analysis is often used,which reflects the local order. A vertex configuration refers to a cluster of nearest-neighbor tiles that share a common vertex. The angle of the vertex of a single tile can beπ/4 or 3π/4 for a rhombus andπ/2 for a square,and the sum of the angles around a vertex must be 2π. Considering only the local combination of the tiles, there would be 19 types of different configurations.However, some of them do not exist in a perfect AB tiling.If the arrows on the sides of tiles are also taken into account,there are seven vertex types in the AB tiling named A,B,C,D,E,F,and G,which correspond respectively to Figs.3(a)–3(g).The vertices C and D have the same tiles and arrangement,but the three arrows on the horizontal sides of two squares are in the opposite directions.

    In the following, we are going to study the vertex distribution along the Ammann lines including their orientations,so we define the direction from the left to the right horizontally as the direction of a vertex configuration, by choosing a reference line labeled by 0 on each vertex as shown in Fig.3.The possible values of the angle between an Ammann line and the reference line of a vertex can benπ/4 withn=0, 1, 2,3, 4, 5, 6, and 7. Thus, a vertex, including both its type and the orientation on a designated Ammann line can be specified by a letter and an integer, in which the former represents its type and the latter denotes its orientation. For vertex of type A,only one Ammann line passes through it and there are two relative directions between the Amman line and the reference line. So A0 and A4 are used to distinguish these two scenarios in Fig.3(a). For the vertex of type B,two Ammann lines including their directions make four angles with the reference line, so B0, B1, B4, and B5 are used in Fig. 3(b). The other four vertices of type C-F and their orientations relative to different Ammann lines are shown in Figs.3(c)–3(f). The vertex configuration of type G is special in that it has eightfold symmetry,so there is no need to label its direction by an additional integer.

    Fig.3.Seven types of vertex configurations and their orientations relative to a specific Ammann line.The numbers represent the angles between the horizontal reference line and an Ammann line,which are integer multiples of π/4.

    4. Self-similar transformation of vertices

    The self-similar transformations shown in Fig. 1 display the new tiles developed from a single square or rhombus.When the transformations are applied to all the tiles around a vertex, the resulting tiles form new vertices and their distribution correlations can be obtained from the process. The transformation rules guarantee that the new tiles occupying original two neighboring tiles overlap each other without mismatching. The number and concentration of the seven types of vertex configurations after a transformation were studied in previous work and analytical expressions was derived.[11]However, the orientations of the vertex distribution have not been considered. In a quasilattice,both the long-range translational order and the orientational order are of significance. In the framework of the Ammann lines,it is convenient to study the correlations of vertex distribution and orientation.

    Figure 4 shows the patterns before and after the transformation. In Fig.4(a),four new vertices along the horizontal direction(Ammann line)are generated after the transformation from a vertex of type A.They are labeled as A0,D4,C0,and A4,respectively,observed from left to right. This means that the reference lines defined in Fig. 3 for each individual vertex make angles of 0,π,0,andπwith the horizontal Ammann line,respectively.In Fig.4(b),four new vertices along the horizontal direction are of types A,E,B,and B,respectively,and the angles between the reference line and the Ammann line are respectively,π/4,5π/4,andπ,so they are labeled as A0,E1,B5,and B4,respectively.Only the new vertices along the horizontal Ammann lines are shown. There are new vertices along other Ammann lines which are not drawn in the figure. By a series of investigations and calculations,all the vertices developed after a self-similar transformation into the seven types of vertex are obtained and listed in Table 1.

    Fig. 4. Self-similar transformation of seven types of vertex. There are more than one Ammann line in each pattern, and only the vertices along the horizontal Ammann line are shown.

    Table 1. Distribution of vertices after self-similar transformation. Each row lists a vertex before transformation (initial vertex) and vertices along one of Ammann lines after e transformation.

    5. Vertex substitution along Ammann lines

    In the 1D case, a quasiperiodic sequence can be generated by successive substitutions according to certain rules.For example,the rules A→AB and B→A produce a Fibonacci sequence ABAABAABAABB···. In the 2D AB tiling, the sequence of spacingsLandSbetween adjacent parallel Ammann lines follow the substitution rulesL →LLSandS →L, but it does not include the information of vertex configurations.Here we investigate the substitutions of vertices along an Ammann line. A self-similar transformation on an AB tiling produces not only new tiles of square and rhombus but also new Ammann lines. The Ammann lines cross the center of the squares. According to the self-similar transformation shown in Fig.1(a),a new square appears after the transformation,so the original Ammann lines keep invariant during the transformation.If we observe the vertices along such an Ammann line,after the self-similar transformation,one of the new Ammann lines coincides with the original Ammann line. The new vertices along this Ammann line follow certain substitution rules.

    The self-similar transformation shown in Fig.4 and listed in Table 1 can be used to construct the substitution rules. We start from B0 which is a type B vertex and the Ammann line gets through it in the same direction as its reference line. The first transformation produces four vertices associated with orientations,A0,E1,B5,and B4,as shown in Fig.5. The second transformation for these four vertices will be A0→(A0, D4,C0, A4), E1→(C0, A4, G, A0, E6), B5→(A0, E6, B0, B1),and B4→(B0,B1,E5,A4),with 17 vertices in total. However,two vertices (C0, A4) resulting from original A0 overlap the adjacent vertices(C0,A4)from E1,and so is the case for the other neighboring vertices. So the vertices in the next generation are(A0,D4,C0,A4,G,A0,E6,B0,B1,E5,A4)and the total number is 17?2×3=11 as shown in Fig.5.

    Fig.5.Arrangement of vertices when substitutions are applied to B0 vertices twice. Resulting configurations are of the first-and the second-generation.

    Now the substitution rules of vertices along an Ammann line are described as follows. Starting from any initial vertex listed in the first(third)column of Table 1,the substitution is implemented according to the second(fourth)column,generating 4 or 5 new vertices. In the next step of substitution, all the new vertices resulting from the first vertex are kept, and the leading two vertices resulting from the other initial vertices are neglected. Taking the above B0 vertex for example,the first-generation vertices are(A0,E1,B5,B4),the secondgeneration vertices are (A0, D4, C0, A4, G, A0, E6, B0, B1,E5,A4),the third-generation vertices are(A0,D4,C0,A4,G,A0,F4,A0,C4,D0,A4,G,A0,D4,C0,A4,G,A0,E1,B5,B4, E2, A4, G, A0, C4, D0, A4), and the fourth-generation vertices are(A0,D4,C0,A4,G,A0,F4,A0,C4,D0,A4,G,A0,D4,C0,A4,G,A0,D4,C0,A4,F0,A4,G,A0,C4,D0,A4, G, A0, D4, C0, A4, G, A0, F4, A0, C4, D0, A4, G, A0,D4,C0,A4,G,A0,E6,B0,B1,E5,A4,G,A0,C4,D0,A4,G,A0,D4,C0,A4,F0,A4,G,A0,C4,D0,A4).

    The vertex distribution in a large patch of the AB tiling is shown in Fig. 6. This pattern is generated by two times of self-similar transformation starting from a vertex of type G,which has eightfold rotational symmetry. Only the vertices and their orientations along a set of parallel Ammann lines are indicated.

    Fig. 6. Vertex distributions of AB tiling for a finite pattern with eightfold symmetry, with vertex types and orientations relative to a set of parallel Ammann lines indicated.

    6. Discussion

    The above results reveal the vertex correlations by considering both the local configurations and the orientations relative to the Ammann lines. They display an intuitive understanding of the eightfold quasiperiodic structure and also provide implications for growing a quasiperiodic tiling according to the local rules. One of the fundamental concerns of the quasicrystal models is how the quasiperiodic structures are formed. As is well known, there are different methods to construct a quasiperiodic lattice, including the deflationinflation, the higher-dimensional projection, and the general dual method. However,the formation of a real quasicrystal is not so easy and the growth mechanisms of quasicrystals have not been fully understood. In previous studies, growth algorithms of the Penrose tiling based on the local configurations were developed[21]which can produce an ideal quasiperiodic tiling with fivefold symmetry. As for the AB tiling, a growth algorithm based on three growth rules were proposed and perfect tiling has been obtained.[10]However, this algorithm is applicable only to an eightfold symmetric seed cluster. The present work reveals strong correlations among vertices along Ammann line, which may serve as an arrangement confinement of tiles and improve the growth rule for a perfect AB tiling.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.11674102).

    猜你喜歡
    葉家
    美麗的葉家堰
    跑馬嶺
    葉家山西周編鐘的年代及所反映的若干問(wèn)題
    仰止高山“葉家樣”——贊葉毓中“俊逸豪麗”新畫(huà)格
    藝術(shù)品(2018年5期)2018-06-29 02:14:56
    我相
    冬爺爺來(lái)了
    六尺巷的故事
    拍賣(mài)時(shí)間的女孩
    意林(2015年16期)2015-10-21 12:49:45
    啟動(dòng)搬遷避害是惠民造假獲得補(bǔ)助歪腦筋
    無(wú)可逃遁
    決策(2010年6期)2010-03-09 01:05:48
    丝袜美腿诱惑在线| 精品国内亚洲2022精品成人| 精品久久久久久电影网| 久久亚洲精品不卡| 亚洲成人免费电影在线观看| 黄色丝袜av网址大全| 又大又爽又粗| 男女床上黄色一级片免费看| 老司机靠b影院| 搡老熟女国产l中国老女人| 成人三级做爰电影| 母亲3免费完整高清在线观看| 亚洲激情在线av| 亚洲成人久久性| 欧美 亚洲 国产 日韩一| 久久国产精品人妻蜜桃| 热99re8久久精品国产| 高清黄色对白视频在线免费看| 国产一卡二卡三卡精品| 99久久人妻综合| 国产亚洲av高清不卡| 国产1区2区3区精品| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸| 99热只有精品国产| 久久精品影院6| 久热这里只有精品99| 精品国产亚洲在线| 人妻久久中文字幕网| 桃红色精品国产亚洲av| 国产精华一区二区三区| 久久久久久亚洲精品国产蜜桃av| 色综合欧美亚洲国产小说| 国产在线精品亚洲第一网站| 免费一级毛片在线播放高清视频 | 久久香蕉国产精品| 日韩欧美一区二区三区在线观看| av欧美777| 欧美午夜高清在线| www.999成人在线观看| 妹子高潮喷水视频| 夫妻午夜视频| 国产熟女午夜一区二区三区| 久久午夜亚洲精品久久| 黄色视频,在线免费观看| 极品教师在线免费播放| 亚洲人成77777在线视频| 岛国视频午夜一区免费看| 亚洲三区欧美一区| 欧美亚洲日本最大视频资源| 国产熟女xx| 一区二区三区国产精品乱码| 中文字幕av电影在线播放| 91精品国产国语对白视频| 亚洲av成人一区二区三| 国产精品秋霞免费鲁丝片| 国产有黄有色有爽视频| 天堂动漫精品| 成人国产一区最新在线观看| 黄色 视频免费看| 欧美日韩亚洲高清精品| 无遮挡黄片免费观看| 亚洲三区欧美一区| 99国产精品一区二区三区| 看片在线看免费视频| 久久国产精品人妻蜜桃| 国产成人啪精品午夜网站| 性欧美人与动物交配| 一个人免费在线观看的高清视频| av天堂在线播放| 精品福利观看| 激情在线观看视频在线高清| 欧美日韩av久久| √禁漫天堂资源中文www| 午夜老司机福利片| 1024视频免费在线观看| 好男人电影高清在线观看| 欧美人与性动交α欧美软件| 窝窝影院91人妻| 高清在线国产一区| 最新在线观看一区二区三区| 国产色视频综合| 亚洲五月天丁香| 黄频高清免费视频| 国产免费现黄频在线看| a级片在线免费高清观看视频| 天天影视国产精品| 嫩草影视91久久| 欧美日韩黄片免| 久热爱精品视频在线9| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产毛片av蜜桃av| av中文乱码字幕在线| 久久香蕉精品热| 麻豆成人av在线观看| 亚洲成人久久性| 亚洲成人免费av在线播放| 精品国产美女av久久久久小说| 在线天堂中文资源库| 久久狼人影院| 欧美一区二区精品小视频在线| 9热在线视频观看99| 亚洲成人久久性| 国产成人系列免费观看| 亚洲av美国av| 91麻豆精品激情在线观看国产 | 超色免费av| 制服诱惑二区| 婷婷丁香在线五月| 人人妻人人添人人爽欧美一区卜| 欧美大码av| 日韩大码丰满熟妇| videosex国产| 99热只有精品国产| 成年人免费黄色播放视频| 午夜福利在线免费观看网站| 欧美日本中文国产一区发布| 亚洲国产看品久久| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩精品亚洲av| 久久精品aⅴ一区二区三区四区| 18禁国产床啪视频网站| 在线天堂中文资源库| 91av网站免费观看| 18禁裸乳无遮挡免费网站照片 | 母亲3免费完整高清在线观看| 久久99一区二区三区| 精品久久久久久久毛片微露脸| 欧美+亚洲+日韩+国产| 久久香蕉精品热| 日本黄色视频三级网站网址| 国产99白浆流出| 悠悠久久av| 天天躁夜夜躁狠狠躁躁| 大型黄色视频在线免费观看| 麻豆久久精品国产亚洲av | 中文字幕人妻丝袜一区二区| 久久人妻熟女aⅴ| 88av欧美| 一区二区日韩欧美中文字幕| 亚洲精品一区av在线观看| 悠悠久久av| 12—13女人毛片做爰片一| 色哟哟哟哟哟哟| 热re99久久精品国产66热6| 又紧又爽又黄一区二区| av免费在线观看网站| 亚洲专区中文字幕在线| 国产精品影院久久| 午夜视频精品福利| 老熟妇仑乱视频hdxx| 午夜视频精品福利| 精品电影一区二区在线| 午夜精品国产一区二区电影| 久久久久久人人人人人| 日本免费一区二区三区高清不卡 | 国产精品亚洲一级av第二区| 九色亚洲精品在线播放| 欧美日韩精品网址| 亚洲色图综合在线观看| 黄色片一级片一级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | av国产精品久久久久影院| 久久久国产一区二区| 国产精品亚洲av一区麻豆| 日韩一卡2卡3卡4卡2021年| 热99国产精品久久久久久7| 亚洲专区国产一区二区| 国产av在哪里看| 男女午夜视频在线观看| 国产主播在线观看一区二区| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频| 69精品国产乱码久久久| 精品日产1卡2卡| 精品国产一区二区久久| 99riav亚洲国产免费| 色精品久久人妻99蜜桃| 国产精品成人在线| 国产精品 欧美亚洲| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 激情视频va一区二区三区| 亚洲五月色婷婷综合| 韩国精品一区二区三区| 12—13女人毛片做爰片一| 女人高潮潮喷娇喘18禁视频| 亚洲片人在线观看| 亚洲九九香蕉| 视频区图区小说| 人人澡人人妻人| 水蜜桃什么品种好| 9191精品国产免费久久| 女人被狂操c到高潮| 最新在线观看一区二区三区| 怎么达到女性高潮| 97人妻天天添夜夜摸| 老司机在亚洲福利影院| 亚洲一区中文字幕在线| 999久久久精品免费观看国产| 亚洲 国产 在线| av欧美777| 亚洲精品国产精品久久久不卡| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 精品乱码久久久久久99久播| 日本免费a在线| 日日干狠狠操夜夜爽| 电影成人av| 亚洲色图 男人天堂 中文字幕| 99久久国产精品久久久| 久久草成人影院| 国产精品 欧美亚洲| 国产亚洲精品一区二区www| 亚洲欧美激情在线| 日本五十路高清| av有码第一页| av在线天堂中文字幕 | 大香蕉久久成人网| 高清av免费在线| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 久久久水蜜桃国产精品网| 国产精品成人在线| 美女 人体艺术 gogo| 国产高清国产精品国产三级| 国产精品98久久久久久宅男小说| 99re在线观看精品视频| 99国产综合亚洲精品| 在线观看日韩欧美| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 欧美中文综合在线视频| 国产成人免费无遮挡视频| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 欧美人与性动交α欧美精品济南到| 成人亚洲精品av一区二区 | 成人三级黄色视频| 国产精品九九99| 99国产精品一区二区蜜桃av| 无人区码免费观看不卡| 丁香六月欧美| 日韩中文字幕欧美一区二区| 精品人妻在线不人妻| 亚洲五月天丁香| x7x7x7水蜜桃| 91麻豆av在线| 黄色毛片三级朝国网站| 久久精品91蜜桃| av欧美777| 久久天堂一区二区三区四区| 日韩视频一区二区在线观看| 女警被强在线播放| 色综合婷婷激情| 神马国产精品三级电影在线观看 | 露出奶头的视频| 欧美日韩一级在线毛片| 9191精品国产免费久久| avwww免费| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美最黄视频在线播放免费 | 少妇粗大呻吟视频| 免费少妇av软件| 啦啦啦免费观看视频1| 香蕉丝袜av| 午夜福利欧美成人| 成人亚洲精品一区在线观看| av在线天堂中文字幕 | 亚洲欧美日韩高清在线视频| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 咕卡用的链子| 久久国产乱子伦精品免费另类| 久久人妻福利社区极品人妻图片| 老司机午夜十八禁免费视频| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品999在线| 亚洲九九香蕉| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 乱人伦中国视频| 成人亚洲精品一区在线观看| 很黄的视频免费| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 男女下面进入的视频免费午夜 | 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 青草久久国产| 黄色怎么调成土黄色| 夜夜看夜夜爽夜夜摸 | 又大又爽又粗| 看免费av毛片| 免费看a级黄色片| 日韩欧美免费精品| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲| 999久久久精品免费观看国产| 成在线人永久免费视频| 国产成人啪精品午夜网站| 色老头精品视频在线观看| 国产精品久久久人人做人人爽| 99在线视频只有这里精品首页| 亚洲精品久久午夜乱码| 欧美日韩亚洲高清精品| 黄片小视频在线播放| av超薄肉色丝袜交足视频| 欧美中文日本在线观看视频| 黑人操中国人逼视频| 亚洲全国av大片| 88av欧美| 在线观看午夜福利视频| 国产亚洲欧美精品永久| 久热爱精品视频在线9| 国产精品九九99| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 嫩草影视91久久| 国产免费现黄频在线看| 在线av久久热| 一边摸一边抽搐一进一出视频| 精品一品国产午夜福利视频| 中国美女看黄片| 脱女人内裤的视频| 国产深夜福利视频在线观看| 亚洲人成77777在线视频| 午夜久久久在线观看| 老熟妇乱子伦视频在线观看| 久久人人精品亚洲av| 露出奶头的视频| 十分钟在线观看高清视频www| 91九色精品人成在线观看| 亚洲欧美日韩无卡精品| 高清黄色对白视频在线免费看| 级片在线观看| 欧美成人午夜精品| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 精品久久久久久电影网| 国产免费男女视频| 国产91精品成人一区二区三区| 色婷婷av一区二区三区视频| 国产精品一区二区精品视频观看| 日韩欧美三级三区| 精品国产一区二区久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲全国av大片| 黄色视频不卡| www.www免费av| 伦理电影免费视频| 亚洲 国产 在线| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 精品电影一区二区在线| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 欧美乱码精品一区二区三区| 18禁观看日本| 露出奶头的视频| 中出人妻视频一区二区| 欧美激情久久久久久爽电影 | 欧美午夜高清在线| 黄色片一级片一级黄色片| 9191精品国产免费久久| 午夜福利一区二区在线看| 青草久久国产| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月| videosex国产| www.熟女人妻精品国产| 亚洲伊人色综图| 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 国产在线观看jvid| 久久精品成人免费网站| 可以在线观看毛片的网站| 最好的美女福利视频网| 69av精品久久久久久| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费 | 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 午夜免费鲁丝| 国产精品久久久av美女十八| 嫁个100分男人电影在线观看| 日日爽夜夜爽网站| 亚洲精品一区av在线观看| 18美女黄网站色大片免费观看| 伦理电影免费视频| 天堂俺去俺来也www色官网| 国产精品九九99| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品免费视频一区二区三区| av网站免费在线观看视频| 免费在线观看影片大全网站| 国产精品日韩av在线免费观看 | 最新在线观看一区二区三区| 水蜜桃什么品种好| 久久久久久大精品| 婷婷丁香在线五月| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 99精品在免费线老司机午夜| 日韩 欧美 亚洲 中文字幕| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 国产一区二区三区综合在线观看| 成熟少妇高潮喷水视频| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av在线| 又大又爽又粗| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 欧美亚洲日本最大视频资源| 在线看a的网站| 亚洲色图综合在线观看| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 精品卡一卡二卡四卡免费| www.自偷自拍.com| 天堂中文最新版在线下载| 久久草成人影院| 中文亚洲av片在线观看爽| 国产免费av片在线观看野外av| 久久久久国内视频| 国产高清国产精品国产三级| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 男女高潮啪啪啪动态图| 精品电影一区二区在线| 免费女性裸体啪啪无遮挡网站| 看免费av毛片| 国产xxxxx性猛交| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 亚洲av成人不卡在线观看播放网| 国产精品久久视频播放| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 国产精品免费视频内射| 精品免费久久久久久久清纯| 午夜日韩欧美国产| 在线免费观看的www视频| 成人国语在线视频| 日韩欧美在线二视频| www.精华液| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久男人| 天堂影院成人在线观看| 国产亚洲精品第一综合不卡| www.www免费av| 日韩大尺度精品在线看网址 | 国产成人欧美| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 国产97色在线日韩免费| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 国产免费现黄频在线看| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 青草久久国产| 日韩国内少妇激情av| 国产精品国产av在线观看| 久久精品国产99精品国产亚洲性色 | 久久久国产精品麻豆| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 色婷婷av一区二区三区视频| 精品电影一区二区在线| 男人的好看免费观看在线视频 | 久热这里只有精品99| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| а√天堂www在线а√下载| 国产成人精品久久二区二区免费| 人人妻人人爽人人添夜夜欢视频| 9色porny在线观看| 久久精品国产清高在天天线| 国产高清国产精品国产三级| 国产av一区二区精品久久| 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡 | videosex国产| 免费av中文字幕在线| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 久久久国产欧美日韩av| 女人被狂操c到高潮| 国产男靠女视频免费网站| 国产成人av教育| 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美一区二区综合| 国产高清videossex| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 精品久久久精品久久久| 岛国视频午夜一区免费看| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 欧美黄色淫秽网站| 999精品在线视频| 国产精品久久视频播放| 一本综合久久免费| 亚洲男人天堂网一区| 免费久久久久久久精品成人欧美视频| ponron亚洲| 高清毛片免费观看视频网站 | 身体一侧抽搐| 69av精品久久久久久| 国产精品98久久久久久宅男小说| 天堂动漫精品| 在线播放国产精品三级| 无遮挡黄片免费观看| 国产av又大| 亚洲精品成人av观看孕妇| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频 | 在线视频色国产色| 国产麻豆69| 午夜视频精品福利| 久久精品成人免费网站| 老司机在亚洲福利影院| 99国产综合亚洲精品| xxxhd国产人妻xxx| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 国产精华一区二区三区| 一级a爱视频在线免费观看| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www| av有码第一页| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 成人国产一区最新在线观看| 如日韩欧美国产精品一区二区三区| 久久国产精品影院| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 夜夜看夜夜爽夜夜摸 | 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 精品久久久久久,| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲高清精品| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 亚洲成人久久性| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 国产乱人伦免费视频| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 国产精品免费一区二区三区在线| www.999成人在线观看| 1024香蕉在线观看| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 在线看a的网站| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看 | 国产黄色免费在线视频| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产色婷婷电影| 男女做爰动态图高潮gif福利片 | 久久精品亚洲av国产电影网| 少妇 在线观看| 日韩av在线大香蕉| 日韩国内少妇激情av| 亚洲精品美女久久久久99蜜臀| 91麻豆av在线| 一a级毛片在线观看| 高清av免费在线| 国产主播在线观看一区二区| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 婷婷丁香在线五月| 久久亚洲精品不卡| 国产av一区在线观看免费| 精品人妻在线不人妻| 国产精品永久免费网站| 久久精品国产清高在天天线| 国产精品 欧美亚洲| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 色在线成人网| 久久精品国产99精品国产亚洲性色 | 午夜精品在线福利| 身体一侧抽搐| 两性夫妻黄色片|