• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations

    2022-08-25 12:24:00LINAmingSUNYiyang
    關(guān)鍵詞:化學(xué)勢(shì)鈣鈦礦熱力學(xué)

    LIN Aming, SUN Yiyang

    Stability of Low-index Surfaces of Cs2SnI6Studied by First-principles Calculations

    LIN Aming1,2, SUN Yiyang1,2

    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

    Cs2SnI6is a stable and environmentally friendly halide perovskite material with great potential for photovoltaic and optoelectronic applications. While the surface properties are of paramount importance for device fabrications, there have been no such theoretical studies on this material. Using density functional theory calculations with the SCAN+rVV10 functional, the (001), (011) and (111) surfaces of Cs2SnI6were studied to reveal their thermodynamic stability. We constructed seven models for these surfaces, including two along the (001) orientation (CsI2- and SnI4-terminated surfaces), two along the (011) orientation (I4- and Cs2SnI2-terminated surfaces) and three along the (111) orientation (non-stoichiometric CsI3-, Sn- and stoichiometric CsI3-terminated surfaces). Because most of the surfaces are non-stoichiometric, their relative stability depends on the experimental preparation condition, which is reflected by the chemical potentials of the constituent elements in the calculation. By determining the allowed chemical potential region, the thermodynamic stability of these Cs2SnI6surfaces is analyzed. The results show that the surface energies of the (001) and (011) surfaces are affected by the chemical potentials, while the stoichiometric CsI3-terminated (111) surface is unaffected by the chemical potentials and is energetically the most stable surface of Cs2SnI6. Thus, the observed exposure of (111) surface of Cs2SnI6crystals in several recent experiments is determined to be driven by thermodynamics.

    perovskite; surface energy; Cs2SnI6; photovoltaic material; luminescent material

    Organic-inorganic hybrid lead halide perovskites, such as CH3NH3PbI3[1–3]have attracted enormous research interests for applications in efficient photovoltaic[4], light- emitting[5]and photodetection devices[6].As their lead-free counterparts, Sn-based halide perovskites, such as CH3NH3SnI3[7–9]and CsSnI3[10–12], have been proposed for such applications because of their nontoxicity. However, because 2+ state is not the most stable valence state of Sn, the Sn-based perovskites are prone to further oxidation, rendering them even less stable than the Pb-based perovskites,which are already well known to have the stability issue[13].It is highly desirable to develop air-stable alternatives. For this purpose, Cs2SnI6is a promising material, in which Sn is already in 4+ valence state and resistant to further oxidation[14–16]. Meanwhile, it has a suitable band gap and strong optical absorption for photovoltaic applications[17–19].

    The halide perovskite materials are usually reported to exhibit defect tolerance in the bulk[20-21]. Therefore, the surfaces, interfaces and grain-boundaries are usually the main concerns for optimizing the device performance. The surface properties of Cs2SnI6, which are expected to play an important role in the devices, remain poorly understood. Recently, several groups have devoted to the study on the surfaces of Cs2SnI6. Kapil[22]suggested the existence of the surface state in Cs2SnI6. Shin[23]investigated the role of the surface states in the presence of a redox mediator. Xu[24]reported a general approach to synthesize layered nanoplateletsof Cs2SnI6. Zhu[25]revealed that Cs2SnI6crystals have a preferential growth of (111) surface.Several experiments also proved that Cs2SnI6tends to grow along the <111> direction[26–28]. However, it is not clear that this preference is thermodynamically driven or just a result of growth condition specific to individual experiments.

    In this work, as motivated by the experimental works, we study the surface properties of Cs2SnI6using first- principles calculations. As an initiative work, we attempt to understand the preference to the (111) surface in different crystal growth experiments. Different surface models with different surface orientations and terminations were set up to compare their thermodynamic stability. As some terminations are non-stoichiometric, to evaluate their relative stability it is necessary to calculate the chemical potentials to consider the crystal growth conditions. By analyzing the surface stability, it is expected to provide useful information for future experimental synthesis and device fabrication.

    1 Computational method

    Our first-principles calculations were based on density functional theory and performed using the ViennaSimulation Package (VASP)[29]. Projector augmented wave (PAW) potentials were used to describe the interaction between ion cores and valence electrons[30]. The strongly constrained and appropriately normed (SCAN) functional in combination with the rVV10 van der Waals (vdW) functional was used for the exchange-correlation functional[31].The cutoff energy of planewave basis set was taken to be 340 eV and the Γ-centered 3×3×3-point mesh was used for optimizing the 9-atom primitive cell of Cs2SnI6. A cutoff energy of 272 eV and a Γ-centered 3×3×1-point mesh were used for the surface calculations.

    2 Results and discussion

    Experimentally, it is reported that bulk Cs2SnI6exhibits a cubic structure with Fm-3mspace group symmetry, as shown in Fig. 1(a), and the lattice parameter0is 1.165 nm[20]. The calculated0using the SCAN+rVV10 functional is 1.156 nm, 0.8% smaller than the experimental value. The SCAN functional without considering the vdW effect yields0=1.178 nm, 1.1% larger than the experimental value, suggesting that the vdW effect is significant for Cs2SnI6. For comparison, the commonly used PBE and HSE functional is also considered, which yield0=1.203 and 1.197 nm, respectively. The reason for this large vdW effect is that the material is rather soft. The calculated bulk modulus using the SCAN+rVV10 method is only 13.1 GPa. Using the other functionals mentioned above would yield even smaller bulk modulus.

    The band structure and projected density of states (pDOS) of Cs2SnI6were calculated, as shown in Fig. 1(b). The direct gap at the Γ point is 0.19 eV, significantly smaller than the experimental band gap of ~1.3 eV, suggesting that the meta-generalized gradient approximationis not sufficient for studying band-gap-sensitive properties of this material, for which the HSE functional including spin-orbit coupling will be necessary[20]. According to the pDOS plot, the top valence bands are mainly contributed by I5p orbitals, while the bottom conduction bands are contributed by both I5p orbitals and Sn5s orbitals. The Sn5s orbitals form a separate band, above which is another band gap and the Sn5p bands.

    The surface properties are studied in the next step. We adopt the symmetric slab models for the surfaces, which possess a mirror symmetry through the middle of the slabs. Such models also avoid spurious interaction between periodic slabs due to dipole-dipole interactions. For all calculations, sufficient vacuum region (more than 1-nm-thick) was used to ensure negligible interaction between the slabs. Seven different terminations of Cs2SnI6surface models were considered, as shown in Fig. 2. The non-stoichiom-etric (001) surfaces were modeled with CsI2-terminated (or A-termination) and SnI4-terminated (or B-termination) slabs, whose unit-cell formulae were Cs12Sn5I32and Cs8Sn5I28, respectively. Similarly, the non-stoichiometric (011) surfaces were modeled with I4-terminated (A-term-ination) and Cs2SnI2-terminated (B-termination) slabs, whose unit-cell formulae were Cs10Sn5I34and Cs10Sn5I26, respectively. Along the [111] direction, the atomic stacking sequence is –Sn–CsI3– CsI3–Sn–. Correspondingly, the non-stoichiometric Sn-terminated (A-termination), non- stoichiometric CsI3-terminated (B-termination) and stoic-hiometric CsI3-terminated surfaces were modeled, whose unit-cell formulae were Cs8Sn5I24, Cs12Sn5I26and Cs10Sn5I30, respectively.

    Fig. 1 (a) Atomic structure and (b) band structure and projected density of states (pDOS) of Cs2SnI6

    Colorful figures are available on website

    Fig. 2 Seven supercell models of Cs2SnI6 surfaces

    (a) For (001) surface: CsI2-terminated and SnI4-terminated slabs; (b) For (011) surface: I4-terminated and Cs2SnI2-terminated slabs; (c) For (111) surface: non-stoichiometric Sn-terminated, CsI3-terminated and stoichiometric CsI3-terminated slabs

    The cleavage energy are firstly evaluated, which is the energy required to split a crystal into two complementary non-stoichiometric terminations. It is noted that CsI2- and SnI4-terminations for Cs2SnI6(001) surfaces are mutually complementary, and so are I4- and Cs2SnI2-terminated slabs for (011) surfaces, as well as Sn- and CsI3-terminatedslabs for (111) surfaces. As two complementary surfaces (also referred to as A- and B-termination above) are created simultaneously when a crystal is cleaved, the total cleavage energy of two complementary surfaces can be obtained by

    wThe calculated results of total cleavage energy, total relaxation energy and total surface energy of the two complementary non-stoichiometric terminations with different surface orientations are shown in Fig. 3. For comparison, the cleavage, relaxation and surface energies of the stoichiometric CsI3-terminated (111) surface are also shown. It can be seen that the total surface energies of the two complementary non-stoichiometric terminations are relatively high compared with that of stoichiometric CsI3-terminated (111) surface whose surface energy is only 0.11 J/m2, regardless of the surface orientations. However, the contributions to the cleavage energy from the A- and B-terminations are not equal. Further study is needed to determine whether A- or B-termination could individually have surface energy lower than 0.11 J/m2. In order to evaluate the relative stability of each surface termination under various experimentally preparation conditions, the consideration of chemical potential μCs, μSn and μI is necessary[21,32].

    Using the determined chemical potential region, the surface energy for each individual termination can be obtained using[35-36]

    where Eslab is the total energy of relaxed A-termination, NCs, NSn and NI are the numbers of Cs, Sn and I atoms in the slab, respectively. Considering the variation of chemical potential with reference phase as mentioned above, the surface energy can be finally rewritten as

    Constraints imposed by the formation of competing secondary phases resulting in the allowed region shaded in green

    The stability diagram of the Cs2SnI6(001) surface is shown in Fig. 5(a). The blue and orange regions represent the regions where CsI2- and SnI4-terminations are stable, respectively. The upper part of the green region is located in the blue region, indicating that the CsI2-termination is favored under the I-poor condition. There is still a small part of the green region located in the orange region,., at chemical potential points C and D, indicating that the SnI4-termination is more stable than the CsI2-termination under I-rich condition.

    Similarly, the stability diagram of the Cs2SnI6(011) surface is shown in Fig. 5(b). The blue region represents that the Cs2SnI2-termination is thermodynamically more stable, while the orange part refers to the region where the I4-termination is more stable. It can be seen that the green region is also located in both blue and orange regions, indicating that different terminations are favored when varying the experimental environments. Under I-rich condition (., at chemical potential point A) the Cs2SnI2-termination is favored, while under I-poor condition (., the chemical point D) the I4-termination is favored.

    In Fig. 5(c),the stability diagram of Cs2SnI6(111) surface is shown. Different from the stability diagrams of the (001) and (011) surfaces discussed above, the whole green region is located in the orange region for the (111) surface, indicating that the stoichiometric CsI3-terminated (111) surface is the most energetically favored among the three terminations regardless of the chemical potentials.

    Finally, the surface energies of the seven terminations of Cs2SnI6low-index surfaces are compared in Fig. 5(d) as a function of the chemical potentials. It can be seen that the stoichiometric CsI3-terminated (111) surface consistently has the lowest surface energy, indicating that it is the most thermodynamically favored surface among the seven terminations, in agreement with the recent experimental reports[25-26].

    Fig. 5 Stability of low-index surfaces of Cs2SnI6 as a function of chemical potentials

    (a) Analysis of stability of the two terminations of Cs2SnI6(001) surface with respect to the allowed region for maintaining equilibrium with the primary phase Cs2SnI6. The orange and blue regions indicate the stable region for CsI2- and SnI4-terminations, respectively; (b) Similar to (a) for the Cs2SnI6(011) surface. The orange and blue regions are for the I4- and Cs2SnI2-terminations, respectively; (c) Similar to (a) for the Cs2SnI6(111) surface. The orange and blue regions are for the Sn- and stoichiometric CsI3-terminations, respectively; (d) Surface energies of the seven surface models of Cs2SnI6as a function of the chemical potentials.

    Colorful figures are available on website

    3 Conclusion

    Based on density-functional theory calculations with the SCAN+rVV10 functional, seven models for the low- index Cs2SnI6surfaces were studied with different surface orientations and terminations to compare their thermodynamic stability. Overall, based on the calculated surface energies, we identified that the stoichiometric CsI3-termination for (111) surface is consistently the most stable, regardless of the chemical potentials, which is in agreement with the experimental observation that the (111) surface is often the most exposed surface. For the (100) and (110) surfaces, two different terminations were considered for each of them. Their relative stability depends on the chemical potentials. From an experimental point of view, when preparing these two surfaces, different terminations can be obtained by varying the growth condition,., by controlling the I-poor or I-rich conditions.

    Acknowledgement

    The authors thank Professor Lian Jie, Dr. Zhu Wei-guang and Shen Junhua from Rensselaer Polytechnic Institute for enlightening discussions.

    [1] STRANKS S D, EPERON G E, GRANCINI G,Electron- hole diffusion lengths exceeding trihalide perovskite absorber., 2013, 342(6156): 341–344.

    [2] HEO J H, IM S H, NOH J H,Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors., 2013, 7: 486–491.

    [3] SHAO Y, XIAO Z, BI C,Origin and elimination of pho-tocurrent hysteresis by fullerene passivation in CH3NH3PbI3planar heterojunction solar cells., 2014, 5: 5784.

    [4] XING G, MATHEWS N, LIM S S,Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,2013, 342(6156): 344–347.

    [5] TAN Z K, MOGHADDAM R S, LAI M L,. Bright light- emitting diodes based on organometal halide perovskite., 2014, 9: 687–692.

    [6] GAO L, ZENG K, GUO J,. Passivated single-crystalline CH3NH3PbI3nanowire photodetector with high detectivity and polarization sensitivity., 2016, 16(12): 7446–7454.

    [7] HAO F, STOUMPOS C C, CAO D H,. Lead-free solid-state organic-inorganic halide perovskite solar cells., 2014, 8: 489–494.

    [8] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties., 2013, 52(15): 9019–9038.

    [9] NOEL N K, STRANKS S D, ABATE A,. Lead-free organic- inorganic tin halide perovskites for photovoltaic applications., 2014, 7(9): 3061–3068.

    [10] CHUNG I, LEE B, HE J,All-solid-state dye-sensitized solar cells with high efficiency., 2012, 485: 486–489.

    [11] KUMAR M H, DHARANI S, LEONG W L,. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation., 2014, 26(41): 7122–7127.

    [12] MARSHALL K P, WALKER M, WALTON R I,Enhanced stability and efficiency in hole-transport-layer-free CsSnI3perovskite photovoltaics., 2016, 1: 16178.

    [13] CHUNG I, SONG J H, IM J,CsSnI3: semiconductor or metal? high electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions., 2012, 134(20): 8579–8587.

    [14] LEE B, STOUMPOS C C, ZHOU N,Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6as a hole conductor., 2014, 136(43): 15379–15385.

    [15] SAPAROV B, SUN J P, MENG W,. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6., 2016, 28(7): 2315–2322.

    [16] QIU X, CAO B, YUAN S,. From unstable CsSnI3to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient., 2017, 159: 227–234.

    [17] WANG X D, HUANG Y H, LIAO J F,construction of a Cs2SnI6perovskite nanocrystal/SnS2nanosheet heterojunction with boosted interfacial charge transfer., 2019, 141(34): 13434–13441.

    [18] LIU F, DING C, ZHANG Y,Colloidal synthesis of air-stable alloyed CsSn1-xPbxI3perovskite nanocrystals for use in solar cells., 2017, 139(46): 16708–16719.

    [19] DOLZHNIKOV D S, WANG C, XU Y,Ligand-free, quantum- confined Cs2SnI6perovskite nanocrystals., 2017, 29(18): 7901–7907.

    [20] MAUGHAN A E, GANOSE A M, BORDELON M M,. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6and Cs2TeI6., 2016, 138(27): 8453–8464.

    [21] XIAO Z, ZHOU Y, HOSONO H,Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6., 2015, 17(29): 18900–18903.

    [22] KAPIL G, OHTA T, KOYANAGI T,. Investigation of interfacial charge transfer in solution processed Cs2SnI6thin films., 2017, 121(24): 13092–13100.

    [23] SHIN H O, KIM B M, JANG T,Surface state-mediated charge transfer of Cs2SnI6and its application in dye-sensitized solar cells., 2019, 9(3): 1803243.

    [24] XU Y, LI S, ZHANG Z,Ligand-mediated synthesis of colloidal Cs2SnI6three-dimensional nanocrystals and two-dimensional nanoplatelets., 2019, 30(29): 295601.

    [25] ZHU W, SHEN J, LI M,. Kinetically controlled growth of sub-millimeter 2D Cs2SnI6nanosheets at the liquid–liquid interface., 2021, 17(4): 2006279.

    [26] LUO R, ZHANG S, ZHAO S,. Ultrasmall blueshift of near-infrared fluorescence in phase-stable Cs2SnI6thin films., 2020, 14(1): 014048.

    [27] ZHOU P, CHEN H, CHAO Y,Single-atom Pt-I3sites on all-inorganic Cs2SnI6perovskite for efficient photocatalytic hydrogen production., 2021, 12: 4412.

    [28] ULLAH S, ULLAH S, WANG J,. Investigation of air-stable Cs2SnI6films prepared by the modified two-step process for lead-free perovskite solar cells., 2020, 35: 125027.

    [29] KRESSE G, FURTHMüLLER J. Efficient iterative schemes fortotal-energy calculations using a plane-wave basis set., 1996, 54(16): 11169–11186.

    [30] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method., 1999, 59(3):1758–1775.

    [31] PENG H, YANG Z H, PERDEW J P,Versatile van der Waals density functional based on a meta-generalized gradient approximation., 2016, 6(4): 041005.

    [32] Xiao Z, Lei H, Zhang X,Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6., 2015, 88(9): 1250–1255.

    [33] ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion., 1991, 67(17): 2339–2342.

    [34] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to III-nitrides., 2004, 95(8): 3851–3879.

    [35] CHEN H, DING Y H, YU H T,First-principles investigation of the electronic properties and stabilities of the LaAlO3(001) and (110) (1 × 1) polar terminations., 2015, 119(17): 9364–9374.

    [36] HUANG X, PAUDEL T R, DOWBEN P A,. Electronic structure and stability of the CH3NH3PbBr3(001) surface., 2016, 94(19): 195309.

    Cs2SnI6低指數(shù)晶面穩(wěn)定性的第一性原理計(jì)算研究

    林啊鳴1,2, 孫宜陽(yáng)1,2

    (1. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 上海 201899; 2. 中國(guó)科學(xué)院大學(xué), 北京 100049)

    Cs2SnI6是一種穩(wěn)定且環(huán)保的鹵化物鈣鈦礦材料, 在光伏和光電應(yīng)用方面具有巨大潛力。雖然表面性質(zhì)對(duì)于光電器件的制備至關(guān)重要, 但目前尚沒(méi)有對(duì)該材料開展相關(guān)的理論研究。利用密度泛函理論計(jì)算結(jié)合SCAN+rVV10泛函, 本工作研究了Cs2SnI6的(001)、(011)和(111)表面以揭示其熱力學(xué)穩(wěn)定性。針對(duì)每個(gè)表面, 研究考慮了具有不同截?cái)嗟哪P? 包括兩個(gè)沿(001)方向(分別為CsI2和SnI4終止的表面), 兩個(gè)沿(011)方向(分別為I4和Cs2SnI2終止的表面)和三個(gè)沿(111)方向(分別為非化學(xué)計(jì)量比的CsI3、Sn和滿足化學(xué)計(jì)量比的CsI3終止的表面)。由于大多數(shù)表面模型是非化學(xué)計(jì)量比的, 它們的相對(duì)穩(wěn)定性取決于實(shí)驗(yàn)制備條件, 因此需要考慮組成元素的化學(xué)勢(shì)。通過(guò)確定允許的化學(xué)勢(shì)區(qū)域, 研究分析了這些表面的熱力學(xué)穩(wěn)定性。結(jié)果表明, (001)和 (011)面的表面能會(huì)受到化學(xué)勢(shì)的影響, 而滿足化學(xué)計(jì)量比的CsI3終止的(111)表面不受化學(xué)勢(shì)影響, 是Cs2SnI6最穩(wěn)定的表面。該結(jié)果說(shuō)明, 近期實(shí)驗(yàn)普遍觀察到的暴露(111)面的晶體是受熱力學(xué)穩(wěn)定性驅(qū)動(dòng)形成的。

    鈣鈦礦; 表面能; Cs2SnI6; 光伏材料; 發(fā)光材料

    TQ174

    A

    2021-08-05;

    2021-08-20;

    2021-11-01

    Shanghai International Cooperation Project (20520760900)

    LIN Aming (1996–), female, Master candidate. E-mail: linaming@student.sic.ac.cn

    林啊鳴(1996–), 女, 碩士研究生. E-mail: linaming@student.sic.ac.cn

    SUN Yiyang, professor. E-mail: yysun@mail.sic.ac.cn

    孫宜陽(yáng), 研究員. E-mail: yysun@mail.sic.ac.cn

    1000-324X(2022)06-0691-06

    10.15541/jim20210491

    猜你喜歡
    化學(xué)勢(shì)鈣鈦礦熱力學(xué)
    以化學(xué)勢(shì)為中心的多組分系統(tǒng)熱力學(xué)的集中教學(xué)*
    廣州化工(2020年21期)2020-11-15 01:06:10
    μ-T圖解析及其對(duì)依數(shù)性和二元相圖的分析
    當(dāng)鈣鈦礦八面體成為孤寡老人
    Fe-C-Mn-Si-Cr的馬氏體開始轉(zhuǎn)變點(diǎn)的熱力學(xué)計(jì)算
    上海金屬(2016年1期)2016-11-23 05:17:24
    活塞的靜力學(xué)與熱力學(xué)仿真分析
    電子制作(2016年19期)2016-08-24 07:49:54
    熱物理學(xué)中的化學(xué)勢(shì)
    幾種新型鈣鈦礦太陽(yáng)電池的概述
    化學(xué)勢(shì)在熱力學(xué)與統(tǒng)計(jì)物理學(xué)中的作用
    鈣鈦礦型多晶薄膜太陽(yáng)電池(4)
    鈣鈦礦型多晶薄膜太陽(yáng)電池(2)
    久久婷婷人人爽人人干人人爱| 亚洲精品国产一区二区精华液| 香蕉国产在线看| 给我免费播放毛片高清在线观看| 桃红色精品国产亚洲av| 久久久久久国产a免费观看| 免费av毛片视频| 一a级毛片在线观看| 午夜福利欧美成人| 亚洲18禁久久av| 欧美一区二区国产精品久久精品 | 日韩欧美国产在线观看| 色老头精品视频在线观看| 国产一级毛片七仙女欲春2| 男女做爰动态图高潮gif福利片| 黄频高清免费视频| 精品欧美一区二区三区在线| 国产精品国产高清国产av| 最好的美女福利视频网| 黄色视频,在线免费观看| 精品熟女少妇八av免费久了| 一级毛片精品| 999久久久精品免费观看国产| 国产高清激情床上av| 亚洲精品中文字幕一二三四区| 三级毛片av免费| 久久久精品大字幕| 999精品在线视频| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看 | 一进一出好大好爽视频| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 国产精品久久久久久久电影 | 91麻豆av在线| 国内精品久久久久久久电影| 青草久久国产| 亚洲国产欧美一区二区综合| 啪啪无遮挡十八禁网站| 男插女下体视频免费在线播放| 免费在线观看成人毛片| 亚洲一区二区三区不卡视频| 99国产极品粉嫩在线观看| 长腿黑丝高跟| 久久九九热精品免费| 久久午夜综合久久蜜桃| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 一二三四社区在线视频社区8| 久久九九热精品免费| 男女那种视频在线观看| 国内少妇人妻偷人精品xxx网站 | 国产视频内射| 韩国av一区二区三区四区| 亚洲电影在线观看av| 久久国产精品人妻蜜桃| 亚洲中文av在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲五月天丁香| 国产成人欧美在线观看| 91大片在线观看| 午夜福利视频1000在线观看| 亚洲国产欧美人成| 色播亚洲综合网| 操出白浆在线播放| 国产久久久一区二区三区| 一级毛片高清免费大全| 老司机在亚洲福利影院| ponron亚洲| 两个人免费观看高清视频| 亚洲av日韩精品久久久久久密| 一个人观看的视频www高清免费观看 | 欧美最黄视频在线播放免费| 99国产精品一区二区三区| 中文亚洲av片在线观看爽| 午夜影院日韩av| 亚洲国产欧洲综合997久久,| 久久中文字幕一级| 国产成人影院久久av| 国内精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图| 国产午夜精品论理片| 日本黄色视频三级网站网址| 午夜影院日韩av| 亚洲熟妇中文字幕五十中出| 岛国在线免费视频观看| 久久久国产成人免费| 精品久久久久久久久久久久久| netflix在线观看网站| 成人av一区二区三区在线看| 丰满人妻一区二区三区视频av | 香蕉久久夜色| 亚洲国产高清在线一区二区三| 久久久国产欧美日韩av| 亚洲熟妇中文字幕五十中出| 色播亚洲综合网| 国产日本99.免费观看| 最新美女视频免费是黄的| 国产成+人综合+亚洲专区| 国产午夜福利久久久久久| 一级a爱片免费观看的视频| 长腿黑丝高跟| 免费看十八禁软件| 久久精品国产99精品国产亚洲性色| 午夜精品一区二区三区免费看| 亚洲国产精品合色在线| 日韩精品青青久久久久久| 国产91精品成人一区二区三区| 少妇裸体淫交视频免费看高清 | 亚洲午夜理论影院| 全区人妻精品视频| 国产一区二区在线观看日韩 | 久久久精品大字幕| 婷婷亚洲欧美| av中文乱码字幕在线| 丰满人妻一区二区三区视频av | 欧美日韩国产亚洲二区| 999精品在线视频| 国内揄拍国产精品人妻在线| 俄罗斯特黄特色一大片| 国产亚洲av嫩草精品影院| 成熟少妇高潮喷水视频| 亚洲午夜理论影院| 亚洲成人久久性| 黄色女人牲交| 18禁美女被吸乳视频| 精品一区二区三区四区五区乱码| 九色国产91popny在线| 欧美性长视频在线观看| 又粗又爽又猛毛片免费看| 黄色女人牲交| 欧美黄色片欧美黄色片| 听说在线观看完整版免费高清| 欧美日韩亚洲综合一区二区三区_| 亚洲黑人精品在线| 欧美3d第一页| 99国产精品99久久久久| 日本黄色视频三级网站网址| 男女做爰动态图高潮gif福利片| 日本免费a在线| 久久久精品国产亚洲av高清涩受| 黄色a级毛片大全视频| 婷婷亚洲欧美| 精品久久久久久,| 免费观看人在逋| 午夜福利视频1000在线观看| 亚洲男人的天堂狠狠| 国产免费男女视频| 亚洲av成人不卡在线观看播放网| 免费高清视频大片| 老鸭窝网址在线观看| 亚洲精华国产精华精| aaaaa片日本免费| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久人人人人人| 国产免费av片在线观看野外av| 亚洲性夜色夜夜综合| 国产欧美日韩一区二区精品| 亚洲自偷自拍图片 自拍| 草草在线视频免费看| tocl精华| 国产激情偷乱视频一区二区| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩高清专用| 国产伦在线观看视频一区| 日本 av在线| www.www免费av| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 最近最新免费中文字幕在线| 看黄色毛片网站| 在线观看www视频免费| 两个人看的免费小视频| 欧美日本亚洲视频在线播放| 国产精品久久视频播放| 国产精品亚洲美女久久久| 婷婷六月久久综合丁香| 国产熟女午夜一区二区三区| www日本在线高清视频| 久久天堂一区二区三区四区| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美 | 国产一级毛片七仙女欲春2| 露出奶头的视频| 亚洲av电影不卡..在线观看| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 欧美成人午夜精品| 久热爱精品视频在线9| 最好的美女福利视频网| 天堂动漫精品| 精品久久久久久久末码| 欧美一级毛片孕妇| 国产熟女xx| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 老司机福利观看| 妹子高潮喷水视频| 国产精品 国内视频| 免费一级毛片在线播放高清视频| 国产免费av片在线观看野外av| 国产成人aa在线观看| 亚洲国产精品合色在线| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品美女特级片免费视频播放器 | 夜夜看夜夜爽夜夜摸| 欧美激情久久久久久爽电影| 午夜福利18| 亚洲精品国产精品久久久不卡| 国产午夜精品久久久久久| 国产成人精品久久二区二区91| 国产成人av教育| 欧美色视频一区免费| 国产成人啪精品午夜网站| 日韩国内少妇激情av| av中文乱码字幕在线| 露出奶头的视频| 精品一区二区三区四区五区乱码| 波多野结衣巨乳人妻| 一进一出抽搐gif免费好疼| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 天堂√8在线中文| www.精华液| 亚洲 国产 在线| 午夜福利在线观看吧| 午夜日韩欧美国产| 亚洲av成人av| 国产激情久久老熟女| 日韩精品青青久久久久久| 中国美女看黄片| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 午夜成年电影在线免费观看| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 久久人妻福利社区极品人妻图片| 精品国产乱子伦一区二区三区| 午夜福利欧美成人| 国产日本99.免费观看| 久久精品91蜜桃| 久久精品国产亚洲av高清一级| 中文字幕久久专区| 99热只有精品国产| 久久伊人香网站| 婷婷精品国产亚洲av在线| 给我免费播放毛片高清在线观看| 一级黄色大片毛片| 日韩av在线大香蕉| 国产免费男女视频| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 色老头精品视频在线观看| 99在线人妻在线中文字幕| 日韩有码中文字幕| 黄色成人免费大全| 欧美性猛交╳xxx乱大交人| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 曰老女人黄片| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | 一进一出抽搐gif免费好疼| 丝袜人妻中文字幕| 在线观看66精品国产| 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 香蕉av资源在线| 亚洲欧美精品综合久久99| 亚洲全国av大片| 一本久久中文字幕| 久久香蕉精品热| av视频在线观看入口| 日韩欧美在线乱码| 亚洲无线在线观看| 国产激情欧美一区二区| 国产成年人精品一区二区| 精品久久久久久成人av| 啦啦啦免费观看视频1| 热99re8久久精品国产| 999久久久精品免费观看国产| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 丝袜美腿诱惑在线| 国产熟女xx| 久久香蕉国产精品| 成人欧美大片| 亚洲精品色激情综合| 法律面前人人平等表现在哪些方面| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 国产男靠女视频免费网站| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 欧美色欧美亚洲另类二区| 99久久99久久久精品蜜桃| 搡老岳熟女国产| 1024视频免费在线观看| 成人欧美大片| av国产免费在线观看| a在线观看视频网站| 女人被狂操c到高潮| 法律面前人人平等表现在哪些方面| 日日夜夜操网爽| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 国产成人系列免费观看| 桃红色精品国产亚洲av| 成人永久免费在线观看视频| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 成人三级黄色视频| 成年免费大片在线观看| 亚洲精品一区av在线观看| 国产成人一区二区三区免费视频网站| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| 黄色 视频免费看| 禁无遮挡网站| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 999久久久精品免费观看国产| 99riav亚洲国产免费| 激情在线观看视频在线高清| 夜夜爽天天搞| 国产乱人伦免费视频| 日本a在线网址| 欧美日韩国产亚洲二区| 一个人免费在线观看电影 | 午夜视频精品福利| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看 | 少妇人妻一区二区三区视频| 狂野欧美激情性xxxx| av中文乱码字幕在线| 很黄的视频免费| 国产三级中文精品| aaaaa片日本免费| 国产精品影院久久| 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 精品午夜福利视频在线观看一区| 日韩 欧美 亚洲 中文字幕| 特大巨黑吊av在线直播| av欧美777| 美女扒开内裤让男人捅视频| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免费看| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 欧美中文日本在线观看视频| 国产野战对白在线观看| 亚洲免费av在线视频| 午夜福利18| 欧美中文日本在线观看视频| 一a级毛片在线观看| 欧美极品一区二区三区四区| 婷婷六月久久综合丁香| 观看免费一级毛片| 国产高清视频在线观看网站| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉国产精品| 中文字幕高清在线视频| 91成年电影在线观看| 精品高清国产在线一区| 日韩欧美免费精品| 曰老女人黄片| 精品久久久久久久末码| 国产午夜福利久久久久久| 日本一二三区视频观看| 久久久久久人人人人人| xxxwww97欧美| 亚洲国产精品999在线| 中出人妻视频一区二区| 男女做爰动态图高潮gif福利片| 丰满人妻熟妇乱又伦精品不卡| 草草在线视频免费看| 正在播放国产对白刺激| 亚洲熟妇中文字幕五十中出| 午夜精品一区二区三区免费看| www.999成人在线观看| 脱女人内裤的视频| 欧美一区二区国产精品久久精品 | 丰满人妻一区二区三区视频av | 十八禁人妻一区二区| 中文亚洲av片在线观看爽| 青草久久国产| 亚洲中文字幕一区二区三区有码在线看 | 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 成人av一区二区三区在线看| 久99久视频精品免费| 麻豆成人av在线观看| 男插女下体视频免费在线播放| 不卡一级毛片| 一本一本综合久久| www.自偷自拍.com| www国产在线视频色| av在线播放免费不卡| 国产久久久一区二区三区| 亚洲成人国产一区在线观看| 夜夜躁狠狠躁天天躁| av有码第一页| 国产成+人综合+亚洲专区| 久久久久久久精品吃奶| 国产精品久久久久久久电影 | 亚洲aⅴ乱码一区二区在线播放 | 黄色片一级片一级黄色片| 波多野结衣高清无吗| 桃色一区二区三区在线观看| av欧美777| 最近最新中文字幕大全电影3| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 岛国在线免费视频观看| 国产精品久久久久久久电影 | 国产精品久久视频播放| 黄色 视频免费看| x7x7x7水蜜桃| 日本五十路高清| 国产69精品久久久久777片 | 欧美极品一区二区三区四区| 欧美午夜高清在线| 亚洲精品av麻豆狂野| 俄罗斯特黄特色一大片| 婷婷精品国产亚洲av| 男插女下体视频免费在线播放| 少妇粗大呻吟视频| 欧美中文日本在线观看视频| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 国产精品免费视频内射| 成人av在线播放网站| 人人妻,人人澡人人爽秒播| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区三区| 麻豆av在线久日| 每晚都被弄得嗷嗷叫到高潮| av片东京热男人的天堂| 黄色女人牲交| 一级毛片精品| 午夜亚洲福利在线播放| 中文亚洲av片在线观看爽| 操出白浆在线播放| www日本黄色视频网| 91大片在线观看| 色综合站精品国产| 国产伦一二天堂av在线观看| 久久精品成人免费网站| 亚洲专区中文字幕在线| 老司机福利观看| 在线免费观看的www视频| 中文字幕av在线有码专区| 亚洲七黄色美女视频| 麻豆成人av在线观看| 久99久视频精品免费| 丁香欧美五月| 久久热在线av| 久久久精品欧美日韩精品| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 亚洲真实伦在线观看| 午夜福利成人在线免费观看| 国产又色又爽无遮挡免费看| 人妻久久中文字幕网| 久久久久亚洲av毛片大全| 国产蜜桃级精品一区二区三区| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 淫秽高清视频在线观看| 免费一级毛片在线播放高清视频| 天堂av国产一区二区熟女人妻 | 天天添夜夜摸| 国产伦在线观看视频一区| 大型av网站在线播放| 黄色成人免费大全| 午夜免费激情av| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频 | 欧美av亚洲av综合av国产av| АⅤ资源中文在线天堂| 在线观看免费午夜福利视频| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 亚洲五月天丁香| 又紧又爽又黄一区二区| 欧美成人一区二区免费高清观看 | 中文字幕久久专区| 黄色视频不卡| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 窝窝影院91人妻| 国产三级黄色录像| 在线国产一区二区在线| 国产精品自产拍在线观看55亚洲| 搡老熟女国产l中国老女人| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| 在线a可以看的网站| 久久精品成人免费网站| 夜夜看夜夜爽夜夜摸| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 男人舔女人下体高潮全视频| 老司机福利观看| 少妇人妻一区二区三区视频| 男女午夜视频在线观看| 黄片大片在线免费观看| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 精品久久久久久成人av| 搡老岳熟女国产| 一卡2卡三卡四卡精品乱码亚洲| 国内揄拍国产精品人妻在线| 久久伊人香网站| 国产私拍福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 黄色视频不卡| 欧美高清成人免费视频www| 91av网站免费观看| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 亚洲 欧美 日韩 在线 免费| 1024手机看黄色片| 亚洲 国产 在线| 国产精品亚洲av一区麻豆| avwww免费| 两个人看的免费小视频| 变态另类丝袜制服| 黑人操中国人逼视频| 男女之事视频高清在线观看| 成年版毛片免费区| 国产精华一区二区三区| 久久久久久九九精品二区国产 | 亚洲精品在线美女| 久久久久久亚洲精品国产蜜桃av| 亚洲精品色激情综合| 欧美精品啪啪一区二区三区| 欧美人与性动交α欧美精品济南到| 97人妻精品一区二区三区麻豆| 欧美最黄视频在线播放免费| 亚洲国产欧美一区二区综合| 日本五十路高清| 91老司机精品| 免费人成视频x8x8入口观看| 此物有八面人人有两片| 中文在线观看免费www的网站 | 又紧又爽又黄一区二区| 国产亚洲欧美98| 亚洲熟妇中文字幕五十中出| 免费无遮挡裸体视频| 国产成人一区二区三区免费视频网站| 国产私拍福利视频在线观看| 日韩国内少妇激情av| 亚洲成人久久爱视频| 99久久精品热视频| 国产成+人综合+亚洲专区| 久久久国产成人免费| 婷婷六月久久综合丁香| 香蕉久久夜色| 亚洲色图 男人天堂 中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 国产欧美日韩精品亚洲av| 午夜激情av网站| 免费在线观看亚洲国产| 国产高清视频在线观看网站| 老熟妇乱子伦视频在线观看| 99久久精品国产亚洲精品| 男女床上黄色一级片免费看| 亚洲色图av天堂| 国产97色在线日韩免费| 长腿黑丝高跟| 在线观看66精品国产| 国产单亲对白刺激| 久久精品综合一区二区三区| 黑人巨大精品欧美一区二区mp4| 中出人妻视频一区二区| 久久久久久大精品| 国产99白浆流出|