• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Battery Full Life Cycle Management and Health Prognosis Based on Cloud Service and Broad Learning

    2022-08-13 02:08:06YujieWangKaiquanLiandZonghaiChenSenior
    IEEE/CAA Journal of Automatica Sinica 2022年8期

    Yujie Wang,, Kaiquan Li, and Zonghai Chen, Senior

    Dear editor,

    This letter presents battery full life cycle management and health prognosis based on cloud service and broad learning. Specifically, a cloud-based framework for battery full life cycle management is presented. Then, the broad learning method is proposed for battery state-of-health (SOH) prediction. The features of charging data including the constant current time, constant voltage time, and the total charging time are selected as the input characteristics of the network to estimate SOH. Moreover, the empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. Experimental results show that the proposed method can provide more accurate battery SOH prediction than several state-of-the-art methods.

    Lithium-ion batteries are now widely used in the applications of electrified transportation [1], smart grid [2], and smart buildings. The degradation of lithium-ion batteries has restrictions of the energy and power capability, as well as the performance of the cost and lifetime.Therefore, battery degradation has been a critical issue in energy storage applications. The whole life cycle management and health prognosis of battery systems have become hot and difficult issues in battery management. The future battery management system should be deeply integrated with intelligent algorithms and networked services to provide more reliable prediction and diagnosis results [3].

    In the practical application, batteries will inevitably experience gradual performance fading during its lifetime and their performance degradation is influenced by the factors including battery manufacturing, operation, and environmental conditions. Specifically, the manufacturing process will first determine the initial performance of the battery. High performance batteries will then be used in a wide range of electronic applications until their capacity reach 80% of their nominal capacity and are taken out of service. During the battery full life cycle, a wide range of overcharging and over discharging, internal or external short circuits, may damage the battery and even lead to thermal runaway, combustion, and explosion[4]. Therefore, effective battery management becomes essential.

    The traditional battery management system without aging information storage function is difficult to effectively estimate the battery life. In addition, the artificial intelligence-based battery life prediction algorithms also require large computational capability.Therefore, it is necessary to expand the functions of the traditional battery management system by using cloud computing and big data storage. Fig. 1 presents a cloud-based framework for future battery management system.

    Related work: Significant studies have been devoted to solving the problem of life prediction of battery performance which can be classified into three categories: mechanism-based, feature-based, and data-driven approaches.

    Fig. 1. Cloud-based framework for battery management.

    The mechanism-based prediction approaches require the study of the effect of each aging factor on battery degradation. This approach begins with a physics-based model. Then, the law of aging process influence on state variables can be studied. The mechanism-based life prediction method is applicable to batteries in almost all state conditions and operation modes. A detailed explanation of the battery aging process is given, which can be used by battery manufacturers and designers for battery design improvement. Wanget al. [5]proposed a single-particle based degradation model for lithium-ion batteries which can predict the battery cycling capacity with less than 2% error. Compared with other methods, the analysis of battery control strategy based on this approach can be more detailed and accurate. The disadvantages of this approach are that the model requires fine parameters and has high complexity. Moreover, the tests for aging factors are complicated, and there are difficulties in establishing a perfect aging mechanism model.

    The feature-based life prediction approaches use the evolution patterns of the feature parameters exhibited during the battery aging process to establish the correspondence between the values of the feature quantities and the battery health state for life prediction. The feature-based battery life prediction mainly focuses on the characteristics of charging data and electrochemical impedance spectroscopy(EIS). Renet al. [6] presented a battery life prediction method by using impedance spectra analysis. Experimental results showed that the prediction errors are within ±5%. The EIS can give a more detailed description of the battery impedance, which can be used to estimate the battery life characteristics. However, it requires special measurement instruments. The pulse impedance measurement is another approach which is simple and can be measured quickly online. The test results can describe the impedance of the battery to a certain extent, reflecting the growth of battery impedance with the decay of life, and can also be used as battery life characteristics.

    The data-driven approaches describe the battery recession performance from the perspective of the test data, and the commonly used algorithms include support vector machine (SVM), Gaussian process regression (GPR) [7], neural networks (NN) [8], etc. Liet al.[9] proposed a machine-learning-enabled data-driven model for battery SOH prediction by using GPR. The proposed technique is promising for battery SOH prediction under various cycling cases.Wanget al. [10] proposed an on-line synthesis method to estimate the battery SOH and remaining useful life. Specifically, the fusion of partial incremental capacity and artificial neural network (ANN) are helped for the health prognosis. The data-driven prediction approach does not require mechanistic knowledge of the object system and is a more practical prediction method based on the collected data. This approach can be predicted by mining the implicit information through various data analysis and learning methods, thus avoiding the complexity of model acquisition.

    Problem statement: Conventional neural network algorithms rely on the quantity and quality of the aging data. Complicated topologies are usually required to ensure enough accuracy, which leads to complex parameter optimization. Moreover, pe-life data batches are too small to achieve accurate estimates and as the time scale lengthens, the model parameters are updated dynamically with the increase of data volume only through the time-consuming retraining process.

    Basic concepts:

    1) The definition of SOH: The ratio of the current available capacity to the nominal capacity.

    2) Multi-metric features during battery charging process: Constant current time with its corresponding proportion, constant voltage time with its corresponding proportion, and the total charging time.

    4) Data division ratio: training datasets/ testing datasets, NumEnhan: number of enhancement nodes, NumFea: number of feature window, NumWin: number of feature node in a feature window.

    Proposed prediction model: The broad learning approach is proposed for SOH prediction of lithium-ion batteries, as shown in Fig. 2. The broad learning system (BLS) is developed on the basis of the random vector function linked neural network as an alternative to deep learning (DL) network. Traditional DL networks have complex topological structures and a large number of parameters to be optimized, which will not only lead to time-consuming training process, but also require exponential efforts to achieve better accuracy.In order to alleviate the above problems, BLS uses horizontal expansion to efficiently rebuild the model in an incremental learning way, and its fast-learning characteristics can effectively shorten the long training process without causing catastrophic forgetting.

    Fig. 2. BLS-based health prognosis for lithium-ion batteries.

    wheredandbare composed of pseudo inverse ofAand new data.

    Experiments: In this work, the capacity degradation paths of different datasets are used for the comparison experiments. The corresponding testing conditions including the various C-rate at ambient temperature (25°C). The cells with 2.5 Ah rated capacity were chosen to conduct constant current (CC) discharging and constant current constant voltage (CCCV) charging with cut-off voltages of 3.0 V and 4.2 V, respectively. The different operating profiles are introduced in detail, listed in Table 1, and the experimental setup is shown in Fig. 3.

    In the practical application process, continuous and variable discharge current with fluctuation will lead to incomplete and unstable discharge process. However, it is easy to obtain regular offset charging curve through fixed charging mode, and extracthealth factors highly related to aging attenuation. To obtain effective capacity attenuation information more comprehensively, constant current time with its corresponding proportion, the constant voltage time with its corresponding proportion, and the total charging time are selected as the input characteristics of the network. In order to eliminate the influence caused by capacity regeneration in the process of battery aging, empirical mode decomposition is carried out on the initial data to restore the most essential attenuation trajectory of battery capacity. By using a fixed width sliding window to carry out rolling decomposition of capacity attenuation data, the data of the test data set can be dynamically input into the estimation model trained offline to realize the real-time online estimation of battery SOH in actual application scenarios.

    Table 1.Battery Cycle Aging Experiment Profiles

    Fig. 3. The experimental setup.

    To verify the accuracy of the BLS-based estimation architecture,the aging datasets of different battery are divided into 70% training sets and 30% test sets firstly. Furthermore, three classical algorithms are widely used in the prediction of time series data, including long short-term memory (LSTM) neural network, recurrent neural network (RNN), and gate recurrent unit (GRU). The gate structure endows them with memory function, which are selected for comparison of estimation performance and to emphasize the difference between BLS and the three classical neural networks. The SOH estimation result and error curves of different neural networks for different batteries are shown in Fig. 4.

    Fig. 4. The SOH estimation process and error curves of different neural networks for three datasets: (a) and (d) are B01; (b) and (e) are B02; (c) and(f) are B03.

    From Figs. 4(a)–4(c), the catalytic effect of charging ratio on battery aging is stronger than that of discharging current by crossreferencing. The capacity regeneration in the aging process changes the capacity decay trajectory to a certain extent. All the selected classical neural networks can follow the sudden change trend with certain estimation accuracy from Figs. 4(d)–4(f).

    It is obvious that for the classical neural network algorithms, the prediction errors of both GRU and LSTM are lower than the RNN under the same working conditions, which has proved that the performance enhancing effect of the unique gate structure in GRU and LSTM. Moreover, for datasets under different working conditions, the estimation performance of BLS is not weaker than that of LSTM and GRU, and even better in B03, which corroborate the high accuracy of the proposed estimation model.

    In order to further highlight the superiority of the proposed estimation method, the four neural networks are compared from the perspective of time cost. To make sure the fairness of comparison,the corresponding time of different networks for the same amount of data are shown in Table 2.

    Table 2.Time Consumed by Different Networks

    As can be seen from Table 2, the classical neural network algorithms have the most complex structure resulting in the longest training time. In contrast, the training time of BLS is much smaller than other neural networks under the three operating conditions,which explains that the weight matrix of BLS is updated much faster than the weight updating algorithms used in conventional neural network, such as back propagation.

    According to the above comparison results, the proposed estimation model based on BLS has good performance in the accuracy and time complexity. To further analyze the impact of data division and the number of network nodes on the performance of BLS, different division ratios are used for the same dataset and grid search is applied to find the optimal number of nodes. The prediction results of BLS and estimation error curves with different data division ratio of B03 are shown in Fig. 5. The optimal combination of the number of nodes with different division results of B03 is given in the following Table 3. The root mean-square error (RMSE), mean absolute error(MAE), maximum error, and time are chosen to portray the performance of BLS from different descriptive perspectives.

    Fig. 5. The prediction results of BLS with different data division ratio of B03:(a) 5:5; (b) 6:4; (c) 7:3; (d) 8:2; (e) 9:1; (f) error curves.

    Table 3.The Optimal Combination of the Number of Nodes With Different Division Results of B03

    The MAE and RMSE of the test set are low under different data division ratios. When the training set accounted for 90%, battery SOH estimation effect of the test set was the best, mainly due to the sufficient information contained in a large amount of training data.When the proportion of training set decreases to 50%, the proposed estimation model can still extract effective attenuation information from limited data. The estimation error MAE and RMSE are 0.5934% and 0.9957%, respectively. The maximum errors in the test data set all occurred in the capacity regeneration stage, but the error size was still maintained below 4%. The total time consumed,including training time and test time, is within 0.1s under different proportions of training sets.

    Conclusions: This letter presents a novel approach for the battery health prognosis based on BLS. Experimental results show that the proposed method can provide more accurate battery SOH prediction and faster speed than the conventional neural network algorithms for real-time online estimation. Even in the capacity regeneration stage,the proposed estimation model based on BLS has better performance.As the aging of Lithium-ion batteries deepens, when the model accuracy is insufficient due to the change of aging pattern as the capacity decay data gradually increases, the network structure of BLS can be dynamically extended based on incremental learning in short time so as to maintain high accuracy without the need for timeconsuming retraining process.

    Acknowledgments: This work was supported by the National Key Research and Development Program of China (2020YFB1712400).

    十分钟在线观看高清视频www | 欧美区成人在线视频| 99热这里只有是精品50| 妹子高潮喷水视频| 国产亚洲精品久久久com| 国产黄片视频在线免费观看| 啦啦啦在线观看免费高清www| 久久久久久久久大av| 精品国产三级普通话版| 交换朋友夫妻互换小说| 肉色欧美久久久久久久蜜桃| 欧美区成人在线视频| 国产精品一区二区三区四区免费观看| 欧美高清成人免费视频www| 男女无遮挡免费网站观看| 国产久久久一区二区三区| 纯流量卡能插随身wifi吗| 精品少妇久久久久久888优播| 国产一区二区在线观看日韩| av福利片在线观看| 久久亚洲国产成人精品v| 日韩一区二区视频免费看| av在线app专区| 亚洲精品国产av蜜桃| 成年人午夜在线观看视频| 18禁裸乳无遮挡免费网站照片| 卡戴珊不雅视频在线播放| 黑人猛操日本美女一级片| 大片电影免费在线观看免费| 亚洲美女视频黄频| 国产一区二区在线观看日韩| 亚洲欧美日韩无卡精品| 一区二区三区精品91| 人妻夜夜爽99麻豆av| 国产白丝娇喘喷水9色精品| 伊人久久精品亚洲午夜| 91精品一卡2卡3卡4卡| 国产淫语在线视频| 亚洲av在线观看美女高潮| 熟妇人妻不卡中文字幕| 美女视频免费永久观看网站| 超碰97精品在线观看| 狂野欧美白嫩少妇大欣赏| 下体分泌物呈黄色| 天美传媒精品一区二区| 丰满迷人的少妇在线观看| 欧美精品国产亚洲| 黄片无遮挡物在线观看| av福利片在线观看| 人妻制服诱惑在线中文字幕| 国产一区二区三区综合在线观看 | 在线 av 中文字幕| 大香蕉97超碰在线| 国产精品熟女久久久久浪| 国产成人aa在线观看| 日韩一区二区三区影片| 国产毛片在线视频| 新久久久久国产一级毛片| 蜜桃久久精品国产亚洲av| 欧美丝袜亚洲另类| 在现免费观看毛片| 熟女人妻精品中文字幕| 欧美xxxx性猛交bbbb| 九九爱精品视频在线观看| 丝瓜视频免费看黄片| 亚洲国产精品国产精品| 在线观看人妻少妇| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 欧美极品一区二区三区四区| 嘟嘟电影网在线观看| 人妻系列 视频| 亚洲欧美日韩另类电影网站 | 嘟嘟电影网在线观看| 久热久热在线精品观看| 国产精品伦人一区二区| 狂野欧美白嫩少妇大欣赏| 国产 精品1| 亚洲国产色片| 五月天丁香电影| 高清欧美精品videossex| 少妇猛男粗大的猛烈进出视频| 天美传媒精品一区二区| 日本av手机在线免费观看| 免费大片18禁| 亚洲av在线观看美女高潮| 欧美高清性xxxxhd video| 中文字幕制服av| 在线亚洲精品国产二区图片欧美 | 草草在线视频免费看| 美女主播在线视频| 国内揄拍国产精品人妻在线| 日本与韩国留学比较| 黄片无遮挡物在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲精品视频女| 国产乱人视频| 国产成人精品久久久久久| 国产有黄有色有爽视频| 夫妻性生交免费视频一级片| 国产白丝娇喘喷水9色精品| 国产精品.久久久| 国产伦在线观看视频一区| 免费看光身美女| 大香蕉久久网| 日本黄色日本黄色录像| 亚洲最大成人中文| 伦精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 亚洲人成网站在线播| 特大巨黑吊av在线直播| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久v下载方式| 国产大屁股一区二区在线视频| 久久国产精品男人的天堂亚洲 | 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱码久久久v下载方式| 亚洲图色成人| tube8黄色片| 精品亚洲成国产av| 久久久久久久亚洲中文字幕| 久久毛片免费看一区二区三区| 精品一品国产午夜福利视频| 国产精品国产av在线观看| 欧美变态另类bdsm刘玥| 国产毛片在线视频| 女人久久www免费人成看片| 国产欧美亚洲国产| 99精国产麻豆久久婷婷| 欧美三级亚洲精品| 男女边摸边吃奶| 日产精品乱码卡一卡2卡三| 自拍偷自拍亚洲精品老妇| 看非洲黑人一级黄片| 中国三级夫妇交换| 亚洲国产欧美人成| 成人影院久久| 一级二级三级毛片免费看| 国产av国产精品国产| 亚洲婷婷狠狠爱综合网| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 婷婷色av中文字幕| 蜜桃亚洲精品一区二区三区| 蜜桃久久精品国产亚洲av| 国产大屁股一区二区在线视频| 日韩欧美一区视频在线观看 | 午夜免费男女啪啪视频观看| 国产一区二区三区综合在线观看 | 亚洲成人av在线免费| 肉色欧美久久久久久久蜜桃| 亚洲精品,欧美精品| 街头女战士在线观看网站| 国产精品无大码| 亚洲综合色惰| 亚洲欧洲日产国产| 黄色怎么调成土黄色| 在线 av 中文字幕| 久久精品久久久久久久性| 国产一级毛片在线| 伊人久久国产一区二区| 男人添女人高潮全过程视频| 欧美激情国产日韩精品一区| av福利片在线观看| 午夜福利在线观看免费完整高清在| 免费观看av网站的网址| 亚洲av中文av极速乱| 免费观看a级毛片全部| 色哟哟·www| 国产 一区精品| 一本一本综合久久| 热re99久久精品国产66热6| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站| 九草在线视频观看| 肉色欧美久久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 国产永久视频网站| 99久久精品热视频| 视频中文字幕在线观看| 女性被躁到高潮视频| 久久久久久人妻| 日韩国内少妇激情av| 国产av码专区亚洲av| 男女下面进入的视频免费午夜| 97在线视频观看| 一本一本综合久久| 又爽又黄a免费视频| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 日韩制服骚丝袜av| av在线播放精品| 韩国高清视频一区二区三区| 国产在线男女| 精品国产露脸久久av麻豆| 少妇被粗大猛烈的视频| 久久久久久久精品精品| 欧美3d第一页| 不卡视频在线观看欧美| 久久99蜜桃精品久久| 丰满乱子伦码专区| 免费黄色在线免费观看| 国产在线男女| 蜜臀久久99精品久久宅男| 久久影院123| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 在线观看国产h片| 国产精品蜜桃在线观看| 在线观看av片永久免费下载| 性色avwww在线观看| 国产av一区二区精品久久 | a级毛片免费高清观看在线播放| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 99九九线精品视频在线观看视频| 成年女人在线观看亚洲视频| 一区在线观看完整版| 午夜福利视频精品| 18+在线观看网站| 日本wwww免费看| 五月天丁香电影| 亚洲欧美日韩东京热| 九色成人免费人妻av| 国产欧美日韩一区二区三区在线 | 国产精品人妻久久久久久| 久久精品国产自在天天线| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 大码成人一级视频| 国产在线一区二区三区精| 国产免费一级a男人的天堂| 又粗又硬又长又爽又黄的视频| 老司机影院成人| 免费黄频网站在线观看国产| 国产熟女欧美一区二区| 国产成人91sexporn| 五月天丁香电影| 大陆偷拍与自拍| 啦啦啦视频在线资源免费观看| 午夜福利影视在线免费观看| 青春草亚洲视频在线观看| 久久久久网色| 久久精品国产a三级三级三级| 老司机影院毛片| 一边亲一边摸免费视频| 久久久久网色| 18+在线观看网站| 中文欧美无线码| 国产黄片视频在线免费观看| 久久精品国产a三级三级三级| 1000部很黄的大片| 校园人妻丝袜中文字幕| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 久久久久视频综合| 激情 狠狠 欧美| 美女内射精品一级片tv| 女的被弄到高潮叫床怎么办| 国产黄片美女视频| 男女下面进入的视频免费午夜| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲 | 99精国产麻豆久久婷婷| 搡老乐熟女国产| 亚洲不卡免费看| 制服丝袜香蕉在线| 天堂8中文在线网| 精品人妻一区二区三区麻豆| 日韩av不卡免费在线播放| 国产免费视频播放在线视频| a级一级毛片免费在线观看| 国产精品成人在线| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 少妇人妻 视频| 国产成人aa在线观看| 国产探花极品一区二区| xxx大片免费视频| 免费看日本二区| 亚洲欧美一区二区三区黑人 | 22中文网久久字幕| 久久久久视频综合| 美女高潮的动态| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| 成人免费观看视频高清| 久久99热这里只有精品18| 久久国内精品自在自线图片| 新久久久久国产一级毛片| 亚洲国产高清在线一区二区三| 国产免费福利视频在线观看| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频 | 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 最新中文字幕久久久久| 高清欧美精品videossex| 日韩电影二区| 街头女战士在线观看网站| 我要看日韩黄色一级片| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 国产在线免费精品| av免费在线看不卡| 简卡轻食公司| 麻豆成人av视频| 成人国产麻豆网| 成年人午夜在线观看视频| 伊人久久国产一区二区| 国产成人aa在线观看| a级一级毛片免费在线观看| 国产黄色免费在线视频| 天堂8中文在线网| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 日韩强制内射视频| 韩国高清视频一区二区三区| 大香蕉久久网| 精品国产乱码久久久久久小说| 97热精品久久久久久| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 免费久久久久久久精品成人欧美视频 | 久久婷婷青草| 亚洲欧美精品专区久久| 大香蕉97超碰在线| 伊人久久精品亚洲午夜| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 国模一区二区三区四区视频| 在线观看免费视频网站a站| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 老师上课跳d突然被开到最大视频| 午夜福利高清视频| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| 成年美女黄网站色视频大全免费 | 我的老师免费观看完整版| 偷拍熟女少妇极品色| 内地一区二区视频在线| 亚洲av日韩在线播放| 色视频在线一区二区三区| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 天天躁日日操中文字幕| 亚洲三级黄色毛片| 国产精品无大码| 性色avwww在线观看| 国产毛片在线视频| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 大香蕉97超碰在线| 高清黄色对白视频在线免费看 | 最近手机中文字幕大全| av国产久精品久网站免费入址| 亚洲人成网站高清观看| 亚洲精品视频女| 毛片一级片免费看久久久久| 国产欧美日韩精品一区二区| 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| 成人高潮视频无遮挡免费网站| 亚洲av福利一区| 嘟嘟电影网在线观看| 国产高清不卡午夜福利| 欧美少妇被猛烈插入视频| 久久久久久久久久久丰满| 啦啦啦啦在线视频资源| 日本免费在线观看一区| 国产精品精品国产色婷婷| av在线老鸭窝| 亚洲熟女精品中文字幕| 麻豆成人午夜福利视频| 久久久久久久久久久免费av| 国产高清国产精品国产三级 | 亚洲精品视频女| 97热精品久久久久久| 亚洲性久久影院| 亚洲自偷自拍三级| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 国产精品一区二区在线不卡| 高清毛片免费看| 1000部很黄的大片| 男女国产视频网站| 午夜免费鲁丝| 亚洲国产精品国产精品| 国产精品成人在线| 久久久色成人| 大陆偷拍与自拍| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 街头女战士在线观看网站| 最近的中文字幕免费完整| www.av在线官网国产| 视频中文字幕在线观看| 精品久久久噜噜| 亚洲欧美成人综合另类久久久| 国产人妻一区二区三区在| 久久国产精品大桥未久av | 久久97久久精品| 亚洲,欧美,日韩| 成人特级av手机在线观看| 在线亚洲精品国产二区图片欧美 | 成人午夜精彩视频在线观看| 一本—道久久a久久精品蜜桃钙片| 晚上一个人看的免费电影| 亚洲精品亚洲一区二区| 下体分泌物呈黄色| 国产高清不卡午夜福利| 久久97久久精品| 中文资源天堂在线| 大片电影免费在线观看免费| 久久精品国产a三级三级三级| 国产午夜精品久久久久久一区二区三区| 国产老妇伦熟女老妇高清| 波野结衣二区三区在线| 国产综合精华液| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 免费黄色在线免费观看| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 日韩一区二区三区影片| 男女免费视频国产| 欧美日韩国产mv在线观看视频 | 青春草亚洲视频在线观看| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 国产精品一二三区在线看| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| av视频免费观看在线观看| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 国产精品无大码| 在线免费观看不下载黄p国产| 午夜福利视频精品| 少妇被粗大猛烈的视频| 精品一区二区三区视频在线| 黄色日韩在线| 黄色怎么调成土黄色| 亚洲丝袜综合中文字幕| 国产 一区精品| 最近手机中文字幕大全| 黄色日韩在线| 亚洲av电影在线观看一区二区三区| 久热久热在线精品观看| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 最近最新中文字幕免费大全7| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 国产亚洲最大av| 国产探花极品一区二区| 能在线免费看毛片的网站| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 最黄视频免费看| 在线观看人妻少妇| 一级毛片电影观看| 看免费成人av毛片| 高清欧美精品videossex| 日韩一本色道免费dvd| 久久精品久久久久久久性| 日韩中字成人| 欧美97在线视频| 成人漫画全彩无遮挡| 国产精品.久久久| 亚洲四区av| 2022亚洲国产成人精品| 青春草国产在线视频| 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 国产欧美另类精品又又久久亚洲欧美| 国产伦理片在线播放av一区| 久久97久久精品| 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 精品国产三级普通话版| 大又大粗又爽又黄少妇毛片口| 18禁在线播放成人免费| 岛国毛片在线播放| 国产精品久久久久久精品电影小说 | 中国三级夫妇交换| 少妇的逼水好多| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 最近的中文字幕免费完整| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 精品久久国产蜜桃| 国产伦在线观看视频一区| 天天躁日日操中文字幕| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 小蜜桃在线观看免费完整版高清| 亚洲成人手机| 国产乱人视频| 欧美极品一区二区三区四区| 有码 亚洲区| 亚洲最大成人中文| 国语对白做爰xxxⅹ性视频网站| 亚洲精品自拍成人| 中文字幕亚洲精品专区| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩东京热| 日本欧美国产在线视频| 国产精品偷伦视频观看了| 国产 一区 欧美 日韩| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 少妇 在线观看| 亚洲欧美成人综合另类久久久| 国产高清三级在线| 舔av片在线| 黄色欧美视频在线观看| 国产av国产精品国产| 亚洲,欧美,日韩| 欧美成人一区二区免费高清观看| 亚洲第一av免费看| 舔av片在线| 最近中文字幕2019免费版| 青春草国产在线视频| 久久精品国产自在天天线| 青春草视频在线免费观看| 91久久精品国产一区二区三区| 看免费成人av毛片| 99久国产av精品国产电影| 欧美日韩在线观看h| 国产免费又黄又爽又色| 免费大片18禁| 一级毛片黄色毛片免费观看视频| 国产69精品久久久久777片| 久久久久久久久大av| 18+在线观看网站| 国模一区二区三区四区视频| av播播在线观看一区| 高清毛片免费看| 精品一区在线观看国产| 美女脱内裤让男人舔精品视频| 麻豆精品久久久久久蜜桃| 高清日韩中文字幕在线| 一个人看视频在线观看www免费| 日本av手机在线免费观看| 国产熟女欧美一区二区| 亚洲av综合色区一区| 国产国拍精品亚洲av在线观看| 免费看光身美女| 亚洲国产色片| 日本wwww免费看| 人人妻人人看人人澡| 大片免费播放器 马上看| 国产黄色免费在线视频| 亚洲不卡免费看| 国产亚洲最大av| 精品国产露脸久久av麻豆| 嘟嘟电影网在线观看| 亚洲自偷自拍三级| 久久av网站| 国产精品嫩草影院av在线观看| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 亚洲欧洲日产国产| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看| 国产亚洲5aaaaa淫片| 丝袜喷水一区| 女人十人毛片免费观看3o分钟| 天天躁夜夜躁狠狠久久av| 老熟女久久久| 综合色丁香网| 五月开心婷婷网| 97精品久久久久久久久久精品| 色吧在线观看| 99国产精品免费福利视频| 婷婷色综合www| 亚洲天堂av无毛| 日韩视频在线欧美| 国产精品久久久久久av不卡| 日本与韩国留学比较| 少妇精品久久久久久久| 青青草视频在线视频观看| 欧美精品人与动牲交sv欧美| av线在线观看网站| 成人漫画全彩无遮挡| 交换朋友夫妻互换小说| 国产在线一区二区三区精| 欧美一区二区亚洲| 欧美精品人与动牲交sv欧美| 高清在线视频一区二区三区| 日韩成人av中文字幕在线观看| 亚洲激情五月婷婷啪啪|