• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal

    2022-08-25 12:23:30XUPuhaoZHANGXiangzhaoLIUGuiwuZHANGMingfenGUIXinyiQIAOGuanjun
    無機(jī)材料學(xué)報(bào) 2022年6期
    關(guān)鍵詞:中間層釬焊力學(xué)性能

    XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun

    Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal

    XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

    SiC ceramic has excellent overall properties, and joining it to other materials with high joint strength is an important issue in the actual applications. Brazing of SiC ceramic to itself was performed using the as-fabricated Al-(10, 20, 30, 40)Ti alloys with nominal Ti concentrations of 10%, 20%, 30%, and 40% at 1550 ℃ × 30 min. The average joint shear strength fluctuates in the range of ~100?260 MPa with the interlayer thickness of ~50 μm. Moreover, the average strength SiC/Al-20Ti/SiC joint is increased markedly with the interlayer thickness decreasing from ~100 to 25 μm, reaching the maximum of ~315 MPa. Meanwhile, the (Al) phase in the interlayers is reduced gradually till disappear with the thinnest brazing interlayer, leaving the Al4C3, TiC and (Al,Si)3Ti phases in the interlayer. The joint fractures of SiC/Al-20Ti/SiC joint mainly occur in the SiC ceramic substrate near the interlayer/ceramic interface.

    SiC; brazing; interfaces; microstructures; mechanical property

    SiC ceramics are widely applied in many fields includingaerospace, electronics, machinery, chemical and metallurgy industries due to the excellent overall properties, such as high strength, high hardness, high melting point, high thermal conductivity, low thermal expansion, as well as good oxidation, corrosion and thermal-shock resistances[1-2]. Indeed, joining of SiC ceramics to other materials is an important issue in these applications due to the inherent difficulties derived from the high degree of covalent bonding in SiC and the low self-diffusivity[3-4]. Presently, joining techniques of SiC ceramics are mainly involved in brazing, diffusion bonding, transient liquid phase bonding and reaction forming/bonding,[1]. Among them, the brazing, as the most convenient and highly efficient joining technique, can be divided into active metal brazing[5-7], low activation brazing[8-9]and air reactive brazing[10],.

    Pure metals can react with SiC to form silicide+ graphite, Si+carbide, silicide+carbide, and even ternary compounds[11]. Some pure metals (such as Ti, Cr, and Zr) that can produce silicide and carbide simultaneously or ternary compound by reaction with SiC, are commonly deemed as active metals for joining of SiC ceramics. These active metals were added in pure metals or alloys to form the brazing fill metals, involving binary[5,9,12-15], ternary[6,16-20], quaternary[21-24]and other multi-elemental alloys[7,25]. Valenza,[5]performed the pressureless joining of sintered SiC to itself using Al-25Ti alloy as filler metal by capillary infiltration and using the Al3Ti paste/Ti foil/Al3Ti paste as interlayer at 1500 ℃ for 10 min, and obtained average joint shear strength of 296 and 89 MPa for single lap offset and torsion tests, respectively. Moreover, the additions of these active metals were mainly performed by means of film and coating besides alloying, such as Ti film[26-27]and Cr coating[20]. In addition, in order to reduce the residual thermal stress in joint, some inorganic particulates or nanoplatelets (invo-lving B4C, SiC, Cr3C2,.) with low coefficient of ther-mal expansion were introduced into Ag-Cu-Ti or Si-Ti alloys to form composite fillers for brazing of SiC ceramics[28-32]. Recently, the Ti3SiC2MAX phase was also developed as the filler material for joining SiC[33-34]due to the high strength and thermal stability[35].

    As mentioned above, several brazing methods and many brazing filler metals were explored for brazing of SiC ceramics, and some high-strength SiC/SiC joints were obtained too. However, it is quite difficult to optimize the joint strength and high-temperature resistance simul-taneously, which lies on the brazing filler or interlayer composition and brazing process to a great extent. For example, Liu,[6]investigated the active metal brazing of sintered SiC using Ag-35.25Cu-1.75Ti as the brazing filler material at 860?940 ℃ for 10?60 min, and obtained the optimal average joint strength of over 340 MPa at room temperature, but these joints can only endure temperature lower than 550 ℃. For this purpose, we fabricated four Al-Ti alloys with nominal Ti concen-trations of 10%?40%(atom percent) and optimized the alloy composition and thickness based on the variation of room temperature shear strength of SiC/SiC brazed joint, and especially investigated the microstructure and phase evolution of joint interlayers for establishing the relationship between joint microstructure and perfor-mance. Actually, the four Al-Ti/SiC systems present excellent wettability with contact angle less than 15°, as reported in our previous work[15].

    1 Experimental

    The commercial solid-phase sintered SiC ceramics with a purity of 98% and dimensions of20 mm×5 mm or ~3 mm×4 mm×17 mm (Henan Aryan New Materials Co., Ltd.) were used as substrate for brazing experiments. The pure Al (≥99.999%) and Ti particles (≥99.995%) were used as raw materials for preparation of Al-Ti alloys. In order to remove the oxygen in the cavity of the melting equipment (DHL-300, Shenyang Scientific Instr-ument Co., LTD., Chinese Academy of Sciences), pure Ti particles of 30 g were placed in one of crucibles during the first refining, and four kinds of Al-Ti alloys with nominal Ti concentrations of 10%, 20%, 30% and 40% (atom percent) (Al-(10, 20, 30, 40)Ti) were fabric-ated by vacuum arc refining for 5 times, respectively. The result-ing bulk Al-Ti alloys were processed by wire-ele-ctrode cutting and/or grinding into foils with different thickn-esses, and then tailored into circular foils of20 mm. The microstructures and phase compositions of four Al-Ti alloys were characterized and analyzed by scanning electron microscope (SEM) coupled with energy disper-sive spectroscope (EDS) and X-ray diffraction (XRD).

    Before brazing, the brazing surfaces of SiC ceramics and the alloy foils were ground, polished and then ultrasonically cleaned in alcohol. Two SiC pieces or bars and one alloy foil were assembled together in a graphite mold and then vacuum brazed in a sintering furnace (High- multi 5000, Japan) at ~7 mPa. The pressure ~20 kPa was applied to the top of the SiC/Al-Ti/SiC couples. For the brazing cycle, the furnace was firstly heated from room temperature to 1200 ℃ at 20 ℃/min. Subsequently, the temperature of furnace was further raised to 1500 ℃ at 10 ℃/min and then raised to 1550 ℃ at 5 ℃/min and held for 30 min. Then, the joint sample was cooled down to 300 ℃ at rate of ~3 ℃/min and finally furnace- cooled to room temperature. To evaluate the shear strength of brazed joints, these SiC/SiC joints were cut into specimens of ~10 mm×10 mm×5 mm, and then the resul-t-ing joints were cross-sectioned, polished and observed to investigate the microstructure and phase evolution of joint cross-sections by SEM coupled with EDS. In particular, a thin Al-20Ti/SiC interface sample was cut from a cross-sectioned SiC/Al-20Ti/SiC joint by using focus ion beam (FIB) and observed by transm-i-ssion electron microscope (TEM). The joint shear stren-gth was evaluated by a shear test method using a DDL100 electronic universal testing machine at the load-ing speed of 0.5 mm/min with clamp and assemble chart shown in Fig. S1. Furthermore, the three-point bending specimens with span of 26 mm were used to characterize the high- temperature resistance of the typical SiC/Al-20Ti/SiC brazed joint on an AG-X plus mechanical testing system under Ar atmosphere. The joined specimens were firstly heated to the testing temperature (800 ℃) at a rate of ~33.3 ℃/min and held for ~7 min, and then the three-point bending test was carried out. The mean value of joint shear strength was obtained from the arithmetical average of 4 samples. The microstructures and phase compositions of joint fracture surfaces were examined and analyzed by SEM coupled with EDS and XRD. The manufacturing, testing and characterization methods of joint shear samples were similarly described in our precious reports[36].

    2 Results and discussion

    2.1 Brazing alloys

    Fig. 1 shows the BSE images of the nominal Al-(10, 20, 30, 40)Ti alloys, and Fig. 2 shows their XRD patterns. The elemental distributions were also determined by the EDS mapping of the four alloys (Fig. S2). The actual Ti concentrations of the four nominal Al-(10, 20, 30, 40)Ti alloys, determined by EDS, are 12.62%, 20.45%, 28.61% and 38.26% (atom percent), respectively. By combining the XRD patterns, EDS mapping and Al-Ti binary phase diagram[5], the bright and dark phases are Al3Ti and Al for Al-(10, 20)Ti alloys (Fig. 1(a, b), and Fig. S2), while the bright and gray phases are Al2Ti and Al3Ti for the Al-30Ti alloy (Fig. 1(c), Fig. 2 and Fig. S2). Moreover, the Al-40Ti alloy is composed of AlTi (bright phases) and Al (gray intergranular phases, determined by the EDS in Fig. S3) although the Al phase is not detected in the XRD pattens (Fig. 2) due to amount in Al-40Ti alloy. The main phase composition of Al-Ti alloys gradually transforms from Al, Al3Ti, Al2Ti to AlTi with the Ti concentration increasing from 10% to 40%.

    Fig. 1 BSE images of four nominal Al-Ti alloys

    (a) Al-10Ti; (b) Al-20Ti; (c) Al-30Ti; (d) Al-40Ti. The black dots are the diamond particles introduced during the polishing

    2.2 Joint microstructure evolution

    Fig. 3 shows the cross-sectional BSE images of SiC/SiC joints brazed using four nominal Al-(10, 20, 30, 40)Ti alloys with interlayer thickness of ~50 μm and the EDS elemental mapping of SiC/Al-20Ti/SiC joint cross-section, and Table 1 lists the EDS results of main phases on the joint cross-sections. As shown in Fig. 3(a, b), the interlayer of SiC/Al-10Ti/SiC joint is composed of (Al), TiC and (Al,Si)3Ti phases, and the TiC and (Al) phases are mainly distributed at the Al-10Ti/SiC interfaces and in the middle of interlayer, respectively, while the scattered (Al,Si)3Ti grains is embedded in the (Al). However, the three phases, (Al), TiC and (Al,Si)3Ti, are evenly distributed in the interlayer when Al-20Ti alloy is used as brazing filler metal (Fig. 3(c, d)), which contribute to the improvement of joint strength.

    Fig. 2 XRD patterns of Al-Ti alloys

    The residual (Al) phase in two interlayers of SiC/Al-10Ti/SiC and SiC/Al-20Ti/SiC joints is mainly attributed to the high concentration of Al in Al-10Ti and Al-20Ti alloys. Compared with Al-10Ti, the (Al) phase in original Al-20Ti is sharply decreased, leaving discrete (Al) in the interlayer after the serious interfacial interactions (Fig. 3(d)). EDS elemental mapping images further demonstrate the relatively uniform elem-ental distributions and elemental compositions of main phases in the joint cross-sections (Fig. 3(i)). Surpr-isely, a dark Al-rich layer involving (Al) solid solution and Al2O3phases is located in the middle of interlayers while employing the other two Al-Ti alloys with higher Ti concentrations (Fig. 3(e?h)), which is obviously different from the cross-sectional microstructures in previous report[5]. The formation of Al-rich layer can be derived from the formation of a large amount of Ti3SiC2MAX phase, which consumes a lot of Ti, Si and TiC[37]. The elemental and phase distributions were further demons-trated by the typical EDS mapping of SiC/Al-30Ti/SiC joint (Fig. S4). As a result, the TiC content increases gradually and then decreases with the Ti concentration increasing from 10% to 40%.

    Fig. 3 Cross-sectional BSE images of SiC/SiC joints brazed using the four nominal Al-Ti alloys (a–h) and corresponding EDS elemental mapping (i)

    (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti; (g, h) Al-40Ti

    Table 1 EDS results of partial phases in joint interlayers (atom percent)

    Fig. 4 shows the cross-sectional BSE images of SiC/SiC joints brazed using the nominal Al-20Ti alloys with interlayer thicknesses of 25?100 μm. As shown in Fig. 4, no Al-rich layer nor Ti3Si(Al)C2phase can form on the cross-sections of joints, and the (Al) phase decr-eases gradually till disappear with the interlayer thickness decreasing from ~100 μm to 25 μm. Undo-ubtedly, the absence of low melting point of (Al) phase can contribute to the high-temperature resistance of SiC/SiC brazed joints. Moreover, some cracks are produced in the ceramic substrate near the interface (Fig. 4(d)), which can bring a negative effect on the joint strength. To clarify the interfacial microstructure and phase composition of the SiC/Al-20Ti/SiC joint sample with the thinnest interlayer, a HRTEM analysis was performed on the Al-20Ti/SiC interface sample prepared by means of FIB. As shown in Fig. 5 and Fig. S5, some bright and dark phases can co-exist at the interlayer/SiC interfaces, which can be determined as TiC and Al4C3with interplanar spacings of 0.2164 and 0.1787 nm according to HRTRM analyses and their SAED patterns, resulting in formation of TiC/SiC and Al4C3/TiC interfaces. Mean-while, some (Al,Si)3Ti phases are formed near the TiC and Al4C3phases according to the EDS elemental mapp-ing (Fig. S5). A microcrack is also observed due to the difference of coefficient of thermal expansion (CTE) between the TiC and (Al,Si)3Ti phases, which can reduce the joint strength to a certain degree.

    Fig. 4 Cross-sectional BSE images of SiC/Al-20Ti/SiC joints brazed with interlayers of different thickness

    (a) ~25 μm; (b) 50 μm; (c) 70 μm; (d) 100 μm

    2.3 Joint microstructure evolution

    Fig. 6 shows the variations of joint shear strength with the Ti concentration of Al-Ti alloys and the interlayer thickness of Al-20Ti alloy. The average joint shear strength fluctuates in the range of ~100?260 MPa with the Ti concentration of Al-Ti alloys increasing from 10% to 40% (Fig. 6(a)). Considering the interlayer thickness of ~50 μm, the optimal SiC/SiC brazed joint with the maximum average joint strength of 266 MPa is obtained when using the Al-20Ti alloy as brazing filler metal, namely that the highest joint strength is mainly attributed to the lowest thermal stress generated from the uniform phase distribution (Fig. 3(d, i)). Furthermore, the average joint strength is increased markedly with the interlayer thickness decreasing from ~100 μm to 25 μm, arriving at the maximum of ~315 MPa, which is comparable to that of the SiC joint brazed using Al-25Ti alloy as filler material[5]. Similarly, this variation of joint strength with interlayer thickness is related to the interl-ayer microstructure and phase composition. The absence of (Al) phase in the interlayer is contribute to the improve-ment of joint strength based on the formation of residual thermal stress due to the difference of CTE between the SiC substrate and interlayer composition materials, where the CTEs of SiC, Al3Ti, TiC, Ti3SiC2and Al are 4.70×10?6/℃, (3.9?4.2)×10?6/℃, 7.40×10?6/℃, 8.87×10?6/℃ and 23.21×10?6/℃, respectively[5,37]. On the other hand, the possibility of emerging cracks during the shear test is reduced sharply with the interlayer thickness decreasing, and thus the joint strength trends to increase. Actu-ally, the joint 3-point bending strength of SiC/Al-20Ti/SiC brazed joint can reach ~53 MPa at 800 ℃, indicating that the brazed joint presents a good high-temperature resistance.

    Fig. 5 Interfacial (a) TEM and (b?f) HRTEM images of SiC/Al-20Ti/SiC joint sample with interlayer thickness of ~25 μm and the corresponding (g?i) SAED patterns

    Fig. 6 Variations of joint shear strength with (a) Ti concentr-ation of Al-Ti alloys and (b) interlayer thickness of Al-20Ti alloy

    Fig. 7 and Fig. 8 show the typical fracture surface morp-hologies of SiC/SiC joints brazed using four nominal Al-Ti alloys and the corresponding XRD patterns of fracture surfaces. It is found that the joint fractures mainly occur in the interlayer, in the SiC ceramic substrate and at the Al-Ti/SiC interface during the shear test. From Fig. 7(a, b), one of the SiC/Al- 10Ti/SiC joint fractures occurs in the SiC ceramic substrate, with the fracture path passing across the interlayer, leaving the (Al), (Al,Si)3Ti and TiC on the fracture surface (Fig. 8). These cracks originated from the difference of CTE among the newly formed phases can reduce the joint strength. Most of the SiC/Al-20Ti/SiC joint fractu-res occur in the SiC ceramic substrate near the interlayer/ ceramic interface, showing good interfacial bonding. However, only one SiC/Al-20Ti/SiC joint with interlayer thickness of ~50 μm breaks off at the interface, with the crack going along the interlayer partially (Fig. 7(c)), leaving only TiC on the fracture surface (Fig. 8). Moreo-ver, all the SiC/Al-(30, 40)Ti/SiC joint fractures take place in the interlayer (Fig. 7(e)) or at the Al-Ti/SiC inter-face. Moreover, the cracks in the interlayer are reduced sharply with the Ti content increasing, thus showing an increasing trend of joint strength. For instance, one of the SiC/Al- 40Ti/SiC joint fractures initiates in the interlayer and ends at the Al-Ti/SiC interface, exposing the lamin-ated Ti3Si(Al)C2, columnar TiC and near-equiaxial Al grains (Fig. 7(g, h) and Fig. 8). The TiC and Al phases with special morphologies are mainly attributed to the crystal nucleation and growth during the whole brazing process and cooling, respectively.

    Fig. 7 Typical fracture surface morphologies of SiC/SiC joints brazed using different nominal Al-Ti alloys

    (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti ; (g, h) Al-40Ti

    Fig. 8 XRD patterns of fracture surfaces of SiC/SiC joints brazed using various nominal Al-Ti alloys

    3 Conclusions

    Brazing of SiC ceramic to itself was performed using as-prepared Al-Ti alloys as filler metals and the microstructure, phase evolution and shear strength of the brazed joint were discussed. Considering the interlayer thickness of ~50 μm, the uniform phase distribution is only observed in the SiC/Al-20Ti/SiC joint, and the Ti3Si(Al)C2MAX phase can form at the Al-(30, 40)Ti/ SiC interfaces. The (Al) phase in the interlayer decreases gradually till disappear with the interlayer thickness decreasing from ~100 μm to 25 μm when the Al-20Ti alloys is used as filler metal. The average joint shear strength fluctuates in the range of 100?260 MPa with the interlayer of ~50 μm. The average strength SiC/Al-20Ti/ SiC joint is increased markedly with the interlayer thickness decreasing from ~100 μm to 25 μm, reaching the maximum of ~315 MPa. Most of SiC/Al-20Ti/SiC joint fractures occur in the ceramic substrate near the interlayer/ceramic interface, while those of SiC/Al-(10, 30, 40)Ti/SiC joints appear in the interlayer, at the interface and in the SiC ceramic substrate with the crack crossing the interlayer.

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20210652.

    [1] LIU G W, ZHANG X Z, YANG J,. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior., 2019, 8(1): 19–38.

    [2] ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces., 2016, 31(1): 58–62.

    [3] FERNIE J, DREW R, KNOWLES K. Joining of engineering ceramics., 2009, 54: 283–331.

    [4] YOON D H, REIMANIS I E. A review on the joining of SiC for high-temperature applications., 2020, 57(5): 246–270.

    [5] VALENZA F, GAMBARO S, MUOLO M L,. Wetting of SiC by Al-Ti alloys and joining byformation of interfacial Ti3Si(Al)C2., 2018, 38(11): 3727–3734.

    [6] LIU Y, HUANG Z R, LIU X J. Joining of sintered silicon carbide using ternary Ag-Cu-Ti active brazing alloy., 2009, 35(8): 3479–3484.

    [7] XIONG H P, WEI M, XIE Y H,. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly- developed Co-based brazing alloy., 2007, 22(10): 2727–2736.

    [8] KOLTSOV A, HODAJ F, EUSTATHOPOULOS N. Brazing of AlN to SiC by Pr silicides: physicochemichal aspects., 2008, 495(1/2): 259–264.

    [9] RICCARDI B, NANNETTI C A, WOLTERSDORF J,. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys., 2004, 20(5): 440–451.

    [10] ZHAO S T, ZHAGN X Z, LIU G W,. Surface metallization of SiC ceramic by Mo-Ni-Si coatings for improving its wettability by molten Ag., 2018, 47(3): 759–765.

    [11] LIU G W, MUOLO M L, VALENZA F,. Survey on wetting of SiC by molten metals., 2010, 36(4): 1177–1188.

    [12] ZHAO H T, HUANG J H, ZHANG H,. Vacuum brazing of Si/SiC ceramic and low expansion titanium alloy by using Cu-Ti fillers.2007, 36(12): 2184–2188.

    [13] LI J K, LIU L, LIU X. Joining of SiC ceramic by 22Ti-78Si high- temperature rutectic brazing alloy., 2011, 26(12): 1314–1318.

    [14] FU W, SONG X G, TIAN R C,. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties., 2020, 40: 15–23.

    [15] XU P H, GUI X Y, ZHANG X Z,. Wetting and interfacial behavior of Al-Ti/4H-SiC system: a combined study of experiment and DFT simulation., 2021, 47: 69–77.

    [16] HAO Z T, WANG D P, YANG Z W,. Microstructural evolution and mechanical properties of FeNi42alloy and SiC ceramic joint vacuum brazed with Ag-based filler metals., 2020, 46(8): 12795–12805.

    [17] PRAKASH P, MOHANDAS T, RAJU P D. Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints., 2005, 52(11): 1169–1173.

    [18] TIAN W B, SUN Z M, ZHANG P,. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures., 2017, 53(2): 511–516.

    [19] SUDMEYER I, HETTESHEIMER T, ROHDE M. On the shear strength of laser brazed SiC-steel joints: effects of braze metal fillers and surface patterning., 2010, 36(3): 1083–1090.

    [20] CHEN Z B, HU S P, SONG X G,. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal., 2020, 17(6): 2591–2597.

    [21] LIU Y, ZHU Y Z, YANG Y,. Microstructure of reaction layer and its effect on the joining strength of SiC/SiC joints brazed using Ag-Cu-In-Ti alloy., 2014, 3(1): 71–75.

    [22] MOSZNER F, MATA-OSORO G, CHIODI M,. Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures., 2017, 14(4): 703–711.

    [23] HE H M, LU C Y, HE H M,. Characterization of SiC ceramic joints brazed using Au-Ni-Pd-Ti high-temperature filler alloy., 2019, 12(6): 931.

    [24] QIN Q, ZHANG J, LU CJ,. Microstructure and mechanical properties of the SiC/Zr4joints brazed with TiZrNiCu filler for nuclear application., 2018, 28(3): 124–131.

    [25] XIONG H P, WEI M, XIE Y H,. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal., 2007, 61(25): 4662–4665.

    [26] SONG X G, CHEN Z B, HU S P,. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler., 2019, 103(2): 912–920.

    [27] CHEN Z B, BIAN H, NIU C N,. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler.2018, 142: 219–222.

    [28] DAI X Y, CAO J, CHEN Z,. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler.2016, 42(5): 6319–6328.

    [29] LIU Y, QI Q, ZHU Y,. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag-Cu-Ti hybrid tapes., 2015, 29(15): 1563–1571.

    [30] LI Z, WEI R W, WEN Q,. Microstructure and mechanical properties of SiC ceramic joints vacuum brazed withformed SiC particulate reinforced Si-24Ti alloy., 2019, 173: 109160.

    [31] ZHONG Z H, HOU G X, ZHU Z X,. Microstructure and mechanical strength of SiC joints brazed with Cr3C2particulate reinforced Ag-Cu-Ti brazing alloy., 2018, 44(10): 11862–11868.

    [32] SONG Y Y, LIU D, HU S P,. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic., 2019, 39(4): 696–704.

    [33] ZHOU X B, LI Y B, LI Y F,. Residual thermal stress of SiC/Ti3SiC2/SiC joints calculation and relaxed by post-annealing., 2018, 15: 1157–1165.

    [34] ZHOU X B, HAN Y H, SHEN X F,. Fast joining SiC ceramics with Ti3SiC2tape film by electric field-assisted sintering technology., 2015, 466: 322–327.

    [35] YANG D X, ZHOU Y, YAN X H,. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous compositesvacuu-m infiltration process., 2020, 9(1): 83–93.

    [36] ZHANG X Z, LIU G W, TAO J N,. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: microstructures and joint mechanical behavior., 2018, 34(7): 1180–1188.

    [37] ZHOU X B, JING L, KWON Y D,. Fabrication of SiCw/Ti3SiC2composites with improved thermal conductivity and mechanical properties using spark plasma sintering., 2020, 9(4): 462–470.

    Supporting materials:

    Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal

    XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun

    (School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China)

    Fig. S1 Schematic of the shear test fixture

    Fig. S2 Typical BSE images of Al-(10, 20, 30, 40)Ti alloys and the corresponding elemental mapping

    Fig. S3 Typical BSE image of Al-40Ti alloy and the corresponding elemental compositions of the selected area

    Fig. S4 Cross-sectional BSE image of the SiC/Al-30Ti/SiC joint brazed at 1550 ℃ × 30 min and the corresponding elemental mappings

    Fig. S5 Interfacial TEM image of SiC/Al-20Ti/SiC joint sample and the corresponding elemental mappings

    Al-Ti合金釬焊SiC陶瓷接頭界面微觀結(jié)構(gòu)與力學(xué)性能

    徐譜昊, 張相召, 劉桂武, 張明芬, 桂新易, 喬冠軍

    (江蘇大學(xué) 材料科學(xué)與工程學(xué)院, 鎮(zhèn)江 212013)

    SiC陶瓷具有優(yōu)異的綜合性能, 通過釬焊獲得高強(qiáng)度接頭是其獲得廣泛應(yīng)用的重要前提。研究采用Al-(10, 20, 30, 40)Ti(Ti的名義原子含量10%、20%、30%、40%)系列合金, 在1550 ℃條件下, 對(duì)SiC陶瓷進(jìn)行釬焊30 min。當(dāng)中間層厚度為~50 μm時(shí), SiC釬焊接頭的平均剪切強(qiáng)度處于100~260 MPa范圍內(nèi)。當(dāng)采用Al-20Ti合金作為釬料時(shí), 隨著中間層厚度從~100 μm減小至25 μm, 釬焊接頭的平均強(qiáng)度逐漸提高, 且最大強(qiáng)度~315 MPa。同時(shí), 釬焊中間層中(Al)相逐漸減少直至消失, 只留下Al4C3、TiC和(Al,Si)3Ti相。SiC/Al-20Ti/SiC釬焊接頭的斷裂主要發(fā)生在靠近中間層/陶瓷界面位置的陶瓷基體內(nèi)。

    SiC; 釬焊; 界面; 微結(jié)構(gòu); 力學(xué)性能

    TG456

    A

    1000-324X(2022)06-0683-08

    10.15541/jim20210652

    2021-10-22;

    2022-01-19;

    2022-01-24

    National Natural Science Foundation of China (52002153, 51572112); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB430004); Key R&D Plan of Jiangsu Province (BE2019094)

    XU Puhao (1993–), male, PhD candidate. E-mail: 13667004282@163.com

    徐譜昊(1993–), 男, 博士研究生. E-mail: 13667004282@163.com

    LIU Guiwu, professor. E-mail: gwliu76@ujs.edu.cn; QIAO Guanjun, professor. E-mail: gjqiao@ujs.edu.cn

    劉桂武, 教授. E-mail: gwliu76@ujs.edu.cn; 喬冠軍, 教授. E-mail: gjqiao@ujs.edu.cn.

    猜你喜歡
    中間層釬焊力學(xué)性能
    Pr對(duì)20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    釬焊
    鎳基高溫合金TLP擴(kuò)散焊中間層材料研究進(jìn)展
    焊接(2016年8期)2016-02-27 13:05:10
    B含量對(duì)IC10合金TLP焊接用中間層材料及接頭組織的影響
    焊接(2016年6期)2016-02-27 13:04:55
    SiC_p/2024Al復(fù)合材料與SiC陶瓷的軟釬焊
    焊接(2016年3期)2016-02-27 13:01:27
    第21屆全國釬焊及特種連接
    焊接(2015年10期)2015-07-18 11:04:46
    INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
    焊接(2015年9期)2015-07-18 11:03:53
    赴美國參加第6屆國際硬釬焊與軟釬焊學(xué)術(shù)會(huì)議出訪報(bào)告
    焊接(2015年5期)2015-07-18 11:03:41
    社會(huì)中間層建設(shè)與活動(dòng)機(jī)制網(wǎng)研究
    日韩人妻高清精品专区| 国产精品一区二区性色av| 午夜日韩欧美国产| 日韩成人伦理影院| av在线亚洲专区| 国产精品99久久久久久久久| 天堂av国产一区二区熟女人妻| 午夜精品一区二区三区免费看| 亚洲av成人精品一区久久| 免费观看精品视频网站| 成人欧美大片| 精品国内亚洲2022精品成人| 免费观看精品视频网站| 在线国产一区二区在线| 啦啦啦韩国在线观看视频| 成人欧美大片| 午夜视频国产福利| 久久久久久久久中文| 久久久精品大字幕| 成年女人永久免费观看视频| 国产成人91sexporn| 黑人高潮一二区| 国产高清激情床上av| 国产伦精品一区二区三区视频9| 国产高清激情床上av| 色吧在线观看| 亚洲国产欧洲综合997久久,| 亚洲内射少妇av| 国产成人福利小说| 亚洲熟妇熟女久久| 97在线视频观看| 日韩欧美免费精品| 午夜亚洲福利在线播放| 欧美性感艳星| 99九九线精品视频在线观看视频| 久久久国产成人精品二区| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久末码| 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 国产淫片久久久久久久久| 51国产日韩欧美| 一本一本综合久久| 毛片女人毛片| 少妇熟女欧美另类| 成人亚洲精品av一区二区| 男人和女人高潮做爰伦理| а√天堂www在线а√下载| 91在线精品国自产拍蜜月| 中国美女看黄片| 三级毛片av免费| 成年av动漫网址| 青春草视频在线免费观看| 在线播放无遮挡| 亚洲av五月六月丁香网| 熟女电影av网| 寂寞人妻少妇视频99o| 日本免费一区二区三区高清不卡| av中文乱码字幕在线| 黄片wwwwww| 国产伦精品一区二区三区视频9| 精品人妻偷拍中文字幕| 一区二区三区高清视频在线| 在线观看66精品国产| 天天躁夜夜躁狠狠久久av| 日韩精品青青久久久久久| 成人三级黄色视频| 国产精品一区二区三区四区久久| 超碰av人人做人人爽久久| 久久午夜福利片| 国产精品嫩草影院av在线观看| 国产片特级美女逼逼视频| 欧美xxxx性猛交bbbb| 精品午夜福利视频在线观看一区| 国产 一区 欧美 日韩| 国内精品久久久久精免费| 午夜视频国产福利| 看十八女毛片水多多多| 全区人妻精品视频| 男人舔奶头视频| 一a级毛片在线观看| 久久久久久久久久黄片| 日本免费a在线| 一本久久中文字幕| 美女高潮的动态| 91精品国产九色| 国产探花在线观看一区二区| 国产伦在线观看视频一区| 女同久久另类99精品国产91| 国产爱豆传媒在线观看| 亚洲乱码一区二区免费版| 久久精品国产自在天天线| 亚洲av免费在线观看| 免费高清视频大片| 偷拍熟女少妇极品色| 欧美日韩乱码在线| videossex国产| 久久九九热精品免费| 男插女下体视频免费在线播放| 国产中年淑女户外野战色| 午夜精品国产一区二区电影 | 色综合色国产| 国产白丝娇喘喷水9色精品| 人人妻人人澡人人爽人人夜夜 | 人妻久久中文字幕网| 中文在线观看免费www的网站| 天堂网av新在线| a级一级毛片免费在线观看| 久久久久国产精品人妻aⅴ院| 精品一区二区三区视频在线观看免费| 村上凉子中文字幕在线| 亚洲精品色激情综合| 天美传媒精品一区二区| 成人无遮挡网站| 国产精品一二三区在线看| 久久久久精品国产欧美久久久| 尾随美女入室| 久久午夜亚洲精品久久| 可以在线观看的亚洲视频| 久久精品国产亚洲av天美| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 精品一区二区三区人妻视频| 亚洲乱码一区二区免费版| 99久久中文字幕三级久久日本| 免费大片18禁| 97热精品久久久久久| 热99re8久久精品国产| 直男gayav资源| 国产精品野战在线观看| 亚洲av五月六月丁香网| 日本五十路高清| 免费不卡的大黄色大毛片视频在线观看 | 国产探花在线观看一区二区| 欧美激情国产日韩精品一区| 三级男女做爰猛烈吃奶摸视频| 嫩草影视91久久| 在线观看一区二区三区| 亚洲精品国产成人久久av| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app| 黄色欧美视频在线观看| 又黄又爽又免费观看的视频| 两个人的视频大全免费| 91av网一区二区| 九色成人免费人妻av| 天美传媒精品一区二区| 亚洲四区av| 老司机午夜福利在线观看视频| 内地一区二区视频在线| 国产亚洲精品综合一区在线观看| 欧美区成人在线视频| 国产一区二区三区av在线 | 久久久久久国产a免费观看| 两个人视频免费观看高清| 欧美xxxx性猛交bbbb| 老师上课跳d突然被开到最大视频| 免费看光身美女| 久久久久久九九精品二区国产| 日韩精品有码人妻一区| 国产精品爽爽va在线观看网站| 国产成人影院久久av| 如何舔出高潮| 赤兔流量卡办理| 成年女人看的毛片在线观看| 美女免费视频网站| 欧美一区二区国产精品久久精品| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 国产亚洲精品av在线| 国产精品综合久久久久久久免费| 亚洲欧美成人综合另类久久久 | 亚洲国产日韩欧美精品在线观看| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 女人十人毛片免费观看3o分钟| 欧美色欧美亚洲另类二区| 国产色爽女视频免费观看| 91在线观看av| 亚洲国产高清在线一区二区三| 国产一区二区在线观看日韩| 国产精品三级大全| 午夜福利视频1000在线观看| 直男gayav资源| 国产亚洲精品综合一区在线观看| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 深爱激情五月婷婷| 乱系列少妇在线播放| 国产精品永久免费网站| 亚洲最大成人中文| 欧美又色又爽又黄视频| 精品乱码久久久久久99久播| 男女视频在线观看网站免费| 性欧美人与动物交配| 色5月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧洲综合997久久,| 最后的刺客免费高清国语| 校园春色视频在线观看| 国产免费男女视频| 亚洲精品日韩在线中文字幕 | 亚洲最大成人av| 国产欧美日韩一区二区精品| 久久久久久久久久久丰满| 白带黄色成豆腐渣| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx在线观看| 一本一本综合久久| 亚洲在线自拍视频| 亚洲成人av在线免费| 久久婷婷人人爽人人干人人爱| 六月丁香七月| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av| 无遮挡黄片免费观看| av在线天堂中文字幕| 夜夜夜夜夜久久久久| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 亚洲熟妇中文字幕五十中出| 欧美成人一区二区免费高清观看| 啦啦啦啦在线视频资源| 欧美日本视频| 亚洲乱码一区二区免费版| 我要看日韩黄色一级片| 成人性生交大片免费视频hd| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线观看免费| 亚洲国产欧美人成| 18禁在线无遮挡免费观看视频 | 亚洲欧美日韩无卡精品| 露出奶头的视频| 秋霞在线观看毛片| 少妇的逼水好多| 中文字幕av成人在线电影| 国产欧美日韩精品亚洲av| 日韩亚洲欧美综合| 国产在线精品亚洲第一网站| 日本成人三级电影网站| avwww免费| 欧美成人一区二区免费高清观看| 久久精品国产亚洲av天美| 网址你懂的国产日韩在线| 美女大奶头视频| 观看美女的网站| 欧美成人免费av一区二区三区| 久久久久久久久久成人| 亚洲真实伦在线观看| 18禁在线播放成人免费| 欧美色欧美亚洲另类二区| 国产伦一二天堂av在线观看| 国产精品无大码| 搡老妇女老女人老熟妇| 色av中文字幕| h日本视频在线播放| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av天美| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 伊人久久精品亚洲午夜| 3wmmmm亚洲av在线观看| 久久久久国内视频| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 久久久久久久久久久丰满| av天堂中文字幕网| 香蕉av资源在线| 国产成人影院久久av| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va| 成人性生交大片免费视频hd| 久久久欧美国产精品| 国产精品无大码| 岛国在线免费视频观看| 女的被弄到高潮叫床怎么办| 日本熟妇午夜| 久久精品夜夜夜夜夜久久蜜豆| 免费人成视频x8x8入口观看| 别揉我奶头 嗯啊视频| av福利片在线观看| 一进一出好大好爽视频| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 国产爱豆传媒在线观看| 最近视频中文字幕2019在线8| 99久国产av精品| 国产老妇女一区| 日韩三级伦理在线观看| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 久久精品人妻少妇| 天美传媒精品一区二区| 亚洲精品乱码久久久v下载方式| 99久久九九国产精品国产免费| 悠悠久久av| 久久精品影院6| 亚洲精品影视一区二区三区av| 亚洲一区高清亚洲精品| 国产免费男女视频| 男女做爰动态图高潮gif福利片| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 97碰自拍视频| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 干丝袜人妻中文字幕| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| av女优亚洲男人天堂| 欧美+日韩+精品| 一进一出好大好爽视频| 久久久国产成人免费| 亚洲无线观看免费| 国产高清激情床上av| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 亚洲乱码一区二区免费版| 午夜福利在线观看吧| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 免费搜索国产男女视频| 真实男女啪啪啪动态图| 午夜福利高清视频| 亚洲av一区综合| 久久精品国产鲁丝片午夜精品| 一进一出抽搐gif免费好疼| 观看美女的网站| 十八禁国产超污无遮挡网站| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 日韩成人伦理影院| www.色视频.com| 麻豆国产av国片精品| 亚洲最大成人中文| 亚州av有码| 一级黄片播放器| 亚洲色图av天堂| 亚洲18禁久久av| 欧美3d第一页| 熟女电影av网| 中文字幕熟女人妻在线| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 日本爱情动作片www.在线观看 | 日韩精品有码人妻一区| 1024手机看黄色片| 国产精品亚洲美女久久久| 婷婷六月久久综合丁香| 亚洲人与动物交配视频| 三级经典国产精品| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 亚洲国产精品国产精品| 精品人妻偷拍中文字幕| 日日干狠狠操夜夜爽| 午夜精品一区二区三区免费看| 免费看a级黄色片| 插阴视频在线观看视频| 亚洲欧美成人精品一区二区| 国产私拍福利视频在线观看| 成人av在线播放网站| 国产精品99久久久久久久久| 色吧在线观看| 麻豆av噜噜一区二区三区| 在线观看66精品国产| 亚洲无线在线观看| 亚洲第一电影网av| 日韩av不卡免费在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 在线国产一区二区在线| 热99在线观看视频| 亚洲人与动物交配视频| 国产精品一区二区三区四区免费观看 | 嫩草影院精品99| 精品99又大又爽又粗少妇毛片| 不卡一级毛片| 校园人妻丝袜中文字幕| 日韩大尺度精品在线看网址| eeuss影院久久| 国产成人aa在线观看| av天堂中文字幕网| 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美| 人人妻,人人澡人人爽秒播| 最后的刺客免费高清国语| 91狼人影院| 亚洲18禁久久av| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 天堂网av新在线| 少妇人妻一区二区三区视频| 简卡轻食公司| 婷婷亚洲欧美| 久久精品国产清高在天天线| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在 | 国产精品综合久久久久久久免费| 一夜夜www| 看片在线看免费视频| www.色视频.com| 成人鲁丝片一二三区免费| 悠悠久久av| 六月丁香七月| 国产伦在线观看视频一区| 深夜精品福利| 亚洲精品456在线播放app| 在线观看av片永久免费下载| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 日韩高清综合在线| 看免费成人av毛片| 欧美性猛交黑人性爽| 精品久久久噜噜| 草草在线视频免费看| 最新在线观看一区二区三区| 我的老师免费观看完整版| 亚洲精品影视一区二区三区av| 真人做人爱边吃奶动态| 91麻豆精品激情在线观看国产| 中出人妻视频一区二区| ponron亚洲| 最近手机中文字幕大全| 国产毛片a区久久久久| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 久久精品国产亚洲av香蕉五月| 干丝袜人妻中文字幕| 久久热精品热| 99riav亚洲国产免费| 看免费成人av毛片| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 久久草成人影院| av天堂在线播放| 乱系列少妇在线播放| 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| 成年免费大片在线观看| 三级国产精品欧美在线观看| 中国美女看黄片| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 99热精品在线国产| 99久久中文字幕三级久久日本| 欧美另类亚洲清纯唯美| 国产真实伦视频高清在线观看| 成人性生交大片免费视频hd| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 久久久久久大精品| 亚洲欧美日韩高清在线视频| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 亚洲中文字幕一区二区三区有码在线看| 亚洲婷婷狠狠爱综合网| 欧美激情久久久久久爽电影| 日本免费a在线| 国产伦在线观看视频一区| 狂野欧美激情性xxxx在线观看| 欧美潮喷喷水| 国产高清视频在线观看网站| 亚洲图色成人| 国产一区二区在线观看日韩| 久久精品国产99精品国产亚洲性色| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 春色校园在线视频观看| 欧美最新免费一区二区三区| 69av精品久久久久久| 欧美人与善性xxx| 俄罗斯特黄特色一大片| 赤兔流量卡办理| 五月玫瑰六月丁香| 十八禁国产超污无遮挡网站| 99热网站在线观看| 国产乱人偷精品视频| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 国产 一区精品| 欧美中文日本在线观看视频| 免费看a级黄色片| 国产视频内射| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| 精品一区二区三区人妻视频| 在现免费观看毛片| 国产极品精品免费视频能看的| 久久综合国产亚洲精品| 少妇的逼水好多| 变态另类丝袜制服| 久久久精品大字幕| 国产精品人妻久久久影院| 久久久久精品国产欧美久久久| 国产精品一及| 久久久精品大字幕| 免费高清视频大片| 春色校园在线视频观看| 高清午夜精品一区二区三区 | 午夜精品在线福利| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 日本-黄色视频高清免费观看| 午夜精品在线福利| 悠悠久久av| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 久久精品夜色国产| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 日本 av在线| 日本欧美国产在线视频| 人人妻人人看人人澡| 日韩欧美精品v在线| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 97碰自拍视频| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 久久精品影院6| 亚洲成a人片在线一区二区| 男人舔奶头视频| 成人二区视频| 成人三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 搡女人真爽免费视频火全软件 | 成人特级黄色片久久久久久久| 成人无遮挡网站| 免费观看在线日韩| 乱系列少妇在线播放| 免费看a级黄色片| 中出人妻视频一区二区| 婷婷六月久久综合丁香| 国产大屁股一区二区在线视频| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| 成年女人永久免费观看视频| 搡老熟女国产l中国老女人| 一夜夜www| 波野结衣二区三区在线| 日本一二三区视频观看| 一区二区三区高清视频在线| 韩国av在线不卡| 精品人妻视频免费看| 内地一区二区视频在线| 亚洲综合色惰| 淫妇啪啪啪对白视频| 哪里可以看免费的av片| 亚洲三级黄色毛片| 亚洲精品粉嫩美女一区| 中文资源天堂在线| 两个人视频免费观看高清| 日本成人三级电影网站| 欧美色视频一区免费| 91午夜精品亚洲一区二区三区| 麻豆av噜噜一区二区三区| 日韩精品有码人妻一区| 99久国产av精品| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 九九久久精品国产亚洲av麻豆| 老师上课跳d突然被开到最大视频| 亚洲av免费在线观看| 亚洲av中文字字幕乱码综合| 日本免费a在线| 国产黄片美女视频| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 欧美3d第一页| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 久久久久久国产a免费观看| 久久精品国产亚洲av涩爱 | 日韩高清综合在线| 日韩人妻高清精品专区| 99久国产av精品| 美女黄网站色视频| 亚洲人成网站在线观看播放| 男女之事视频高清在线观看| 成年版毛片免费区| 午夜精品在线福利| 国产男靠女视频免费网站| 成年av动漫网址| 国产高清视频在线观看网站| 中国美白少妇内射xxxbb| av卡一久久| 成人毛片a级毛片在线播放| 免费看av在线观看网站|