• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced photoluminescence of monolayer MoS2 on stepped gold structure

    2022-08-31 09:59:28YuChunLiu劉玉春XinTan譚欣TianCiShen沈天賜andFuXingGu谷付星
    Chinese Physics B 2022年8期
    關鍵詞:天賜

    Yu-Chun Liu(劉玉春), Xin Tan(譚欣), Tian-Ci Shen(沈天賜), and Fu-Xing Gu(谷付星)

    School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    Keywords: MoS2,stepped gold,heterostructures,enhanced photoluminescence

    1. Introduction

    Molybdenum disulfide (MoS2), as a typical twodimensional (2D) transition metal dichalcogenides (TMDC),has drawn much attention due to its outstanding properties and various promising applications.[1–4]Numerous efforts have been made to tune excitonic photoluminescence(PL) and optoelectrical property of monolayer MoS2, showing its great potentials in nanophotonics, micro-lasers, optoelectronic devices,etc.[5–8]These promising investigations indicate that the MoS2/Au heterostructure plays an important role due to the surface plasmon resonance and charge transfer effects across the interface. Various Au nanostructures have been utilized to modulate the PL and optoelectrical performance of 2D MoS2through surface plasmon effect, including nanoparticles,nanorods,nanotriangles,nanoholes and nanostripe arrays.[9–14]The surface plasmons generated in the metallic nanostructures are conducive to generating excitons and achieving higher optical absorption via enhancing localfield coupling in MoS2/Au heterostructures, leading to dramatic enhancement of PL and Raman emission.[15,16]Monolayer MoS2on Au grating array was used to explore the strong coupling regime of ultrafast plasmonic hot electron transfer,localized surface plasmons (LSPs) and surface plasmon polaritons(SPPs),where SPPs with a unique nonradiative feature can reuse the radiative energy of LSP and contribute to hot carrier generation.[17]Such prior researches suggest that the different MoS2/Au heterostructures can create new phenomena and play an important role in tuning the PL and optoelectrical properties of monolayer MoS2. However, these reported studies of MoS2/Au heterostructures have mainly focused on different Au nanostructures.

    Except for the surface plasmon effect due to Au nanostructures, the PL tailoring of monolayer MoS2by Au continuous thin films is still limited. The MoS2/Au heterostructures can suppress the charge recombination by efficient charge transfer, which was critical for efficient exciton dissociation and good electron transport. The PL quenching of monolayer MoS2on flat Au surface by exfoliation method and by the chemical vapor deposition (CVD) method have been reported.[18,19]The PL quenching phenomenon observed in a MoS2/Au junction was due to highly efficient interlayer charge transfer as compared with that in MoS2/SiO2.[20]The temperature increase and annealing processing reduced the interlayer spacings between the monolayer MoS2and metals,which can promote the interlayer charge transfer. It was also reported the vacuum annealing can induce the oxygen atoms to be removed from sulfur vacancies and reduce the inherent van der Waals gap at the MoS2/Au interface, which facilitates the trapping of photo-generated electrons and the carrier separation.[21]Micro-Raman spectra revealed that the variation of out-ofplane A1gmode strongly is correlated with the strength of the MoS2–Au interaction,which can be affected by the roughness and cleanliness of the underlying Au.[22]The Au substrates with TiO2spacer layers of different thickness values were reported to be able to enhance the PL emission of monolayer MoS2on Au due to the Fabry–Perot interference.[23,24]The PL intensity of MoS2/TiO2/Au with a 41-nm-thick TiO2layer was observed to increase by 15 times,which is attributed to the fact that the local field enhancement originating from the metal surface roughness became dominant for thin spacer less than~10 nm. However,the evolution of excitonic PL change and electron transfer of the MoS2/Au heterostructures have been still unclear so far. In the present work, we investigate the excitonic PL emission of continuous CVD-grown monolayer MoS2on Au thin film with a stepped structure. The enhanced PL emissions observed in the MoS2/Au heterostructures in our experiments are different from the reported quenched or reduced PL emission from monolayer MoS2on the flat Au thin film. The A-excitonic PL emissions in MoS2/Au-60 heterostructures exhibit 2.4-fold and 3.3-fold PL intensities at the peak energy, in comparison with those in MoS2/Au-100 and MoS2/SiO2. The PL enhancement in MoS2/Au heterostructure can be attributed to the different charge transfer effects.

    2. Experimental method

    The stepped Au structures with the thickness values of~60-nm and~100-nm Au were built by sputtering on an Si/SiO2substrate. MoS2monolayers were grown on SiO2/Si substrates by the traditional CVD method in a furnace by using sulfur powder and molybdenum (VI) oxide powder as precursors.[25]Then the continuous MoS2monolayer was transferred to a target stepped Au structures on SiO2/Si substrate by using poly(methyl methacrylate)(PMMA)and polydimethylsiloxanes (PDMS). After being transferred, the remaining MoS2on the target substrate was rinsed by acetone to remove organic residues. The 2D MoS2/Au heterostructures were successfully built by transferring the MoS2monolayers onto the Au stepped structures with different thicknesses, respectively. The micro-PL and micro-Raman spectra were measured by a microscope system(Renishaw inVia)at room-temperature. The samples were excited by using a 532-nm (2.33 eV) continuous wavelength (CW) laser that is focused by a microscope objective lens(×50)into an about 2-μm-diameter spot. The excitation power was kept less than 0.2 mW to minimize the laser heating effect. The surface morphology and surface potential of MoS2and Au films were measured using the atomic force microscopy (AFM, Bruker)under the atmospheric environment.

    3. Results and discussion

    The PL measurements of MoS2/Au heterostructures consisting of monolayer CVD-grown MoS2and Au thin film were performed at room temperature under ambient atmosphere by using 532-nm CW-laser excitation. As shown in Fig. 1, the MoS2/Au heterostructures exhibit enhanced PL emission with blue-shifted PL peak in comparison with MoS2/SiO2. The A-excitonic PL peaks are located at 1.871 eV, 1.891 eV, and 1.894 eV, respectively for MoS2monolayers transferred on SiO2, Au (60 nm), and Au (100 nm). The PL peak of MoS2around 2.03 eV nm is attributed to the radiative recombination of B excitons. The excitonic PL emissions in MoS2/Au-60 heterostructures exhibit 2.4-fold and 3.3-fold PL intensities in comparison with those of MoS2/Au-100 and MoS2/SiO2.

    Fig.1. (a)Optical image of Si/SiO2 substrate and stepped Au structure with ~60-nm and ~100-nm-thick Au layer;(b)PL spectra and(c)normalized PL intensity for transferred continuous CVD-grown monolayer MoS2 on Si/SiO2, Au-60, and Au-100. Black, red, and green lines refer to the PL emissions of MoS2 at the position of the black,red,and green dots in panel(b),respectively.

    The PL spectra are fitted by Lorentzian curves with three peaks denoted by the emission of neutral excitons(A0),trions(A?), and B excitons at 1.895 eV, 1.855 eV, and 2.03 eV, respectively,as shown in Figs.2(a)–2(c). Compared with MoS2on SiO2, the MoS2/Au (60 nm) heterostructure shows significant A-excitonic PL enhancement, and suppressed B excitonic PL, while the A-excitonic PL of MoS2/Au (100 nm)decreases slightly. As shown in Figs.2(d)–2(e),the excitonic PL intensity from A0(IA0) are obviously stronger than those form A?(IA?) in MoS2/Au heterostructures. The estimated PL intensity ratio A?/A0decreases from 4.03 in MoS2/SiO2to 0.80 in MoS2/Au-60, and 0.62 in MoS2/Au-100. The A?recombination emission takes less spectral weight after the MoS2has been transferred onto the Au thin film than onto the SiO2/Si, indicating the decrease of electron density in monolayer MoS2/Au. The electron densitynelin monolayer MoS2can be estimated from the trion PL spectral weightIA?/Itotalanalysis according to mass action model based on the dynamic equilibrium among A0,A?,and free electrons as given below:[26]

    wherekBis the Boltzmann constant,Ebis the trion binding energy(~20 meV),m0is the mass of free electron,me(0.35m0),mA0(0.8m0),andmA?(1.15m0)are the effective mass of electron, A0, and A?, respectively,γA?/γA0refers to the relative decay rate,and the value is~0.15.[27]

    As shown in Fig.2(f),the corresponding estimated electron densities are 2.0×1013cm?2and 1.55×1013cm?2in MoS2/Au-60 and MoS2/Au-100 respectively, both of which are much smaller than that in MoS2/SiO2(1.01×1014cm?2).The PL emissions from MoS2on Au are obviously higher than on SiO2, which is also in agreement with a dominant PL contribution from A0emission in MoS2/Au heterostructure with enhanced transition from A?to A0. Furthermore,the B-excitonic PL emissions almost vanish in MoS2/Au-60 and MoS2/Au-100.

    Fig. 2. (a)–(c) Representative PL spectra fitted by Lorenz function with three PL peaks (A0, A?, and B) for MoS2 on SiO2, Au-60, and Au-100; (d) PL intensity from A0,A?,and B,(e)PL spectral weights and(f)estimated electron density in MoS2 on SiO2,Au-60,and Au-100.

    Fig.3. (a)Raman spectra,(b)E12g peaks,and(c)A1g peaks for transferred MoS2 on SiO2,Au-60,and Au-100.

    Generally,the enhanced PL intensity in MoS2can be ascribed to the chemical doping effect, the plasmon effect, the train effect, and charge transfer effect. There is no additional chemical doping in our experiment. Since the roughness of Au film is small (< 1 nm), the localized plasmon effect of MoS2on Au film is negligible in comparison with the effect of Au nanoparticles and Au plasmonic nanostructures. To uncover the enhanced PL emission in MoS2/Au heterostructure, the transferred monolayer MoS2on SiO2and stepped Au are further characterized by Raman spectroscopy. Figure 3 shows that the Raman peaks of MoS2on SiO2are at 384.58 cm?1, which is caused by the in-plane vibration of S–Mo–S atom (E12gmode), and 404.71 cm?1, which is induced by the out-of-plane vibration of S atoms (A1gmode).The frequency difference in frequency between the Raman peaks of the transferred monolayer MoS2on the SiO2/Si structure is 20.13 cm?1, in accordance with the reported value of transferred monolayer MoS2. The E12gand A1gpeaks of Raman spectra are 384.15 cm?1and 405.09 cm?1for MoS2/Au(60 nm), and 384.26 cm?1and 405.63 cm?1for MoS2/Au(100 nm). The obvious red shift of E12gpeak and the blue shift of the A1gpeak for MoS2/Au with respect to MoS2on SiO2are observed. The A1gpeak is obviously shifted by~0.92 cm?1,indicating interaction between MoS2and Au. The difference in frequency between E12gand A1gpeak positions of MoS2on Au-60 and Au-100 are ?ωAu?60=20.94 cm?1and?ωAu?100=21.37 cm?1,respectively.

    Generally,E12gand A1gpeak shifts are associated with the strain and doping effect in MoS2. Raman peak shifts vary linearly with biaxial strain (from 0 to 1%), and the slopes are?4.48 cm?1and?1.02 cm?1per 1%of biaxial strain for E12gand A1gmodes, respectively, while the A exciton peak exhibits a linear red-shift rate of?0.11 eV per 1% of biaxial tensile strain.[28]Furthermore, the electron doping density of 1.8×1013cm?2could lead to?4-cm?1shift in the A1gmode and?0.6-cm?1shift in the E12gmode.[29]It has been reported that A1gmode exhibits peak shift mostly dependent on the charge doping,while E12gmode was more sensitive to the tensile strain resulting from MoS2.[30–32]Comparing with the reference case of a freestanding 1-L MoS2with E12gand A1gpeak frequencies at 385 cm?1and 405 cm?1, the biaxial tensile strain and n-type doping(electron-doping)for MoS2on SiO2are estimated at~0.087%and 0.91×1012cm?2,respectively.A strain and a p-type doping density in MoS2/Au-60 are estimated at~0.200%and~1.32×1012cm?2,while the tensile strain and p-type doping (hole-doping) in MoS2/Au-100 are estimated at~0.193%and~3.72×1012cm?2,respectively.The negligible difference in tensile strain suggests that there is no obvious difference in strain effect between MoS2/Au-60 heterostructure and MoS2/Au-100 heterostructure. The estimated p-type doping in MoS2/Au can be attributed to the electron transferring from MoS2to Au,which is in agreement with excitonic PL emission result. Since the A-excitonic PL can exhibit a linear peak red-shifting and rapid intensity decreasing with biaxial tensile strain increasing,[33,34]the greater enhancement of PL intensity in MoS2/Au-60 is due to the difference in electron transfer effect rather than the small strain effect difference between MoS2/Au-60 and MoS2/Au-100. Furthermore, the Raman intensity per area from the suspended region was reported to be 50%–100% higher than that from the supported region in the literature.[35]The higher intensity in MoS2/Au-60 than in MoS2/Au-100 can be attributed to the less contact between MoS2layer and Au-60, which is in accord with the above estimated p-type doping density.

    Fig.4. (a)and(b)Morphology and SKPM surface potential,(c)PL intensity mapping,(d)PL emission peak mapping for monolayer MoS2 transferred on Si/SiO2 and stepped Au structure.

    To further study the charge transfer between MoS2and underlying substrate, scanning Kelvin probe microscopy(SKPM)measurement with an ElectriMulti75-G probe is carried out so as to obtain the morphology and surface potential information of samples simultaneously. The surface potential of monolayer MoS2and Au can be measured by the contact potential difference, which refers to the difference in work function between tip (φtip) and sample (φtip), thuseVsurf=(φtip?φsample). The morphology and surface potential of MoS2/SiO2and MoS2/Au heterostructures are shown in Figs. 4(a) and 4(b). The difference in measured contact potential of MoS2/SiO2(black dot), MoS2/Au-60 (red dot), and MoS2/Au-100 (green dot) are 0.490 V, 0.470 V,and 0.480 V, respectively, while the contact potential difference of Au is 0.383 V. In contrast with the work function of Au (~5.1 eV), surface work function of MoS2/SiO2,MoS2/Au-60, and MoS2/Au-100 without laser illumination are 4.993 eV, 5.013 eV, and 5.003 eV, respectively. According to the 2D model of electron gas at non-zero temperature,the Fermi energy shift in MoS2monolayer(?EF=πˉh2?n/me)can be calculated from the electron density change by using an electron band mass ofme=0.35m0, wherem0is the electron mass. Comparing with MoS2on SiO2, the surface potential of MoS2/Au-60 and MoS2/Au-100 are reduced by 20 mV and 10 mV, respectively, indicating that the calculated electron density differences are 2.92×1012cm?2and 1.46×1012cm?2, respectively. The calculated electron density differences from surface potential without laser illumination are much smaller than that estimated from A?/A0ratio,suggesting that the electron density of MoS2is increased under laser illumination.

    Figures 4(c) and 4(d) refer to the PL intensity mapping and PL peak mapping of MoS2in the region of black rectangle in Fig.4(a). The difference in PL intensity in MoS2/SiO2,MoS2/Au-100, and MoS2/Au-60 can be attributed to the different charge transfer situations. As Kwonet al.reported,the measured surface potential of monolayer MoS2in contact with the Au stripe in dark is greater than that of the suspended MoS2surface,while the surface potential of MoS2on Au stripe is smaller than that of the suspended MoS2surface under light illumination with a wavelength of 532 nm.[36]Furthermore,Liet al.reported that the work function is 4.93 eV for CVD-grown monolayer MoS2on an Si/SiO2substrate and 5.50 eV for that on a Pt substrate in dark,which decreases to 4.74 eV and increases to 5.56 eV under 355-nm laser excitation, respectively.[37]Therefore, we consider that the work function of MoS2/SiO2will decrease, and the work function of MoS2/Au-60 will be higher than that of MoS2/Au-100 under 532-nm laser excitation. Thus, the excess electrons in MoS2/Au-100 can move towards the MoS2/Au-60 under laser illumination as shown in Fig.5(a). Additionally,the electrons in MoS2/Au-100 can also be readily transferred into the Au film at the MoS2/Au interface. Thus, as shown in Fig. 5(b),the electrons transfer in MoS2occurs between MoS2/SiO2,MoS2/Au and the underlying Au film,which will finally lead to a transient dynamic equilibrium and band alignment under the laser excitation.[38]As a result,the decreasing of electron density in MoS2/Au gives rise to the blue-shift of PL peak and PL enhancement of A0radiative recombination. It should be noted that the laser used in our study has a size of~2μm in diameter and average power of less than 0.2 mW.During the PL measurement, MoS2/SiO2, MoS2/Au-100, and MoS2/Au-60 cannot be irradiated simultaneously. The photo-induced electrons from irradiated MoS2region can drift to um-irradiated region. The dynamic equilibrium will be different when the laser irradiates the MoS2/SiO2,MoS2/Au-100,and MoS2/Au-60, respectively. In addition, since O2/H2O molecules from ambient air can be physically and chemically adsorbed by the defects on MoS2surface, the charge transfer can also occur between monolayer MoS2and gas molecules. The PL emission of MoS2/Au heterostructures can be tuned by changing the charge transfer between MoS2and gas molecules, which will be further investigated in the future.

    Fig.5.Schematic illustrations of(a)charge transfer and(b)expected electron transfer at Fermi energy levels between MoS2/SiO2,MoS2/Au,and underlying Au under laser excitation.

    4. Conclusions and perspectives

    In this work,we have built MoS2/Au heterostructures by transferring CVD-grown monolayer MoS2onto a stepped Au structure with Au thickness of~60 nm and~100 nm on Si/SiO2substrate. The MoS2/Au-60 and MoS2/Au-100 heterostructures exhibit enhanced PL emission with blue-shifted PL peaks in comparison with MoS2/SiO2. Furthermore, the PL intensity of the MoS2/Au-60 sample is twice larger than that of the MoS2/Au-100 sample. The difference in enhancement extent of excitonic PL among the MoS2/Au heterostructures can be attributed to the difference in their charge transfer effects modified by the stepped Au structure,which determines the PL emission from A0and A?. Our results demonstrate a novel method to quantitatively tune the excitonic PL emission from MoS2/Au vertical heterostructure,and are also conducive to the understanding of the charge transfer between CVD-grown MoS2and Au,and provide a valuable insight into the excitonic PL and optoelectrical properties of MoS2/metal heterostructures.

    Acknowledgements

    We thank Dr. Zhaoqi Gu and Prof. Jiaxin Yu for helpful suggestions.

    Project supported by the China Postdoctoral Science Foundation(Grant No.2020M671168)and the National Natural Science Foundation of China(Grant No.62075131).

    猜你喜歡
    天賜
    漫畫天地
    清風(2022年11期)2023-01-05 15:29:18
    天賜靈機
    消防安全重于泰山(漫畫)
    消防界(2020年19期)2020-12-07 06:00:25
    天賜美景香水河
    華人時刊(2019年13期)2019-11-26 00:54:40
    天賜的緣分
    意林(2018年4期)2018-03-02 15:48:32
    天賜草原
    黃河之聲(2017年4期)2017-06-12 12:04:16
    天賜好米 隆興華夏(二)
    天賜好米 隆興華夏(一)
    大自然的禮物——天賜
    花卉(2016年3期)2016-04-16 03:01:03
    成人黄色视频免费在线看| 免费观看人在逋| 欧美人与善性xxx| av视频免费观看在线观看| 久久久精品免费免费高清| 在线观看人妻少妇| 精品视频人人做人人爽| 成人午夜精彩视频在线观看| 午夜福利乱码中文字幕| 波多野结衣av一区二区av| 80岁老熟妇乱子伦牲交| 精品酒店卫生间| 看免费成人av毛片| 大陆偷拍与自拍| 一级,二级,三级黄色视频| 观看av在线不卡| 日韩不卡一区二区三区视频在线| 1024视频免费在线观看| 只有这里有精品99| 免费高清在线观看视频在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品偷伦视频观看了| 婷婷色综合大香蕉| 成人国产麻豆网| 亚洲av男天堂| 午夜激情久久久久久久| 国产精品 欧美亚洲| xxxhd国产人妻xxx| 久久久久久久久免费视频了| 国产日韩一区二区三区精品不卡| 久久久久人妻精品一区果冻| 男女国产视频网站| 搡老乐熟女国产| 亚洲欧洲日产国产| 下体分泌物呈黄色| 日本爱情动作片www.在线观看| 一级a爱视频在线免费观看| 97在线人人人人妻| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 亚洲,一卡二卡三卡| 国产片特级美女逼逼视频| 如何舔出高潮| www.自偷自拍.com| 免费黄网站久久成人精品| 在线观看免费视频网站a站| 精品少妇黑人巨大在线播放| 99精国产麻豆久久婷婷| 汤姆久久久久久久影院中文字幕| 两性夫妻黄色片| 日本av免费视频播放| 免费人妻精品一区二区三区视频| 观看av在线不卡| 日本午夜av视频| 桃花免费在线播放| 午夜久久久在线观看| 亚洲精品av麻豆狂野| 国产av国产精品国产| 欧美乱码精品一区二区三区| 最近手机中文字幕大全| 亚洲欧美中文字幕日韩二区| 水蜜桃什么品种好| 嫩草影院入口| av电影中文网址| 天堂俺去俺来也www色官网| 日韩精品免费视频一区二区三区| 午夜福利免费观看在线| 视频区图区小说| 啦啦啦在线免费观看视频4| 黄色视频在线播放观看不卡| 热99久久久久精品小说推荐| 亚洲精品视频女| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 久久久精品免费免费高清| 国产精品久久久久久人妻精品电影 | 国产黄色免费在线视频| 日韩大片免费观看网站| 亚洲婷婷狠狠爱综合网| 在现免费观看毛片| 卡戴珊不雅视频在线播放| 尾随美女入室| 男人添女人高潮全过程视频| 国产一区有黄有色的免费视频| 国产在线一区二区三区精| 免费在线观看完整版高清| 在线精品无人区一区二区三| 久久久精品免费免费高清| 亚洲,欧美,日韩| 亚洲国产精品一区二区三区在线| 亚洲精品久久久久久婷婷小说| 这个男人来自地球电影免费观看 | 欧美日韩一级在线毛片| 91aial.com中文字幕在线观看| 两性夫妻黄色片| 亚洲色图 男人天堂 中文字幕| 亚洲av男天堂| 欧美国产精品一级二级三级| 日日摸夜夜添夜夜爱| 久久人人爽av亚洲精品天堂| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一出视频| 天堂俺去俺来也www色官网| av线在线观看网站| 国产成人系列免费观看| 国产成人系列免费观看| 另类亚洲欧美激情| 日韩,欧美,国产一区二区三区| 国产精品 国内视频| 精品午夜福利在线看| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 亚洲精品第二区| 熟女av电影| 男女边摸边吃奶| 男女高潮啪啪啪动态图| 青春草国产在线视频| 国产不卡av网站在线观看| 视频在线观看一区二区三区| 两个人看的免费小视频| 97精品久久久久久久久久精品| 天天影视国产精品| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久 | 另类亚洲欧美激情| 99国产精品免费福利视频| 日本黄色日本黄色录像| 色94色欧美一区二区| 成人午夜精彩视频在线观看| 另类亚洲欧美激情| 一区福利在线观看| 熟妇人妻不卡中文字幕| 欧美精品高潮呻吟av久久| 美女中出高潮动态图| 亚洲视频免费观看视频| 中文字幕人妻丝袜一区二区 | 亚洲国产中文字幕在线视频| 在线观看国产h片| av一本久久久久| 少妇人妻精品综合一区二区| 国产爽快片一区二区三区| 亚洲图色成人| 亚洲精品久久成人aⅴ小说| 80岁老熟妇乱子伦牲交| 亚洲七黄色美女视频| 亚洲免费av在线视频| 国产99久久九九免费精品| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 天天躁日日躁夜夜躁夜夜| 老司机深夜福利视频在线观看 | www.av在线官网国产| 国产伦人伦偷精品视频| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| www.精华液| 久久国产亚洲av麻豆专区| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区| 妹子高潮喷水视频| 国产在线一区二区三区精| 秋霞伦理黄片| 亚洲精品美女久久av网站| 国产精品久久久久久人妻精品电影 | 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 欧美成人精品欧美一级黄| 午夜福利在线免费观看网站| 美女扒开内裤让男人捅视频| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 999久久久国产精品视频| 色94色欧美一区二区| 国产男人的电影天堂91| 亚洲三区欧美一区| 亚洲成人av在线免费| 成年女人毛片免费观看观看9 | 国产黄色视频一区二区在线观看| 精品酒店卫生间| 亚洲国产欧美在线一区| 亚洲熟女毛片儿| 国产一区二区激情短视频 | a级毛片在线看网站| 精品第一国产精品| 国产在线一区二区三区精| 国产精品 国内视频| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 午夜免费观看性视频| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 中文字幕亚洲精品专区| a级毛片在线看网站| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 在线观看免费午夜福利视频| 男人爽女人下面视频在线观看| 亚洲国产精品999| 亚洲国产av新网站| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 青青草视频在线视频观看| 人人妻,人人澡人人爽秒播 | 欧美日韩一级在线毛片| 中文乱码字字幕精品一区二区三区| 宅男免费午夜| 中国三级夫妇交换| 婷婷色av中文字幕| 欧美在线一区亚洲| 亚洲国产欧美网| av视频免费观看在线观看| 又大又黄又爽视频免费| www日本在线高清视频| 久久亚洲国产成人精品v| 性少妇av在线| 在线观看www视频免费| 欧美日韩综合久久久久久| 久久影院123| 日日啪夜夜爽| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 天天操日日干夜夜撸| 久久97久久精品| 日韩视频在线欧美| 极品人妻少妇av视频| 一二三四在线观看免费中文在| 国产在线免费精品| 成人影院久久| 男女午夜视频在线观看| 高清黄色对白视频在线免费看| 看免费av毛片| avwww免费| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 美女视频免费永久观看网站| 欧美精品一区二区大全| 中文字幕av电影在线播放| avwww免费| 久久这里只有精品19| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 成人国产av品久久久| 亚洲欧洲国产日韩| 日本av免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 丝袜美足系列| 精品少妇一区二区三区视频日本电影 | 欧美老熟妇乱子伦牲交| 国产av码专区亚洲av| 亚洲精品aⅴ在线观看| 香蕉国产在线看| 精品一区二区三区四区五区乱码 | kizo精华| 丁香六月天网| 国产免费现黄频在线看| 欧美亚洲 丝袜 人妻 在线| 十分钟在线观看高清视频www| 国产精品三级大全| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看| 欧美国产精品一级二级三级| 飞空精品影院首页| 一本一本久久a久久精品综合妖精| 亚洲精品视频女| 在线观看国产h片| tube8黄色片| 久久99一区二区三区| 午夜福利视频精品| 精品亚洲成国产av| 欧美日韩一级在线毛片| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂| 波野结衣二区三区在线| 亚洲国产中文字幕在线视频| 午夜影院在线不卡| 亚洲精品,欧美精品| 国产精品免费大片| 精品少妇一区二区三区视频日本电影 | 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 欧美精品一区二区大全| av卡一久久| 赤兔流量卡办理| 日本一区二区免费在线视频| 韩国高清视频一区二区三区| 黄色一级大片看看| 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| www.精华液| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 秋霞在线观看毛片| 久久免费观看电影| 9191精品国产免费久久| 国产精品二区激情视频| 成人国产av品久久久| 男男h啪啪无遮挡| 自线自在国产av| 国产精品一国产av| 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密 | 国产成人欧美在线观看 | 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| 久久久久视频综合| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| 久久久久久人妻| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 国产伦理片在线播放av一区| 可以免费在线观看a视频的电影网站 | 一区福利在线观看| 日韩伦理黄色片| 亚洲欧美激情在线| 亚洲第一区二区三区不卡| 99久久99久久久精品蜜桃| 三上悠亚av全集在线观看| 国产一区二区三区av在线| av不卡在线播放| 人体艺术视频欧美日本| 激情五月婷婷亚洲| 久久国产精品男人的天堂亚洲| 老鸭窝网址在线观看| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 91aial.com中文字幕在线观看| 秋霞在线观看毛片| 满18在线观看网站| 婷婷色综合www| 赤兔流量卡办理| 国产激情久久老熟女| 在线观看www视频免费| 又大又爽又粗| 日本欧美国产在线视频| 在线天堂最新版资源| 午夜免费鲁丝| 久久久久精品人妻al黑| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| 少妇人妻久久综合中文| 男女午夜视频在线观看| 精品国产乱码久久久久久小说| 18禁动态无遮挡网站| 亚洲国产欧美一区二区综合| 免费在线观看视频国产中文字幕亚洲 | 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 宅男免费午夜| 亚洲国产中文字幕在线视频| tube8黄色片| 免费人妻精品一区二区三区视频| 久久精品国产综合久久久| 国产不卡av网站在线观看| 久久久久视频综合| 国产欧美日韩一区二区三区在线| 久久性视频一级片| 在线观看www视频免费| 国产av码专区亚洲av| 日韩欧美精品免费久久| 黄色视频不卡| 一区二区三区四区激情视频| 国产探花极品一区二区| 久久久久久久精品精品| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| avwww免费| 日本猛色少妇xxxxx猛交久久| 亚洲av综合色区一区| 制服诱惑二区| 99热全是精品| 两性夫妻黄色片| 我要看黄色一级片免费的| 久久国产精品男人的天堂亚洲| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 亚洲精品一二三| √禁漫天堂资源中文www| 国产精品国产av在线观看| 久久久久人妻精品一区果冻| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 天堂俺去俺来也www色官网| 如日韩欧美国产精品一区二区三区| 成年人午夜在线观看视频| 日韩人妻精品一区2区三区| 卡戴珊不雅视频在线播放| 色94色欧美一区二区| 国产片内射在线| 1024香蕉在线观看| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡| 人体艺术视频欧美日本| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 日本vs欧美在线观看视频| 美国免费a级毛片| 1024香蕉在线观看| 免费av中文字幕在线| 亚洲国产精品国产精品| 国产一区二区三区av在线| 国产精品蜜桃在线观看| 别揉我奶头~嗯~啊~动态视频 | 青草久久国产| 中文字幕亚洲精品专区| 18在线观看网站| 国产亚洲一区二区精品| 在线看a的网站| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 日日爽夜夜爽网站| 国产精品久久久av美女十八| 日韩av免费高清视频| 亚洲av在线观看美女高潮| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 精品久久久久久电影网| 国产一级毛片在线| 亚洲av男天堂| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 中文字幕亚洲精品专区| 国产成人欧美在线观看 | 国产精品国产三级国产专区5o| 欧美日韩亚洲综合一区二区三区_| 成人国产av品久久久| 国产探花极品一区二区| 亚洲精品久久久久久婷婷小说| 欧美日韩国产mv在线观看视频| 一个人免费看片子| 亚洲精品aⅴ在线观看| 色播在线永久视频| 一区二区日韩欧美中文字幕| 色精品久久人妻99蜜桃| 日韩免费高清中文字幕av| av视频免费观看在线观看| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 黄片播放在线免费| 国产成人欧美| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久 | 婷婷成人精品国产| a级毛片在线看网站| 国产成人av激情在线播放| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 卡戴珊不雅视频在线播放| 国产精品久久久av美女十八| 少妇人妻 视频| 国产片特级美女逼逼视频| 男女床上黄色一级片免费看| 男女边吃奶边做爰视频| 黄色 视频免费看| 捣出白浆h1v1| 精品第一国产精品| 午夜福利视频在线观看免费| 国产精品三级大全| 在线观看免费视频网站a站| 欧美久久黑人一区二区| 18禁国产床啪视频网站| 美女福利国产在线| 国产男女超爽视频在线观看| 九色亚洲精品在线播放| 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 99香蕉大伊视频| 晚上一个人看的免费电影| 色婷婷av一区二区三区视频| 伊人久久大香线蕉亚洲五| 精品久久蜜臀av无| 亚洲成人免费av在线播放| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 熟女少妇亚洲综合色aaa.| av在线app专区| 亚洲欧洲日产国产| 久久国产精品男人的天堂亚洲| 久久久久人妻精品一区果冻| 久久久久久人妻| 色吧在线观看| 嫩草影视91久久| 只有这里有精品99| 日韩制服丝袜自拍偷拍| 视频在线观看一区二区三区| 三上悠亚av全集在线观看| 日本午夜av视频| 午夜影院在线不卡| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 久久97久久精品| 亚洲国产精品999| 99久久99久久久精品蜜桃| 国产av码专区亚洲av| 久热爱精品视频在线9| 亚洲欧美精品自产自拍| 另类精品久久| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 一区二区av电影网| 九九爱精品视频在线观看| 一级片'在线观看视频| 午夜免费观看性视频| 久久97久久精品| 亚洲在久久综合| 美国免费a级毛片| 亚洲av日韩精品久久久久久密 | 日韩成人av中文字幕在线观看| 黄片小视频在线播放| 99九九在线精品视频| 久久久久久久久久久久大奶| 老司机在亚洲福利影院| 操出白浆在线播放| 国产在线一区二区三区精| 欧美另类一区| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久 | 久久国产精品男人的天堂亚洲| 国产精品女同一区二区软件| 精品国产乱码久久久久久男人| 99九九在线精品视频| 久久鲁丝午夜福利片| 亚洲精品av麻豆狂野| 天天操日日干夜夜撸| a级毛片黄视频| 别揉我奶头~嗯~啊~动态视频 | 少妇被粗大的猛进出69影院| 午夜福利视频精品| 成年人免费黄色播放视频| av不卡在线播放| 制服丝袜香蕉在线| 丝袜在线中文字幕| 国产精品成人在线| 丝瓜视频免费看黄片| 午夜av观看不卡| 欧美日韩亚洲高清精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线进入| 在线免费观看不下载黄p国产| 中文天堂在线官网| 成年av动漫网址| 丰满乱子伦码专区| 亚洲,欧美精品.| 女人爽到高潮嗷嗷叫在线视频| 色网站视频免费| 韩国高清视频一区二区三区| 欧美人与性动交α欧美精品济南到| 搡老岳熟女国产| 亚洲情色 制服丝袜| 亚洲在久久综合| 成年人午夜在线观看视频| 最新的欧美精品一区二区| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品免费免费高清| 亚洲婷婷狠狠爱综合网| 丝袜美腿诱惑在线| 婷婷色av中文字幕| 波多野结衣一区麻豆| 成年动漫av网址| 国产精品免费大片| 欧美激情极品国产一区二区三区| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 人人妻,人人澡人人爽秒播 | 国产一区二区在线观看av| a级片在线免费高清观看视频| 男女国产视频网站| 成人免费观看视频高清| 日韩中文字幕欧美一区二区 | 亚洲av日韩在线播放| 999久久久国产精品视频| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 亚洲精品乱久久久久久| 国产成人午夜福利电影在线观看| 极品人妻少妇av视频| 国产毛片在线视频|