張應(yīng)根,項(xiàng)麗慧,陳林,林清霞,宋振碩,王麗麗
不同控溫除濕萎凋環(huán)境對(duì)白茶風(fēng)味品質(zhì)和化學(xué)輪廓的影響
張應(yīng)根,項(xiàng)麗慧,陳林*,林清霞,宋振碩,王麗麗
福建省農(nóng)業(yè)科學(xué)院茶葉研究所,福建 福州 350013
為實(shí)現(xiàn)基于萎凋環(huán)境(溫度和濕度)的白茶加工品質(zhì)目標(biāo)控制,以茶鮮葉萎凋減重率達(dá)45%為環(huán)境調(diào)控節(jié)點(diǎn),通過高溫除濕[(30±2)℃,RH (35±5)%]或低溫除濕[(20±2)℃,RH (55±5)%],研究了持續(xù)低溫除濕(Low-Low)、持續(xù)高溫除濕(High-High)、先高溫除濕后低溫除濕(High-Low)和先低溫除濕后高溫除濕(Low-High)4種不同控溫除濕萎凋方式對(duì)福安大白茶、黃棪和黃觀音等6個(gè)茶樹品種鮮葉所制白茶感官品質(zhì)和化學(xué)輪廓的影響。結(jié)果表明,白茶風(fēng)味品質(zhì)主要由鮮葉原料(茶樹品種)的理化特性所決定。采用Low-Low萎凋處理的白茶滋味略淡、稍帶青氣;High-High和Low-High萎凋處理的同一茶樹品種白茶的外形和湯色等較為相近,且Low-Low和High-Low萎凋加工的白茶亦具有較為類似的品質(zhì)特征。各白茶樣品的紫外和近紅外光譜均有較為相似的吸收變化,并以近紅外光譜可為供試茶樣的模式識(shí)別提供更為豐富的化學(xué)信息;白茶樣品中的沒食子酸、表兒茶素沒食子酸酯、沒食子兒茶素、咖啡堿和可可堿含量在不同茶樹品種間存在一定差異,但萎凋處理對(duì)已標(biāo)定的兒茶素類和嘌呤堿均無顯著性影響?;谧贤夤庾V,尤其是近紅外光譜和生化組成(兒茶素類和嘌呤堿)的主成分分析可對(duì)白茶樣品按鮮葉原料(茶樹品種)進(jìn)行較好的類群區(qū)分,但不同萎凋處理對(duì)其光譜和生化組成輪廓的影響則被茶鮮葉原料的品種特性所掩飾;采用多級(jí)主成分分析可有效呈現(xiàn)4種萎凋環(huán)境對(duì)不同茶樹品種白茶樣品近紅外光譜和生化組成輪廓的影響趨勢,且其對(duì)全部白茶樣品的分類識(shí)別結(jié)果與呈現(xiàn)的風(fēng)味品質(zhì)感官特征較為一致。研究結(jié)果可為白茶風(fēng)味品質(zhì)工藝技術(shù)調(diào)控提供參考依據(jù)。
白茶;萎凋環(huán)境;風(fēng)味品質(zhì);化學(xué)輪廓;模式識(shí)別
白茶發(fā)源并主產(chǎn)于福建,屬中國六大茶類之一。根據(jù)鮮葉采摘標(biāo)準(zhǔn)和茶樹品種的不同,所制白茶可劃分為白毫銀針、白牡丹、貢眉、壽眉4種品類[1]。由于在加工過程中不炒不揉,白茶外形自然舒展、芽葉完整,滋味清淡甘甜、不苦不澀,香氣清新或帶花香,又因其具有保護(hù)神經(jīng)、降脂減肥、消炎抗菌、預(yù)防糖尿病和心血管疾病等多種潛在保健功效而被國內(nèi)外消費(fèi)者青睞[2-3]。白茶的加工工藝主要包括萎凋和干燥兩道工序,其中萎凋是使白茶風(fēng)味明顯有別于其他茶類的關(guān)鍵工序。茶鮮葉在萎凋過程中伴隨水分的逐步散失,發(fā)生一系列復(fù)雜的化學(xué)變化,主要表現(xiàn)為兒茶素、碳水化合物、葉綠素、胡蘿卜素、脂類和脂肪酸的減少,游離氨基酸、咖啡堿和有機(jī)酸的增加,以及可溶性糖、香氣揮發(fā)物和多酚氧化酶活性的改變[4-7]。不同萎凋環(huán)境(溫度和濕度)將明顯影響茶鮮葉的萎凋歷時(shí),并可實(shí)現(xiàn)白茶風(fēng)味品質(zhì)特征的有效調(diào)控。李鳳娟[8]研究表明,控溫萎凋(20℃)能有效改善夏季白茶的香氣品質(zhì),比室內(nèi)自然萎凋(25~30℃)具有更為豐富的醇類和醛類等香氣成分。林清霞等[9]比較了在控濕(RH 60%~80%)條件下,3種環(huán)境溫度(20℃、25℃和30℃)對(duì)茶鮮葉萎凋失水和白茶品質(zhì)的影響,結(jié)果顯示溫度升高能明顯縮短萎凋時(shí)間,但環(huán)境溫度為25℃時(shí)獲得的白茶品質(zhì)最優(yōu)。陳林等[10]研究發(fā)現(xiàn),在特定控溫除濕環(huán)境(18~22℃,RH 45%~60%),茶鮮葉萎凋減重率30%~60%為影響花香白茶香氣品質(zhì)形成的關(guān)鍵發(fā)展階段,并以萎凋后期(減重率≥45%)對(duì)在制品香氣組成的影響最為突出。為此,本研究以茶鮮葉萎凋減重率達(dá)45%為節(jié)點(diǎn),考察了4種不同控溫除濕萎凋環(huán)境對(duì)6個(gè)茶樹品種鮮葉所制白茶感官品質(zhì)特征的影響,并對(duì)各供試茶樣進(jìn)行紫外和近紅外光譜采集及高效液相色譜檢測分析和化學(xué)模式識(shí)別,以期為基于萎凋環(huán)境(溫度和濕度)的白茶風(fēng)味品質(zhì)工藝技術(shù)調(diào)控提供參考依據(jù)。
供試鮮葉分別采自福建省農(nóng)業(yè)科學(xué)院茶葉研究所試驗(yàn)基地(北緯27°13'57",東經(jīng)119°34'31")各茶樹品種春季第一輪新梢。茶樹品種為福安大白茶、黃棪、黃觀音、梅占、水仙和肉桂;采摘標(biāo)準(zhǔn)為一芽二葉或一芽三葉。
標(biāo)準(zhǔn)品:兒茶素(C,純度≥98%)和兒茶素沒食子酸酯(CG,純度≥98%),購自美國Sigma-Aldrich公司;沒食子兒茶素(GC,純度≥98%)、沒食子兒茶素沒食子酸酯(GCG,純度≥98%)和茶葉堿(TP,純度≥99%),購自上海阿達(dá)瑪斯試劑有限公司;表兒茶素沒食子酸酯(ECG,純度≥98%),購自上海安譜實(shí)驗(yàn)科技股份有限公司;表兒茶素(EC,純度>99%)、茶黃素(TF,純度≥95%)、茶黃素-3-沒食子酸酯(TF-3-G,純度≥98%)、茶黃素-3'-沒食子酸酯(TF-3'-G,純度≥98%),購自上海麥克林生化科技有限公司;3''--甲基表沒食子兒茶素沒食子酸酯(EGCG 3''Me,純度≥98%),購自上海源葉生物科技有限公司;表沒食子兒茶素沒食子酸酯(EGCG,純度≥98%)、表沒食子兒茶素(EGC,純度≥98%)、沒食子酸(GA,純度>99%)、咖啡堿(CAF,純度≥98%)、可可堿(TB,純度≥99%)和茶黃素-3,3'-雙沒食子酸酯((TFDG,純度≥98%),購自阿拉?。ㄔ噭┥虾S邢薰尽?/p>
乙腈(色譜純),購自美國Fisher公司;甲醇(色譜純),購自美國Sigma-Aldrich公司;乙二胺四乙酸二鈉二水合物(Na2EDTA·2H2O,分析純)、抗壞血酸(分析純)和冰乙酸(分析純),購自國藥集團(tuán)化學(xué)試劑有限公司。
萎凋環(huán)境控制和監(jiān)測裝備:KF-35GW/35356格力空調(diào),珠海格力電器股份有限公司;ROBO60T工業(yè)電熱風(fēng)機(jī),上海固途工業(yè)品銷售有限公司;CH150D轉(zhuǎn)輪式除濕機(jī),廣州市森井貿(mào)易有限公司;AOTE-JS06A超聲波加濕機(jī),廣州市傲特電子科技有限公司;S520-EX溫濕度記錄儀,深圳市華圖測控系統(tǒng)有限公司。Varioskan LUX多功能酶標(biāo)儀和Antaris Ⅱ傅立葉近紅外分析儀,美國ThermoFisher Scientific公司;1260 Infinity液相色譜系統(tǒng),包括四元泵(G1311C VL)、標(biāo)準(zhǔn)自動(dòng)進(jìn)樣器(G1329B)、柱溫箱(G1316A)、ZORBAX Eclipse Plus C18色譜柱(150?mm×4.6?mm,5?μm)和二極管陣列檢測器(G1315D VL),美國Agilent Technologies公司。
將各茶樹品種鮮葉薄攤在尼龍網(wǎng)篩上(=90?cm,每篩攤?cè)~量約1.0?kg),分別于室內(nèi)4種不同控溫除濕環(huán)境萎凋至同一減重率(約為70%)時(shí),再將萎凋葉放入烘箱,80℃烘至足干,由此制得白茶樣品(表1)。
表1 白茶樣品基本信息和編碼
注:Low-Low:持續(xù)低溫除濕,即茶鮮葉在低溫除濕環(huán)境萎凋[(20±2)℃,RH (55±5)%];High-High:持續(xù)高溫除濕,即茶鮮葉在高溫除濕環(huán)境萎凋[(30±2)℃,RH (35±5)%];Low-High:先低溫后高溫除濕,即茶鮮葉在低溫除濕環(huán)境萎凋至減重率為45%時(shí),切換為高溫除濕萎凋;High-Low:先高溫后低溫除濕,即茶鮮葉在高溫除濕環(huán)境萎凋至減重率為45%時(shí),切換為低溫除濕萎凋。表2和下圖同
Note: Low, air conditions are preset at (20±2)℃ with RH (55±5)%. High, air conditions are controlled at (30±2)℃ with RH (35±5)%. According to whether the indoor temperature and relative humidity are mutually switched at the point when the weight loss rate of tea shoots reaches 45% during the whole withering procedure, the levels of each withering treatment are named as Low-Low, Low-High, High-Low and High-High, respectively. All the codes are the same in table 2 and the following figures
由5名專業(yè)人員組成審評(píng)小組,參照GB/T 22291—2017[1]、GB/T 23776—2018[11]和GB/T 14487—2017[12],采用評(píng)語法對(duì)各供試茶樣進(jìn)行感官審評(píng)。
取0.200?g磨碎白茶樣品(過40目篩)于50?mL具塞刻度試管中,加入30?mL超純水,于沸水中浸提45?min(每隔10?min搖勻1次),冷卻定容至50?mL,定性濾紙過濾,并取中后段濾液0.5?mL,加入20?mL超純水稀釋待測。在96孔石英酶標(biāo)板上滴加200?μL上述稀釋液,并采用Varioskan LUX多功能酶標(biāo)儀的SkanIt RE 6.0軟件記錄各白茶樣品浸提稀釋液在200~400?nm范圍內(nèi)的紫外吸收光譜(測量時(shí)間:100?ms;步長:4?nm)。
將磨碎白茶樣品(過40目篩)平鋪于5?cm樣品杯中,厚度2~3?cm,將樣品壓實(shí)后置積分球樣品窗口上,并通過Antaris Ⅱ傅立葉近紅外分析儀的RESULT 3軟件采集各白茶樣品在4?000~10?000?cm-1范圍內(nèi)的近紅外漫反射光譜(掃描次數(shù):64次;樣品杯旋轉(zhuǎn)器:旋轉(zhuǎn);分辨率:8?cm-1)。每個(gè)樣品重復(fù)2次,取平均光譜作為該樣品原始光譜。
取0.200?g磨碎白茶樣品(過40目篩)于25?mL具塞玻璃試管中,加入10?mL 70%甲醇溶液,渦旋混勻后,立即移入70℃水浴,浸提20?min(隔10?min渦旋1次),浸提后冷卻至室溫,轉(zhuǎn)移上清液至10?mL容量瓶,用70%甲醇溶液定容并搖勻。取2?mL提取液至2?mL離心管,在3?500?r·min-1轉(zhuǎn)速下離心10?min,取1?mL上清液至5?mL容量瓶中,用穩(wěn)定溶液定容并搖勻。取0.45?μm有機(jī)膜濾液,參照GB/T 30483—2013[13],應(yīng)用1260 Infinity液相色譜系統(tǒng)對(duì)各白茶樣品中的沒食子酸(GA)、9種兒茶素(EGCG、ECG、EGC、EC、EGCG3''Me、C、CG、GC、GCG)、4種茶黃素(TF、TF-3-G、TF-3'-G和TFDG)和3種嘌呤堿(CAF、TB和TP)進(jìn)行檢測分析(檢測波長:278?nm)。
將液相色譜化學(xué)工作站ChemStation B.04.03創(chuàng)建的各供試茶樣生化成分(兒茶素類、茶黃素和嘌呤堿)數(shù)據(jù)文件轉(zhuǎn)換成標(biāo)準(zhǔn)AIA格式文件,并將其導(dǎo)入到化學(xué)指紋圖譜系統(tǒng)解決方案軟件ChemPattern 2017進(jìn)行各檢出峰定性、干物質(zhì)含量校正[14]和色譜圖繪制。采用R 4.0.5軟件對(duì)各茶樣已標(biāo)定的生化成分(兒茶素類和嘌呤堿)分別進(jìn)行基于鮮葉原料(茶樹品種)和控溫除濕萎凋處理的箱線圖繪制及含量差異顯著性比較(-檢驗(yàn):成對(duì)雙樣本均值分析,值采用Bonferroni校正)。隨后應(yīng)用Excel 2013分別對(duì)各白茶樣品的紫外光譜、近紅外光譜和生化成分(兒茶素類和嘌呤堿)數(shù)據(jù)根據(jù)變異來源保留或剔除因鮮葉原料(茶樹品種)異質(zhì)性引起的數(shù)據(jù)變化[15],再導(dǎo)入到SIMCA 17進(jìn)行紫外和近紅外光譜繪制、(多級(jí))主成分分析和(多級(jí))偏最小二乘判別分析等化學(xué)模式識(shí)別及差異變量(光譜或成分)分析。
茶鮮葉由于在白茶加工過程中未受人工外力和高溫干預(yù),其多酚類物質(zhì)僅發(fā)生少量氧化。另因構(gòu)成干茶和葉底色澤的脂溶性色素(如葉綠素和類胡蘿卜素)會(huì)發(fā)生少量降解和轉(zhuǎn)化[4],使得白茶色澤灰綠帶褐,芽葉自然萎縮并較為完整地保留了鮮葉原料的物理形態(tài)。由表2可以看出,不同萎凋環(huán)境下加工的同一茶樹品種白茶在外形和葉底方面略有差異,但相同茶樹品種鮮葉制成白茶均可根據(jù)其外觀形態(tài)和色澤進(jìn)行較好識(shí)別。此外,適制烏龍茶品種(黃棪、黃觀音、梅占、水仙和肉桂)鮮葉加工的白茶香氣清甜并帶花香,且其外形和葉底明顯有別于福安大白茶鮮葉制成的傳統(tǒng)白茶[16]。就同一茶樹品種鮮葉加工的白茶品質(zhì)而言,持續(xù)低溫除濕(Low-Low)條件下加工的白茶滋味略淡,并稍帶青氣;持續(xù)高溫除濕(High-High)或先低溫后高溫除濕(Low-High)條件下加工的白茶莖梗和葉底紅變略顯,且其湯色相較持續(xù)低溫除濕(Low-Low)或先高溫后低溫除濕(High-Low)萎凋處理多呈偏黃趨勢。
表2 白茶樣品感官品質(zhì)
茶葉中的多酚及其氧化產(chǎn)物、嘌呤堿、茶氨酸、茶多糖、有機(jī)酸和茶皂素等多種水溶性成分均有特定的紫外光譜[17-21]和近紅外光譜[22-24]吸收特性。從圖1可以看出,各白茶樣品的紫外吸收光譜在波長204?nm和272?nm有2個(gè)較為明顯的吸收峰,而其近紅外漫反射光譜亦具較為相似的吸收變化,據(jù)此可推斷各供試白茶樣品具有較為相近的化學(xué)組成。為探明鮮葉原料和萎凋環(huán)境的溫濕度對(duì)白茶樣品紫外和近紅外光譜吸收特征的影響,分別對(duì)各白茶樣品的紫外和近紅外光譜采用Savitzky-Golay算法(每個(gè)4次多項(xiàng)式子模型含15個(gè)點(diǎn),各點(diǎn)間距為1)進(jìn)行二階求導(dǎo)過濾?;谧兞恐行幕A(yù)處理的主成分分析結(jié)果顯示,同一鮮葉原料白茶樣品的紫外和近紅外光譜的化學(xué)模式在前2個(gè)主成分的二維得分視圖中分布相對(duì)聚集;福安大白茶和黃棪白茶樣品的紫外光譜化學(xué)模式相較離散,但各白茶樣品的近紅外光譜化學(xué)模式具有較好的茶樹品種區(qū)分(圖2-A1和圖2-A2)。由此可見,控溫除濕萎凋?qū)ν货r葉原料白茶樣品的紫外和近紅外光譜均有不同程度的影響,但各白茶樣品的光譜特征主要由其鮮葉原料的理化特性所決定,且應(yīng)用近紅外光譜更有助于鑒別制作各白茶樣品的鮮葉來源于何種品種。
注:各光譜采用最小漂移基線校正預(yù)處理。A:紫外吸收光譜;B:近紅外漫反射光譜
為排除因鮮葉原料理化特性引起白茶樣品的光譜差異,并進(jìn)一步揭示各控溫除濕萎凋條件對(duì)白茶紫外和近紅外光譜特征的影響,采用多級(jí)主成分分析發(fā)現(xiàn),不同控溫除濕萎凋環(huán)境加工制作的白茶樣品紫外光譜化學(xué)模式在前2個(gè)主成分二維得分視圖中并無明顯的規(guī)律性聚集(圖2-B1),但各白茶樣品近紅外光譜因鮮葉萎凋所采用的控溫除濕條件差異而存在一定的處理區(qū)分(圖2-B2),即全部白茶樣品可明顯劃分為Low-Low和High-Low、High-High和Low-High兩個(gè)類群。此外,基于多級(jí)偏最小二乘判別分析的前2個(gè)主成分得分視圖亦可對(duì)這兩個(gè)類群進(jìn)行有效區(qū)分(圖2-C1),其中基于最優(yōu)主成分?jǐn)?shù)(3)的RX(解釋率)、RY(解釋率)和QY(預(yù)測率)分別為0.511、0.991、0.851。交互驗(yàn)證殘差的方差分析(CV-ANOVA)和置換檢驗(yàn)(=200)對(duì)模型的有效性檢驗(yàn)結(jié)果顯示,該模型具良好的預(yù)測能力(=2.460×10-5),且不存在過擬合現(xiàn)象。根據(jù)兩組間差異得分貢獻(xiàn)(權(quán)重≥5)可知,兩個(gè)類群的近紅外光譜在波數(shù)為4?351、4?856~4?871?cm-1和4?894~4?925?cm-1(即2?298、2?053~2?059?nm和2?030~2?043?nm)存在最大的特征區(qū)分(圖2-C2)。
兒茶素類為茶葉多酚類物質(zhì)的主體成分,為茶葉干重的12%~24%;嘌呤堿為茶葉干重的2%~5%,主要有咖啡堿、可可堿和茶葉堿等[25]。茶多酚(兒茶素類)在制茶過程中易被氧化生成茶黃素、茶紅素等多酚氧化聚合產(chǎn)物,且其氧化程度亦是六大茶類的重要?jiǎng)澐忠罁?jù)之一[26]。從圖3可以看出,在各供試白茶樣品中兒茶素類、茶黃素和嘌呤堿的高效液相色譜化學(xué)輪廓較為相似,且均以CAF、EGCG和ECG等色譜峰響應(yīng)值較高;EC在絕大部分茶樣中未有檢出,而4種茶黃素(TF、TF-3-G、TF-3'-G和TFDG)在各供試茶樣中僅有少量檢出,其與白茶微發(fā)酵(氧化)品質(zhì)特征相符。成對(duì)雙樣本均值分析(-檢驗(yàn))結(jié)果表明,白茶樣品中的GA、ECG、GC、CAF和TB在不同鮮葉原料間存在一定差異(圖4),但控溫除濕萎凋處理對(duì)已標(biāo)定的兒茶素類和嘌呤堿均無顯著性影響(圖5)。通過各白茶樣品兒茶素類和嘌呤堿定量分析及變量標(biāo)度化預(yù)處理的主成分分析結(jié)果顯示,全部供試茶樣在前2個(gè)主成分得分二維視圖中可按鮮葉原料劃分成相對(duì)獨(dú)立的6個(gè)類群,但不同控溫除濕萎凋環(huán)境加工制作的白茶樣品并無明顯的類群區(qū)分(圖6-A)。與近紅外光譜分析結(jié)果相似,采用多級(jí)主成分分析亦可將全部供試茶樣初步劃分為Low-Low和High-Low、High-High和Low-High兩個(gè)類群,且EGCG、C、GC和GA為兩個(gè)類群的主要差異性成分(圖6-B)。
注:各變量采用中心化預(yù)處理。A1:紫外光譜主成分分析得分圖;A2:近紅外光譜主成分分析得分圖;B1:紫外光譜多級(jí)主成分分析得分圖;B2:近紅外光譜多級(jí)主成分分析得分圖;C1:近紅外光譜多級(jí)偏最小二乘判別分析得分圖;C2:Group 1(Low-Low和High-Low)與Group 2(High-High和Low-High)組間比較得分貢獻(xiàn)圖
注:A:代表性茶樣色譜圖。B:全部茶樣疊加色譜圖(自上而下依次為S11~S14、S21~S24、S31~S34、S41~S44、S51~S54和S61~S64)
注:各組分在茶樹品種或萎凋處理間的差異顯著性分別采用*(P<0.05)、**(P<0.01)和***(P<0.001)表示,下同
圖5 不同萎凋處理白茶樣品兒茶素類和嘌呤堿含量
注:各變量采用標(biāo)度化預(yù)處理。A為主成分分析得分圖;B為多級(jí)主成分分析雙標(biāo)圖
茶鮮葉中的水分通常以游離態(tài)(自由水)和結(jié)合態(tài)(束縛水)的形式存在[27]。在萎凋前期占比較大的自由水被大量蒸發(fā),束縛水則與原生質(zhì)大分子膠粒結(jié)合而難于散失,故茶鮮葉的恒溫控濕萎凋失水速率呈現(xiàn)出“由快轉(zhuǎn)慢”的規(guī)律性變化[28]。本研究預(yù)設(shè)的4種控溫除濕環(huán)境條件均可有效調(diào)節(jié)茶鮮葉萎凋時(shí)長,其中以持續(xù)高溫除濕(High-High)萎凋歷時(shí)最短,持續(xù)低溫除濕(Low-Low)萎凋歷時(shí)最長,并以萎凋后期(減重率≥45%)相較萎凋前期(減重率≤45%)進(jìn)行高溫除濕處理對(duì)縮短萎凋歷時(shí)更為有效。由各供試茶樣感官審評(píng)結(jié)果可以看出,茶鮮葉原料的理化特性基本決定了所制白茶的整體品質(zhì)風(fēng)格,但持續(xù)高溫除濕(High-High)和先低溫后高溫除濕(Low-High)萎凋處理的同一茶樹品種白茶的外形和湯色等較為相近,且持續(xù)低溫除濕(Low-Low)和先高溫后低溫除濕(High-Low)萎凋加工的白茶亦具有較為類似的品質(zhì)特征。由于茶鮮葉萎凋占用面積大且歷時(shí)較長,故在白茶加工過程中,生產(chǎn)者可根據(jù)市場品質(zhì)偏好分別選用持續(xù)高溫除濕(High-High)或先高溫后低溫除濕(High-Low)的萎凋方法,以提高茶葉加工廠房的場地周轉(zhuǎn)利用效率。
近年基于色譜、光譜、質(zhì)譜和核磁共振譜及各種聯(lián)用的現(xiàn)代儀器分析檢測技術(shù)被廣泛應(yīng)用于茶葉生化成分的定性或定量分析,并可從不同視角局部呈現(xiàn)茶葉品質(zhì)化學(xué)輪廓[29-32]。本研究發(fā)現(xiàn),由于紫外和近紅外光譜產(chǎn)生原理的不同,各白茶樣品的近紅外光譜相較紫外光譜具有更多的特征吸收譜段,表明近紅外光譜可為各供試茶樣的模式識(shí)別提供更為豐富的化學(xué)信息?;诮t外光譜相較紫外光譜主成分分析的前2個(gè)主成分二維得分視圖能更好地區(qū)分制作各白茶樣品鮮葉的品種,但不同萎凋環(huán)境對(duì)白茶紫外和近紅外光譜的影響則被茶鮮葉原料的茶樹品種特性所掩飾。通過基于近紅外光譜的多級(jí)主成分分析可有效排除茶鮮葉原料異質(zhì)性干擾,并可將全部白茶樣品初步劃分為Low-Low和High-Low、High-High和Low-High兩個(gè)類群。
此外,基于各白茶樣品兒茶素類和嘌呤堿的多級(jí)主成分分析亦可獲得與近紅外光譜較為相似的模式識(shí)別結(jié)果。然而相對(duì)高效液相色譜檢測分析,近紅外光譜技術(shù)具有操作簡單、分析快速、樣品無損等優(yōu)點(diǎn),故隨近紅外光譜檢測設(shè)備逐步向便攜式發(fā)展[33-35],其將為基于萎凋環(huán)境(溫度和濕度)的白茶風(fēng)味品質(zhì)量化監(jiān)測和實(shí)時(shí)調(diào)控提供更為廣闊的應(yīng)用前景。
[1] 中華全國供銷合作總社. 白茶: GB/T 22291—2017[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2017.
All China Federation of Supply and Marketing Cooperatives. White tea: GB/T 22291—2017 [S]. Beijing: China Standard Press, 2017.
[2] Sanlier N, Atik ?, Atik A. A minireview of effects of white tea consumption on diseases [J]. Trends in Food Science & Technology, 2018, 82: 82-88.
[3] 戴偉東, 解東超, 林智. 白茶功能性成分及保健功效研究進(jìn)展[J]. 中國茶葉, 2021, 43(4): 1-8.
Dai W D, Xie D C, Lin Z. Research progress of white tea's functional ingredients and health benefits [J]. China Tea, 2021, 43(4): 1-8.
[4] Tomlins K I, Mashingaidze A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas: a review [J]. Food Chemistry, 1997, 60(4): 573-580.
[5] Deb S, Pou K. A review of withering in the processing of black tea [J]. Journal of Biosystems Engineering, 2016, 41(4): 365-372.
[6] Dai W D, Xie D C, Lu M L, et al. Characterization of white tea metabolome: comparison against green and black tea by a nontargeted metabolomics approach [J]. Food Research International, 2017, 96: 40-45.
[7] Chen Q C, Zhu Y, Dai W D, et al. Aroma formation and dynamic changes during white tea processing [J]. Food Chemistry, 2019, 274: 915-924.
[8] 李鳳娟. 白茶的滋味、香氣和加工工藝研究[D]. 杭州: 浙江大學(xué), 2012.
Li F J. Studies on the taste, aroma and processing of white tea [D]. Hangzhou: Zhejiang University, 2012.
[9] 林清霞, 項(xiàng)麗慧, 王麗麗, 等. 萎凋溫度對(duì)茶鮮葉萎凋失水及白茶品質(zhì)的影響[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2019, 45(4): 434-442.
Lin Q X, Xiang L H, Wang L L, et al. Effect of withering temperature on water loss of fresh leaves and quality of white tea [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 434-442.
[10] 陳林, 張應(yīng)根, 陳鍵, 等. 烏龍茶品種鮮葉加工白茶過程中香氣成分動(dòng)態(tài)變化規(guī)律[J]. 茶葉科學(xué), 2020, 40(6): 771-781.
Chen L, Zhang Y G, Chen J, et al. Aroma profiling of fresh leaves of oolong tea cultivars during white tea processing [J]. Journal of Tea Science, 2020, 40(6): 771-781.
[11] 中華全國供銷合作總社. 茶葉感官審評(píng)方法: GB/T 23776—2018[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2018.
All China Federation of Supply and Marketing Cooperatives. Methodology for sensory evaluation of tea: GB/T 23776—2018 [S]. Beijing: China Standard Press, 2018.
[12] 中華全國供銷合作總社. 茶葉感官審評(píng)術(shù)語: GB/T 14487—2017[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2017.
All China Federation of Supply and Marketing Cooperatives. Tea vocabulary for sensory evalutation: GB/T 14487—2017 [S]. Beijing: China Standard Press, 2017.
[13] 中華全國供銷合作總社. 茶葉中茶黃素的測定高效液相色譜法: GB/T 30483—2013 [S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2013.
All China Federation of Supply and Marketing Cooperatives. Determination of theaflavins in tea—High performance liquid chromatography: GB/T 30483—2013 [S]. Beijing: China Standard Press, 2013.
[14] 中華全國供銷合作總社. 茶磨碎試樣的制備及其干物質(zhì)含量測定: GB/T 8303—2013 [S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2013.
All China Federation of Supply and Marketing Cooperatives. Tea—Preparation of ground sample and determination of dry matter content.: GB/T 8303—2013 [S]. Beijing: China Standard Press, 2013.
[15] Westerhuis J A, Van Velzen E J J, Hoefsloot H C J, et al. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA [J]. Metabolomics, 2010, 6(1): 119-128.
[16] 陳林, 張應(yīng)根, 項(xiàng)麗慧, 等. ‘茗科1號(hào)’等5個(gè)福建烏龍茶品種的白茶適制性鑒定[J]. 茶葉學(xué)報(bào), 2019, 60(2): 64-68.
Chen L, Zhang Y G, Xiang L H, et al. Quality appraisal on white teas processed from Fujian oolong cultivars () [J]. Acta Tea Sinica, 2019, 60(2): 64-68.
[17] Wang Y, Yang X, Li K, et al. Simultaneous determination of theanine, gallic acid, purine alkaloids, catechins, and theaflavins in black tea using HPLC [J]. International Journal of Food Science and Technology, 2010, 45(6): 1263-1269.
[18] Yin X L, Wu H L, Gu H W, et al. Chemometrics-enhanced high performance liquid chromatography-diode array detection strategy for simultaneous determination of eight co-eluted compounds in ten kinds of Chinese teas using second-order calibration method based on alternating trilinear decomposition algorithm [J]. Journal of Chromatography A, 2014, 1364: 151-162.
[19] 申明月, 聶少平, 謝明勇. 茶葉多糖的純化及其光譜特性研究[J]. 食品科學(xué), 2007, 28(11): 39-43.
Shen M Y,Nie S P,Xie M Y. Study on purification and characteristics of tea polysaccharide [J]. Food Science, 2007, 28(11): 39-43.
[20] 王麗麗, 楊軍國, 林清霞, 等. 高效液相色譜—二極管陣列檢測器法測定茶葉中10種有機(jī)酸含量[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2019, 45(1): 47-53.
Wang L L, Yang J G, Lin Q X, et al. Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 47-53.
[21] 孫勁毅. 茶皂素的分離純化及性能研究[D]. 無錫: 江南大學(xué), 2017.
Sun J Y. Study on separation, purification and property of tea saponin [D]. Wuxi: Jiangnan University, 2017.
[22] 聶志矗. 茶葉主要組份的光譜特性研究[D]. 保定: 河北大學(xué), 2010.
Nie Z C. Study on spectral properties of the main components of tea [D]. Baoding: Hebei University, 2010.
[23] Huang Y, Dong W, Sanaeifar A, et al. Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy [J]. Computers and Electronics in Agriculture, 2020, 173: 105388. doi: 10.1016/j.compag.2020.105388.
[24] Wu T H, Tung I C, Hsu H C, et al. Quantitative analysis and discrimination of partially fermented teas from different origins using visible/near-infrared spectroscopy coupled with chemometrics [J]. Sensors, 2020, 20(19): 5451. doi: 10.3390/s20195451.
[25] 陳林, 項(xiàng)麗慧, 王麗麗, 等. 烏龍茶和綠茶品種茶鮮葉兒茶素類和嘌呤堿HPLC指紋圖譜特征比較[J]. 福建農(nóng)業(yè)學(xué)報(bào), 2018, 33(1): 21-28.
Chen L, Xiang L H, Wang L L, et al. HPLC profiling of catechins and purine alkaloids in leaves of oolong and green tea cultivars [J]. Fujian Journal of Agricultural Sciences, 2018, 33(1): 21-28.
[26] 陳林, 陳鍵, 王麗麗, 等. 不同茶類制法對(duì)茶多酚和游離氨基酸化學(xué)模式的影響[J]. 福建農(nóng)業(yè)學(xué)報(bào), 2017, 32(3): 287-293.
Chen L, Chen J, Wang L L, et al. Chemical patterns of polyphenols and free amino acids in teas affected by processing methods [J]. Fujian Journal of Agricultural Sciences, 2017, 32(3): 287-293.
[27] Zang Z, Li Z, Lu X, et al. Terahertz spectroscopy for quantification of free water and bound water in leaf [J]. Computers and Electronics in Agriculture, 2021, 191: 106515. doi.org/10.1016/j.compag.2021.106515.
[28] 宋振碩, 陳鍵, 陳林, 等. 茶樹離體春梢萎凋失水規(guī)律初步研究[J]. 茶葉科學(xué)技術(shù), 2014(3): 25-28.
Song Z S, Chen J, Chen L, et al. Preliminary studies on moisture loss of spring tea shoots during withering [J]. Tea Science and Technology, 2014(3): 25-28.
[29] Tuiebayeva A M, Sergazina M M, Alimzhanova M B, et al. Determination of the chemical composition of tea by modern physico-chemical methods: a review [J]. International Journal of Biology and Chemistry, 2018, 11(1): 142-152.
[30] Chen Q, Chen M, Liu Y, et al. Application of FT-NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea [J]. Journal of Food Science and Technology-Mysore, 2018, 55(10): 4363-4368.
[31] 劉英, 吳曙光, 尹州, 等. 指紋圖譜技術(shù)在茶葉研究上的應(yīng)用[J]. 茶葉科學(xué), 2013, 33(1): 13-20.
Liu Y, Wu S G, Yin Z, et al. Application of fingerprint technique in tea research [J]. Journal of Tea Science, 2013, 33(1): 13-20.
[32] 郭小媛, 董俊杰, 葉影, 等. 化學(xué)指紋圖譜檢測技術(shù)在茶葉領(lǐng)域的應(yīng)用[J]. 茶葉, 2020, 46(1): 4-10.
Guo X Y, Dong J J, Ye Y, et al. Application of fingerprint detection technology into tea science research [J]. Journal of Tea, 2020, 46(1): 4-10.
[33] Dos Santos C A T, Lopo M, Páscoa R N, et al. A review on the applications of portable near-infrared spectrometers in the agro-food industry [J]. Applied Spectroscopy, 2013, 67(11): 1215-1233.
[34] 任廣鑫, 金珊珊, 李露青, 等. 近紅外光譜技術(shù)在茶葉品控與裝備創(chuàng)制領(lǐng)域的研究進(jìn)展[J]. 茶葉科學(xué), 2020, 40(6): 707-714.
Ren G X, Jin S S, Li L Q, et al. Research progress of near-infrared spectroscopy in tea quality control and equipment development [J]. Journal of Tea Science, 2020, 40(6): 707-714.
[35] Li L, Jin S, Wang Y, et al. Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 247: 119096. doi: 10.1016/j.saa.2020.
119096.
Effects of Air Conditions Preset for Withering on Flavor Quality and Chemical Profiles of White Teas
ZHANG Yinggen, XIANG Lihui, CHEN Lin*, LIN Qingxia, SONG Zhenshuo, WANG Lili
Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
To realize the quality control of white tea based on withering environment, indoor temperature and relative humidity were preset at (30±2)℃ with RH (35±5)% or (20±2)℃ with RH (55±5)% to investigate the effects of four different air conditions on the sensory quality and chemical profiles of 6 tea cultivars (), includingAccording to whether the indoor temperature and relative humidity were mutually switched at the point when the weight loss rate of tea shoots reached 45% during the whole witheringprocedure, the levels of each withering treatment were named as Low-Low, Low-High, High-Low and High-High,respectively. The results show that the flavor quality of white tea was mainly determined by the physical and chemical characteristics of raw materials (tea cultivars). White teas obtained under Low-Low treatment had a slightly light taste and a little grassy flavor, while the white teas from the same tea cultivars had the similar quality characteristics in appearance and soup color when they were treated with High-High and Low-High, just as High-Low and Low-Low during withering. The ultraviolet and near-infrared spectra of all white tea samples had similar fluctuations, and the near-infrared spectra could provide more abundant chemical information for their pattern recognition. The contents of gallic acid, epicatechin gallate, gallocatechin, caffeine and theobromine in white tea samples were different among tea cultivars, but withering treatment had no significant effect on the contents of detected biochemical components (catechins and purine alkaloids). Moreover, principal component analysis based on ultraviolet spectra, especially near-infrared spectra or biochemical compositions of white tea samples could better discriminate white tea samples into the same groups according to their raw materials (tea cultivars). The effects of different air conditions on the profiles of spectra or biochemical compositions were exclusively drowned by the characteristics of raw materials. However, the influence of withering treatment on the profiles of near-infrared spectra and biochemical compositions of white tea samples manufactured from different raw materials could be effectively revealed by multilevel principal component analysis, and the classification and identification results of all white tea samples were almost consistent with the characteristics of sensory quality. These facts could provide a reference for the technological regulation of white tea flavor quality.
white tea, withering environment, flavor quality, chemical profile, pattern recognition
S571.1
A
1000-369X(2022)04-525-12
2022-02-08
2022-04-02
福建省屬公益類項(xiàng)目(2019R1029-5)、福建省自然科學(xué)基金(2020J011364)、福建省農(nóng)業(yè)科學(xué)院科技創(chuàng)新團(tuán)隊(duì)(CXTD2021004-2)
張應(yīng)根,男,助理研究員,主要從事茶葉加工、茶葉生物化學(xué)及茶葉綜合利用方面的研究。*通信作者:chenlin_xy@163.com