• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Attention Fusion and Fine-Grained Alignment for Bidirectional Image-Sentence Retrieval in Remote Sensing

    2022-08-13 02:07:58QiminChengYuzhuoZhouHaiyanHuangandZhongyuanWang
    IEEE/CAA Journal of Automatica Sinica 2022年8期

    Qimin Cheng, Yuzhuo Zhou, Haiyan Huang, and Zhongyuan Wang

    Dear editor,

    Cross-modal retrieval in remote sensing (RS) data has inspired increasing enthusiasm due to its merit in flexible input and efficient query. In this letter, we address to establish semantic relationship between RS images and their description sentences. Specially, we propose a multi-attention fusion and fine-grained alignment network,termed MAFA-Net, for bidirectional cross-modal image-sentence retrieval in RS. While multiple attention mechanisms are fused to enhance the discriminative ability of visual features for RS images with complex scenes, fine-grained alignment strategy is introduced to study the hidden connection between RS observations and sentences.To validate the capability of MAFA-Net, we leverage four captioning benchmark datasets with paired RS images and descriptions, i.e.,UCM-Captions, Sydney-Captions, RSICD and NWPU-Captions.Experimental results on the four datasets demonstrate that MAFANet can yield better performance than the current state-of-the-art approaches.

    Related work: The accelerated advancement in earth observation technology witnesses an explosive growth of multi-modal and multisource remote sensing data. Cross-modal retrieval in RS facilitates flexible and efficient query, which has attracted extensive interest in recent years and can be applied to natural disaster early-warning and military intelligence generation, etc.

    Significant efforts have been devoted to cross-modal retrieval for natural images. To probe fine-grained relationships among images and sentences, Chenet al. [1] proposed a cross-modal retrieval model(IMRAM) based on a recurrent attention technique. Leeet al. [2]proposed a stacked attention mechanism-based graphic retrieval model (SCAN) to learn more discriminative textual and visual feature representations. Wanget al. [3] proposed a multi-modal tensor fusion network (MTFN) to directly measure the similarity between different modalities through rank-based tensor fusion. Wanget al. [4] proposed a position focused attention network (PFAN) to improve cross-modal matching performance. Besides, to satisfy industrial requirement, Wuet al. [5] proposed a hashing approach to achieve large-scale cross-modal retrieval via learning a unified hash representation and deep hashing functions for different modalities in a self-supervised way. Although these achievements gained inspiring results for retrieval tasks in natural images, their robustness and generalization ability need to be verified when transfer to RS fields due to the intrinsic and extrinsic properties of RS data.

    Motivated by the burgeoning demands for multi-modal requests in RS like military intelligence generation, researchers have paid more attention to RS cross-modal retrieval during the recent several years.To explore semantic correlation between visual features and textual description of RS data, Abdullahet al. [6] proposed a novel deep bidirectional ternary network (DBTN) for Text-to-Image (T2I)matching task through features fusion strategy. With regard to Image-to-Text (I2T) retrieval for RS data, Chenget al. [7] proposed to use a cross-attention mechanism and a gating mechanism to enhance the association between RS images and descriptions, which is the first attempt to prove the possibility of bidirectional T2I and I2T retrieval in RS. Afterwards, Lvet al. [8] proposed a fusion-based correlation learning model (FCLM) to capture multi-modal complementary information and fusion features and to further supervise the learning of the feature extraction network. Yuanet al.[9] proposed an asymmetric multimodal feature matching network(AMFMN) to extract the salient visual features of RS images through a multi-scale visual self-attention technique, and exploited it to guide textual feature extraction. Moreover, they further designed a concise and efficient version of their cross-modal retrieval model, namely LW-MCR [10] on the basis of knowledge distillation. For fast and efficient retrieval on large-scale RS data, Mikriukovet al. [11]introduced a novel deep unsupervised cross-modal contrastive hashing model. Except for image-sentence retrieval, there has been some work on visual-audio retrieval [12], image-sketch retrieval[13], cross-source panchromatic-multispectral image retrieval [14],[15] and zero-shot image-word matching [16].

    It is no doubt that all the above work partly advances the crossmodal retrieval in RS from different aspects including visual feature representation and description optimization strategy, etc. However,current work on bidirectional image-sentence retrieval in RS is deficient in 1) Achievements on bidirectional image-sentence retrieval for RS data are very limited and comprehensive analysis is still lacking. Current work [6]?[11] conducts comparative experiments with the baseline for natural images unexceptionally; 2) The generalization of existing approaches on much larger and more challenging RS captioning datasets needs to be verified. The size of the datasets applied by existing approaches [6], [8]?[11] is limited(with the maximum of 24 333 original captions in RSICD [17] and 23 715 granular captions in RSITMD [9]); 3) Semantic ambiguity of complex scenes of RS data remains unsolved.

    To address these limitations, we propose a novel cross-modal network for bidirectional T2I and I2T retrieval in RS. The contribution of our work lies in: 1) We aim to differentiate visual features for complex scene representation through fusing multiple attention mechanisms and reinforce the intra-modality semantic association through fine-grained alignment strategy. 2) We evaluate the effectiveness and robustness of our proposed network on a much larger dataset, NWPU-Captions with 157 500 captions in total, along with the several popular benchmark datasets.

    MAFA-Net: The motivation of MAFA-Net includes two aspects.The first one is to depict RS images, especially those complex scenes, with more abstract and discriminative feature representation.The second one is to address semantic ambiguity existed in different modality of RS data through establishing fine-grained relevance between RS image region and visual words.

    To this end, MAFA-Net consists of two main parts: a multiattention fusion module and a fine-grained alignment module. The multi-attention fusion module aims to weaken interference from background noise in RS images and enhance the salient objects,thereby to improve the discriminative ability of the visual features.The fine-grained alignment module exploits sentence features as context information to further optimize and update the visual features of RS images. The overall architecture of MAFA-Net is shown in Fig. 1.

    Fig. 1. The overall architecture of MAFA-Net.

    Fig. 2. The architecture of multi-attention fusion module.

    Dataset and metrics: Four RS datasets are selected to evaluate the performance of different approaches in the cross-modal imagesentence retrieval task.

    1) UCM-Captions: This dataset is released by [18] based on the UCMerced dataset. The size of each image is 256×256, and the pixel resolution is 0.3048 m. Each image is described with five different sentences and hence contains 10 500 descriptions in total.

    2) Sydney-Captions: This dataset is released by [18] based on the Sydney dataset and includes 3065 descriptions for 613 cropped images. The original images in it are with size of 18 000×14 000 and pixel resolution of 0.5 m. Each cropped image is described by five varied sentences.

    3) RSICD: There are totally 10 921 RS images and 24 333 original descriptions in this dataset [17], the scale of which is larger than the aforementioned two datasets. Images in it are resized to 224×224 pixels, meanwhile 54 605 sentences are utilized by randomly duplicating existing descriptions.

    4) NWPU-Captions: NWPU-Captions is provided by Wuhan University and Huazhong University of Science and Technology based on the NWPU-RESISC45 dataset. It incorporates 45 different labels with each one including 700 instances. Each image is described by five sentences according to certain annotated rules and the total number of descriptions is 157 500. This dataset is challenging due to its large scale and big variations.

    We use the criteria R@K (K = 1, 5, 10) to evaluate the performance of different approaches. Larger R@K indicates better performance.

    Experimental settings: In the training process, we set the batch size to 16 and the learning rate to 0.0005 which decreases by 0.7 after every 20 epochs. Totally, 120 epochs are conducted. The margin thresholdδin the loss function is set to 0.2. The visual feature of image region is of 2048-dimensional while the word feature is of 300-dimensional. The hidden dimension of Bi-GRU is 2048. During training, word features are initialized randomly and fed to Bi-GRU.

    Results and analysis: We conduct experiments on the four benchmark datasets and Tables 1?4 report the experimental results of various methods including representative cross-modal models for natural images like IMRAM [1], SCAN [2], MTFN [3], PFAN [4]and latest models for RS data like FCLM [8], AMFMN [9] and LWMCR [10].

    It can be seen from Tables 1?4 that generally MAFA-Net achieves better retrieval performance than other models on four datasets.Although, on the first three datasets, MAFA-Net occasionally slightly underperforms others on some metrics. This might be related to the relatively small amount of data in the UCM-Captions dataset and the Sydney-Captions dataset, and the unbalanced distribution of data categories in the Sydney-Captions dataset itself. However, on the much larger and challenging NWPU-Captions dataset, MAFANet achieves best on all evaluation metrics. The results of MAFANet on four different datasets also demonstrate its robustness.

    Table 1.Comparative Experimental Results on UCM-Captions

    Table 2.Comparative Experimental Results on Sydney-Captions

    We also conduct ablation experiments to evaluate the contribution of multi-attention fusion module (MA) and fine-grained alignment module (FA) to MAFA-Net. Table 5 reports the results on NWPUCaptions, in which _nMA_nFA means the basic network without the two modules, _nMA means the network without MA module and_nFA means the network without FA module. It can be seen that the two modules can significantly improve the retrieval performance of the MAFA-Net separately, while their contributions are relatively close. Table 5 also tabulates the training and testing time for executing different models on NWPU-Captions.

    We further show the visualization results of our MAFA-Net in Figs. 3?6.

    It can be seen that most of the retrieval results match the input,which indicates that the MAFA-Net proposed in this letter can maintain a good semantic correspondence between RS images and sentences. It is worth mentioning that even for the challenging highdensity scenes with a great of small and clustered objects, MAFANet still performs well (see Fig. 6).

    Conclusion: In this letter, we propose a multi-attention fusion and fine-grained alignment network (MAFA-Net) to conduct the crossmodal image-sentence retrieval task in the remote sensing domain.MAFA-Net aims at addressing the properties of multiscale properties and the problem of semantic ambiguity existed in cross-modalretrieval of RS data. Specifically, we design a multi-attention fusion module to improve the feature representation ability. Meanwhile, a fine-grained alignment module is designed to make the information between two different modalities (e.g., visual and textural) interact.Besides the three public available benchmark datasets, a much larger captioning dataset, NWPU-Captions, is utilized to evaluate the performance of MAFA-Net. Experimental results prove that MAFANet outperforms current approaches and even for challenging highdensity scenes, MAFA-Net can get satisfying results. In the future,we would like to consider more modalities like LiDAR or multispectral images and domain adaption [19] for RS visual applications.

    Table 3.Comparative Experimental Results on RSICD

    Table 4.Comparative Experimental Results on NWPU-Captions

    Table 5.Ablation Experimental Results on NWPU-Captions

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (42090012), Special Research and 5G Project of Jiangxi Province in China (20212ABC03A09),Guangdong-Macao Joint Innovation Project (2021A0505080008),Key R & D Project of Sichuan Science and Technology Plan(2022YFN0031), and Zhuhai Industry University Research Cooperation Project of China (ZH22017001210098PWC).

    Fig. 3. Visualization results of MAFA-Net on UCM-Captions.

    Fig. 4. Visualization results of MAFA-Net on Sydney-Captions.

    Fig. 5. Visualization results of MAFA-Net on RSICD.

    Fig. 6. Visualization results of MAFA-Net on NWPU-Captions.

    bbb黄色大片| 1024视频免费在线观看| 亚洲黑人精品在线| 真人一进一出gif抽搐免费| 国产成人aa在线观看| 欧美日韩亚洲国产一区二区在线观看| 中文资源天堂在线| 亚洲成人免费电影在线观看| 91麻豆精品激情在线观看国产| 淫秽高清视频在线观看| 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合| 免费在线观看影片大全网站| 天堂√8在线中文| 丝袜人妻中文字幕| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 波多野结衣高清无吗| 十八禁网站免费在线| av超薄肉色丝袜交足视频| 久久久久性生活片| 欧美日韩国产亚洲二区| 国内少妇人妻偷人精品xxx网站 | 国内毛片毛片毛片毛片毛片| av片东京热男人的天堂| 欧美日本视频| 在线视频色国产色| 国产成人精品久久二区二区91| 欧美色欧美亚洲另类二区| 日日爽夜夜爽网站| 亚洲 国产 在线| 哪里可以看免费的av片| av福利片在线| 免费在线观看日本一区| 午夜福利高清视频| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 中文在线观看免费www的网站 | 国模一区二区三区四区视频 | 亚洲av五月六月丁香网| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 老司机午夜福利在线观看视频| 亚洲成av人片在线播放无| 国产99白浆流出| 啦啦啦免费观看视频1| 在线免费观看的www视频| 波多野结衣高清作品| videosex国产| 久久精品成人免费网站| 老鸭窝网址在线观看| 日本一二三区视频观看| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频| 精品一区二区三区视频在线观看免费| 一进一出好大好爽视频| 丝袜人妻中文字幕| 亚洲天堂国产精品一区在线| 每晚都被弄得嗷嗷叫到高潮| 国产精品爽爽va在线观看网站| 99精品久久久久人妻精品| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 黄色片一级片一级黄色片| 久久久精品大字幕| 欧美绝顶高潮抽搐喷水| 午夜福利高清视频| 久久久国产精品麻豆| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 少妇熟女aⅴ在线视频| 美女免费视频网站| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 国产精品综合久久久久久久免费| av有码第一页| 亚洲人与动物交配视频| 搡老熟女国产l中国老女人| 波多野结衣高清无吗| 亚洲av电影在线进入| 午夜激情福利司机影院| 一本综合久久免费| 美女大奶头视频| 51午夜福利影视在线观看| 老司机午夜福利在线观看视频| 超碰成人久久| 成人三级黄色视频| 亚洲av成人av| 男女下面进入的视频免费午夜| 999久久久精品免费观看国产| 精品一区二区三区视频在线观看免费| 久久欧美精品欧美久久欧美| 免费av毛片视频| 露出奶头的视频| 99久久无色码亚洲精品果冻| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频 | 老司机靠b影院| 麻豆国产97在线/欧美 | 18禁观看日本| 亚洲九九香蕉| 美女扒开内裤让男人捅视频| 动漫黄色视频在线观看| 久久久精品欧美日韩精品| aaaaa片日本免费| 色综合婷婷激情| 成人国产一区最新在线观看| 嫩草影院精品99| 免费观看人在逋| 好男人在线观看高清免费视频| 日日夜夜操网爽| 精品电影一区二区在线| 90打野战视频偷拍视频| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 淫秽高清视频在线观看| 亚洲精品国产一区二区精华液| 免费无遮挡裸体视频| 久久99热这里只有精品18| 久久久久九九精品影院| 免费一级毛片在线播放高清视频| 亚洲国产精品999在线| 两个人视频免费观看高清| 国产亚洲欧美98| 黄色毛片三级朝国网站| 国产午夜精品论理片| а√天堂www在线а√下载| 亚洲黑人精品在线| 欧美中文日本在线观看视频| 观看免费一级毛片| 一二三四在线观看免费中文在| 12—13女人毛片做爰片一| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 欧美日韩国产亚洲二区| 无遮挡黄片免费观看| 极品教师在线免费播放| 成人av在线播放网站| 国产av麻豆久久久久久久| 成人特级黄色片久久久久久久| 亚洲激情在线av| 丝袜人妻中文字幕| 三级毛片av免费| 最近最新中文字幕大全电影3| 国产免费男女视频| 色在线成人网| 亚洲精品粉嫩美女一区| av在线天堂中文字幕| 日本一二三区视频观看| 高清在线国产一区| 黄色毛片三级朝国网站| 亚洲av成人一区二区三| netflix在线观看网站| 亚洲欧美精品综合一区二区三区| 日韩精品青青久久久久久| 欧美黑人精品巨大| 亚洲精品粉嫩美女一区| 在线观看午夜福利视频| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 欧美日韩黄片免| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 中文字幕久久专区| 亚洲成人久久性| 亚洲国产高清在线一区二区三| 无遮挡黄片免费观看| av在线天堂中文字幕| 午夜激情福利司机影院| 一级毛片高清免费大全| 久久久久久九九精品二区国产 | 看免费av毛片| 欧美三级亚洲精品| 国产三级在线视频| 天天添夜夜摸| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 在线永久观看黄色视频| 国产精品日韩av在线免费观看| 国产欧美日韩精品亚洲av| 最近最新免费中文字幕在线| 日本三级黄在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产aⅴ精品一区二区三区波| 99热6这里只有精品| 久久久久久久久中文| 亚洲熟女毛片儿| 国产精品一及| 日韩大码丰满熟妇| 99热这里只有精品一区 | 国产真实乱freesex| 国产高清videossex| 一本综合久久免费| 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区| 给我免费播放毛片高清在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲 欧美一区二区三区| 欧美日韩精品网址| 亚洲av成人不卡在线观看播放网| 欧美黄色片欧美黄色片| 99久久无色码亚洲精品果冻| 国产视频内射| 美女扒开内裤让男人捅视频| 好看av亚洲va欧美ⅴa在| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 全区人妻精品视频| 欧美日韩乱码在线| 看片在线看免费视频| 美女午夜性视频免费| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 国产私拍福利视频在线观看| 精品欧美一区二区三区在线| ponron亚洲| 国产精品久久久久久人妻精品电影| 青草久久国产| 久久草成人影院| 亚洲精品中文字幕一二三四区| 真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 国产精品国产高清国产av| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 日韩有码中文字幕| 国产精品1区2区在线观看.| 色在线成人网| 久久久久久久精品吃奶| 黄色丝袜av网址大全| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲| 狂野欧美激情性xxxx| 特级一级黄色大片| 午夜福利在线在线| av在线天堂中文字幕| 色精品久久人妻99蜜桃| 色在线成人网| 国产黄a三级三级三级人| 日韩有码中文字幕| 欧美国产日韩亚洲一区| 午夜两性在线视频| 88av欧美| 久9热在线精品视频| 一卡2卡三卡四卡精品乱码亚洲| 国产熟女xx| av中文乱码字幕在线| 国产精品爽爽va在线观看网站| 国产精品 国内视频| 国内久久婷婷六月综合欲色啪| 久久草成人影院| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 国产成人av激情在线播放| 日韩精品中文字幕看吧| 亚洲精品久久成人aⅴ小说| 毛片女人毛片| 天堂av国产一区二区熟女人妻 | 18禁国产床啪视频网站| 在线观看免费午夜福利视频| 精品久久久久久久久久免费视频| 成人av一区二区三区在线看| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 亚洲成人久久性| 免费一级毛片在线播放高清视频| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看的高清视频| 午夜激情福利司机影院| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 亚洲男人天堂网一区| 一边摸一边抽搐一进一小说| 男女那种视频在线观看| 欧美日韩瑟瑟在线播放| 国产伦在线观看视频一区| www日本黄色视频网| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜两性在线视频| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 亚洲 欧美一区二区三区| 亚洲美女黄片视频| 在线看三级毛片| 人妻夜夜爽99麻豆av| 人成视频在线观看免费观看| 久久精品亚洲精品国产色婷小说| videosex国产| 天堂av国产一区二区熟女人妻 | 一本一本综合久久| 一边摸一边做爽爽视频免费| av视频在线观看入口| 男男h啪啪无遮挡| 亚洲av美国av| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区| www国产在线视频色| 此物有八面人人有两片| 日本一区二区免费在线视频| 我的老师免费观看完整版| 麻豆av在线久日| 亚洲国产精品合色在线| 欧美性猛交╳xxx乱大交人| 亚洲 欧美一区二区三区| 国产私拍福利视频在线观看| 国产片内射在线| 一级a爱片免费观看的视频| 免费在线观看黄色视频的| 熟女电影av网| 久久精品91无色码中文字幕| 日韩欧美在线乱码| 久久精品国产亚洲av香蕉五月| 午夜福利高清视频| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 亚洲人成网站高清观看| 亚洲 欧美 日韩 在线 免费| 黄色女人牲交| 国产伦人伦偷精品视频| 国产亚洲欧美98| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 露出奶头的视频| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 久久久久免费精品人妻一区二区| 俄罗斯特黄特色一大片| 一本综合久久免费| 制服丝袜大香蕉在线| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 国产三级黄色录像| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 午夜日韩欧美国产| 亚洲狠狠婷婷综合久久图片| 亚洲成av人片在线播放无| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 国产精品九九99| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 中文字幕久久专区| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 午夜激情av网站| 视频区欧美日本亚洲| 久久久国产成人精品二区| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 亚洲欧美精品综合久久99| 成年版毛片免费区| 国产精品一及| 亚洲欧美日韩高清专用| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| 免费看美女性在线毛片视频| 国产麻豆成人av免费视频| 香蕉久久夜色| 五月玫瑰六月丁香| www.精华液| 亚洲成人精品中文字幕电影| 一本一本综合久久| e午夜精品久久久久久久| 国产一级毛片七仙女欲春2| 国产午夜福利久久久久久| 99热这里只有是精品50| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 免费人成视频x8x8入口观看| 亚洲国产欧美网| 深夜精品福利| 成人国语在线视频| 91九色精品人成在线观看| 亚洲真实伦在线观看| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 亚洲性夜色夜夜综合| 精品久久久久久久久久免费视频| 亚洲精品久久成人aⅴ小说| 国产日本99.免费观看| 精品国产亚洲在线| 欧美在线一区亚洲| 久久久久久久久中文| 免费电影在线观看免费观看| 亚洲一区高清亚洲精品| 亚洲成人久久性| 午夜福利在线观看吧| 9191精品国产免费久久| 天堂动漫精品| 成人18禁在线播放| 99国产极品粉嫩在线观看| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 国产v大片淫在线免费观看| 不卡一级毛片| 久久亚洲真实| 久久久久免费精品人妻一区二区| 亚洲18禁久久av| 国产精品 欧美亚洲| 村上凉子中文字幕在线| 禁无遮挡网站| 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 男女做爰动态图高潮gif福利片| 国产成人一区二区三区免费视频网站| 亚洲中文字幕日韩| 大型av网站在线播放| 国产亚洲精品av在线| 老汉色av国产亚洲站长工具| 高清在线国产一区| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 岛国在线免费视频观看| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美人成| 91国产中文字幕| 国产免费男女视频| 成熟少妇高潮喷水视频| 精品少妇一区二区三区视频日本电影| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 午夜福利视频1000在线观看| 日韩免费av在线播放| 午夜激情福利司机影院| 美女大奶头视频| 国产激情久久老熟女| 黄色女人牲交| 中文字幕久久专区| 嫩草影院精品99| 搞女人的毛片| 久久精品成人免费网站| 12—13女人毛片做爰片一| 亚洲成av人片免费观看| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| www.自偷自拍.com| 久久香蕉激情| 999久久久国产精品视频| 两人在一起打扑克的视频| 午夜福利18| 校园春色视频在线观看| 岛国视频午夜一区免费看| 国产人伦9x9x在线观看| 日本 av在线| 亚洲男人的天堂狠狠| 18禁国产床啪视频网站| 久久久精品大字幕| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 国产精品九九99| 搞女人的毛片| 一本久久中文字幕| 久久欧美精品欧美久久欧美| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出| 国产精品亚洲美女久久久| 亚洲精华国产精华精| 免费在线观看影片大全网站| 欧美中文日本在线观看视频| 日韩欧美一区二区三区在线观看| 国产探花在线观看一区二区| 亚洲九九香蕉| 国产亚洲av高清不卡| 可以在线观看的亚洲视频| 嫩草影视91久久| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 青草久久国产| 黄色成人免费大全| 久久久久久久精品吃奶| 色老头精品视频在线观看| 岛国在线免费视频观看| 99国产精品一区二区三区| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 久久欧美精品欧美久久欧美| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| bbb黄色大片| 人人妻人人澡欧美一区二区| 欧美中文日本在线观看视频| av欧美777| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 日本熟妇午夜| a级毛片a级免费在线| 欧美高清成人免费视频www| 深夜精品福利| 久久国产精品人妻蜜桃| 亚洲美女视频黄频| 精品久久久久久成人av| 美女午夜性视频免费| 欧美成人免费av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 国产精品久久久av美女十八| 色噜噜av男人的天堂激情| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 日本成人三级电影网站| 免费在线观看亚洲国产| 黄色女人牲交| 亚洲av成人一区二区三| 欧美成人一区二区免费高清观看 | 精品人妻1区二区| 国产av一区在线观看免费| 午夜福利免费观看在线| 在线观看66精品国产| 午夜老司机福利片| 日韩欧美一区二区三区在线观看| 亚洲av片天天在线观看| 久久精品91无色码中文字幕| 亚洲精品在线观看二区| 天堂影院成人在线观看| 亚洲人成77777在线视频| 一级黄色大片毛片| 在线看三级毛片| 18禁国产床啪视频网站| 亚洲一区二区三区不卡视频| 青草久久国产| 亚洲全国av大片| 国产成人啪精品午夜网站| 久久久久久久午夜电影| 在线观看66精品国产| 在线观看日韩欧美| 国产男靠女视频免费网站| 国产高清videossex| 亚洲中文av在线| 亚洲avbb在线观看| 久久久久久国产a免费观看| 久久 成人 亚洲| 中亚洲国语对白在线视频| 999久久久国产精品视频| 亚洲欧美精品综合久久99| 国产真人三级小视频在线观看| 精品午夜福利视频在线观看一区| 欧美在线黄色| 久99久视频精品免费| 999精品在线视频| 国产精品久久久av美女十八| 一级作爱视频免费观看| 日韩欧美国产一区二区入口| 亚洲欧美激情综合另类| 村上凉子中文字幕在线| 香蕉久久夜色| 变态另类丝袜制服| 级片在线观看| 国产蜜桃级精品一区二区三区| 亚洲av成人精品一区久久| 亚洲国产欧洲综合997久久,| 欧美激情久久久久久爽电影| av福利片在线| 国产成+人综合+亚洲专区| 男插女下体视频免费在线播放| 美女大奶头视频| 久久久久久亚洲精品国产蜜桃av| 国内揄拍国产精品人妻在线| 精品国产乱子伦一区二区三区| 琪琪午夜伦伦电影理论片6080| 老司机福利观看| 国产精品一及| 国产又黄又爽又无遮挡在线| 亚洲中文av在线| 又黄又粗又硬又大视频| 床上黄色一级片| 国产伦一二天堂av在线观看| 国产91精品成人一区二区三区| 国产久久久一区二区三区| 国产av在哪里看| 一a级毛片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品人妻少妇| 精品无人区乱码1区二区| 久久久久国产精品人妻aⅴ院| 欧美黑人巨大hd| 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 日本三级黄在线观看| 又紧又爽又黄一区二区| 男女视频在线观看网站免费 | 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 91九色精品人成在线观看| 黄色视频不卡| 久久精品国产综合久久久| 老熟妇乱子伦视频在线观看|