• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical coherence tomography evaluation of retinal nerve fiber layer thickness in non-arteritic anterior ischemic optic neuropathy and primary open angle glaucoma: a systematic review and Meta-analysis

    2022-08-10 01:39:50YuXinTongXinYuZhangYiHeZongLinChenBingJiang
    關(guān)鍵詞:主調(diào)保稅區(qū)面源

    INTRODUCTION

    (2)定量分析結(jié)合定性分析:對(duì)定性化文獻(xiàn)資料歸整,以制度工作任務(wù)轉(zhuǎn)換為調(diào)研體系維度,通過層次分析法等確定維度權(quán)重,設(shè)置公眾角度評(píng)價(jià)問卷以量化考量看法,探究各變量間內(nèi)在關(guān)系與變化規(guī)律,尋找制度實(shí)施各項(xiàng)具體工作的滿意測(cè)度,提出優(yōu)化建議。

    Evaluation of the peripapillary retinal nerve fiber layer(pRNFL) thickness enables clinicians to assess the degree and the pattern of the damage to the RGC axons coursing toward the ONH. Multiple quantitative retinal imaging techniques comprising scanning laser polarimetry, Heidelberg retinal tomography, as well as optical coherence tomography(OCT)

    , have been utilized to measure RNFL thickness.Among them, spectral-domain optical coherence tomography(SD-OCT), which is the latest generation of OCT, provides a high-resolution and enhance-depth visualization of the retina and the ONH

    .

    7.在浦東新區(qū)的保稅區(qū)內(nèi),允許外商貿(mào)易機(jī)構(gòu)從事轉(zhuǎn)口貿(mào)易,以及為區(qū)內(nèi)外商投資企業(yè)代理本企業(yè)生產(chǎn)用原材料、零配件進(jìn)口和產(chǎn)品出口業(yè)務(wù)。對(duì)保稅區(qū)內(nèi)的主要經(jīng)營管理人員,可辦理多次出入境護(hù)照,提供出入境的方便。

    Primary open angle glaucoma (POAG) is an age-related neurodegenerative optic neuropathy characterized by the progressive deterioration of retinal ganglion cells (RGCs)and their axons

    , followed by the excavation of the optic nerve head (ONH) and impaired visual field (VF)

    . Nonarteritic anterior ischemic optic neuropathy (NAION) is a nonglaucomatous optic neuropathy that presents with the sudden painless loss of vision, optic disc edema with resolution after several weeks and optic disc pallor at the atrophic stage

    .Similar to POAG, NAION also results in the loss of RGCs and their axons. However, the pathophysiological mechanisms underlying the different ONH configuration changes in these two diseases are not completely understood

    .

    With the utilization of SD-OCT in daily routine diagnosis,several studies have demonstrated that the attenuation of average pRNFL thickness is common in NAION and glaucoma

    ,where NAION may mimic with POAG

    . However, the pattern and severity of sectoral pRNFL thickness thinning were inconsistent

    , which may help reveal the different underlying mechanisms that induce optic damage in these two ophthalmic neuropathies and help differentiate NAION from POAG in a non-invasive manner.

    Therefore, we performed this systematic review and Metaanalysis to compare the average and sectoral pRNFL thickness in patients with NAION and those with POAG with similar VF mean deviation (MD), facilitating a better understanding of the biomechanisms that lead to the different patterns of neurodegeneration.

    MATERIALS AND METHODS

    The present systematic review and Meta-analysis were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA)Statement and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines

    . Three individual investigators (Tong YX, Zhang XY, and He Y) independently conducted the literature search, qualification, data extraction,quality evaluation by Agency for Healthcare Research and Quality (AHQR) checklist, and risk of bias assessment. The present study was registered in PROSPERO (registration number: CRD42020220934).

    Literature search was conducted from inception to October, 2021 in PubMed, Cochrane Library and Embase databases. The following search terms were used:“non-arteritic anterior ischemic optic neuropathy”, “NAION”,“glaucoma”, “retinal nerve fiber layer”, “RNFL”, “optical coherence tomography”, “OCT” with no restriction. The search strategies were modified by the requirements of the different databases. Potential eligible articles were included by detailed screening of full-text versions of the literature.

    Despite no difference in average pRNFL thickness, the superior pRNFL was significantly thinner in NAION eyes(

    =0.031), whereas the inferior sector was significantly thicker(

    ≤0.001) when the MD of the VF was similar between NAION and POAG. These findings could be explained in several aspects. First, studies have reported that the inferior altitudinal VF defect was more common in NAION patients,although the VF defects tended to be less diffuse compared to POAG, while the superior hemifield loss was more commonly seen in glaucoma patients

    . Moreover, the superior altitudinal VF defects can result from the loss of inferior RNFL thickness since structural deterioration can precede VF defects in glaucoma

    . These structure-function relationship findings are in line with our findings that the superior pRNFL is significantly thinner in NAION eyes, whereas the inferior pRNFL thickness is significantly thinner in POAG eyes.Second, a longitudinal study revealed that RNFL thickness was lowest superiorly at 6mo from the onset of NAION, indicating that peripapillary structure attenuation was most severe in the superior quadrant in NAION during this period

    . Third, the loss of the neuro-retinal rim of glaucoma is shown to start from the inferior temporal to superior nasal sector

    , which may account for the different progression patterns between these two diseases. In addition, the diagnostic ability of inferior pRNFL thickness is highest in glaucoma

    . Recently, with the use of OCT angiography, a study reported a stronger correlation between inferior peripapillary capillary density and inferior pRNFL thickness in POAG patients compared with NAION patients, suggesting a higher susceptibility of inferior peripapillary capillary density that may contribute to the attenuation of inferior pRNFL in POAG

    . Another study revealed that the inferior parafoveal deep vasculature in POAG eyes was lower than that in NAION eyes, indicating that the vulnerable regions of POAG were more susceptible to optic damage

    .

    陸游在梁益生活時(shí)所寫的作品以憂怨哀傷為主調(diào),回到故鄉(xiāng)山陰追憶梁益生活時(shí)所寫作品卻以歡喜快樂為主調(diào)。其主調(diào)的矛盾沖突不免令人產(chǎn)生疑問:哪種主調(diào)更真實(shí)?陸游在梁益地區(qū)到底過著怎樣的生活?他對(duì)梁益地域的書寫有多少真實(shí)性、可欣賞性?

    Stata version 12.0 (StataCorp, Texas, USA)and Review Manager version 5.4.1 (Cochrane Collaboration,London, UK) were used for the statistical analyses. We used weighted mean difference (WMD) with a 95% confidence interval (CI) to pool the mean differences in average and sectoral pRNFL thickness between the NAION and POAG groups. A

    value <0.05 was regarded to be statistically significant. Statistical heterogeneities among different groups were measured using Cochrane’s

    test and quantified by

    .We used a fixed-effects model when

    <50%

    , indicating the heterogeneity was acceptable; otherwise, we employed a random-effects model when

    >50%. The stratified analyses were performed by the onset time of NAION and OCT device types. Egger

    ’s

    and Begg

    ’s

    tests were used to evaluate the potential publication bias. The “l(fā)eave-one-out”sensitivity analysis concerning the average and quadrant pRNFL thickness was performed to explore the sources of heterogeneity.

    The following information was extracted and summarized: title, first author, publication year, region, study type, number of patients and eyes, source of patients, time periods for identifying patients, mean age of patients, female/male ratios, types of OCT devices, episode of NAION, types of glaucoma, diagnostic criteria, average and quadrant pRNFL thickness, scan protocol and area of ONH, MD of the VF,severity of glaucoma, onset time of NAION. Disagreements were resolved by discussing among all the authors.

    Ten included cross-sectional studies were evaluated based on the AHRQ methodology checklist.

    (2)農(nóng)村面源污染和生活污水污染。農(nóng)業(yè)生產(chǎn)使用農(nóng)藥、化肥,利用率低,造成面源污染,以及生活污水均對(duì)漁業(yè)養(yǎng)殖水域造成不同程度的污染。

    11月25—26日,水利部黨組中心組舉辦黨的十八屆三中全會(huì)精神(擴(kuò)大)學(xué)習(xí)班。水利部黨組書記、部長陳雷出席會(huì)議,并以《深入貫徹落實(shí)黨的十八屆三中全會(huì)精神 在新的歷史起點(diǎn)上譜寫水利改革新篇章》為題作了動(dòng)員講話。

    Exclusion criteria were: 1) conference abstracts, reviews, case reports and animal experiments; 2) enrollment of NAION at the acute stage; 3) different diagnostic standards; 4) noninclusion of SD-OCT based evaluation of pRNFL thickness;5) studies without extractable data.

    In some studies, RNFL thickness was displayed by sixquadrant classification method, and in others the fourquadrants classification method was used. To transform the six-quadrant data to four-quadrant data (since the majority of the articles used four-quadrant classification method), we used a modified method as previously described

    .

    RESULTS

    A total of 170 studies were initially identified, of which 37 duplicates were removed. Of the remaining 133 articles, 109 were excluded after screeningthe titles and abstract: 74 did not include NAION and POAG patients; 24 were conference abstracts, case reports, or reviews;seven lacked SD-OCT-based pRNFL thickness data; and four performed animal experiments. With full-text screening,another 14 studies were removed: six included other types of glaucoma rather than POAG, four reported unextractable data, one was a case-control study, one used different diagnostic standards, one included NAION and POAG with un-matched MD of VF, and one included NAION and POAG with matched superior or inferior pRNFL thickness. Thus, 10 eligible articles were included in the qualitative analysis, and 10 studies (11 datasets) were integrated in the quantitative analysis. A flow diagram of the literature search is shown in Figure 1.

    Ten studies (11 datasets) assessing the average pRNFL thickness showed no heterogeneity (

    =0). The pooled results demonstrated that no difference in average pRNFL thickness between NAION and POAG eyes (WMD=1.45, 95%CI:-0.75 to 3.66,

    =0.196; Figure 2). However, eight studies(nine datasets) evaluating the sectoral pRNFL thickness demonstrated that the superior pRNFL thickness was significantly lower in NAION patients than in POAG patients(WMD=-6.40, 95%CI: -12.22 to -0.58,

    =0.031; Figure 3),whereas the inferior pRNFL was significantly thinner in POAG eyes (WMD=11.10, 95%CI: 7.06 to 15.14,

    ≤0.001; Figure 4).No difference in the nasal and temporal quadrants was found between NAION and POAG patients (nasal: WMD=-2.12,95%CI: -4.43 to 0.19,

    =0.072; Figure 5; temporal: WMD=-1.24, 95%CI: -3.96 to 1.47,

    =0.370; Figure 6).

    Stratified analysis according to the different types of SD-OCT(Table 4) also revealed that the inferior pRNFL was significantly thinner in POAG eyes when different SD-OCT devices were utilized (Spectralis: WMD=10.11, 95%CI: 4.69 to 15.53,

    ≤0.001; Cirrus: WMD=10.57, 95%CI: 2.94 to 18.19,

    =0.007; Optovue: WMD=15.33, 95%CI: 5.37 to 25.29,

    =0.003). The pooled results showed that the superior pRNFL was significantly thinner in NAION eyes than in POAG eyes when the Spectralis SD-OCT was used (WMD=-10.20,95%CI: -16.51 to -3.90,

    =0.002), whereas no difference was demonstrated when Cirrus and Optovue SD-OCT were used (Cirrus: WMD=-5.36, 95%CI: -12.67 to 1.94,

    =0.150;Optovue: WMD=1.27, 95%CI: -17.85 to 20.40,

    =0.896).Similarly, no difference in the average, nasal, and temporal pRNFL thickness was indicated between NAION and POAG eyes regardless of SD-OCT type.

    Ten included cross-sectional studies (11 datasets) comprising 625 eyes (278 NAION eyes, 347 POAG eyes) were published between 2016 and 2021 across different regions (Turkey, Iran,Spain, Austria, Korea, and Taiwan, China). The mean age varied from 54.1 to 68.6y in NAION patients and 53.75 to 72.3y in POAG patients. The pRNFL thickness was detected by using three types of SD-OCT devices: Spectralis, Cirrus,and Optovue. Most of the scan protocols were centered at the 3.4-3.5 mm circle around the ONH. Moreover, the MD of the VF was comparable between NAION and POAG eyes, and the majority of the included studies enrolled patients with moderate to severe POAG patients. The included studies recruited NAION patients with time from the onset of more than 3 or 6mo. The detailed characteristics are summarized in Table 1.

    The subgroup analysis regarding the onset time of NAION (Table 3) also demonstrated that the inferior pRNFL thickness was significantly lower in POAG eyes than in NAION eyes (onset time >3mo: WMD=10.89, 95%CI:3.97 to 17.82,

    =0.002; onset time >6mo: WMD=11.20,95%CI: 6.23 to 16.18,

    ≤0.001). However, in contrast to the combined pooled data, significant difference in the superior pRNFL thickness was not found between the NAION eyes and POAG eyes regardless of the onset time of NAION (onset time>3mo: WMD=-5.65, 95%CI: -11.87 to 0.57,

    =0.075; onset time >6mo: WMD=-6.55, 95%CI: -16.58 to 3.48,

    =0.201).Similarly, no difference in the average, nasal, and temporal pRNFL thicknesses was noted.

    In terms of evaluating methodological quality, the AHRQ scores of all included studies were more than 3, indicating adequate quality (Table 2).

    Results of Begg’s test and Egger’s test demonstrated no significant risk of publication bias in the average and sectoral pRNFL thickness (

    >0.05; Table 5).

    No obvious change in the results was noted after excluding each study (Figure 7), demonstrating the stability and reliability of our results. Two studies by Fard

    were found to contribute most to the heterogeneity of the superior pRNFL thickness (Table 6).

    DISCUSSION

    In the present study, we pooled the average and quadrant pRNFL thickness in NAION and POAG patients. Our data demonstrated no significant difference in the average pRNFL thickness between the NAION and POAG eyes(

    =0.196). This finding is consistent with those of previous studies

    . Currently, POAG has been reported to be associated with multiple risk factors including race,age, elevated intraocular pressure, family history, myopia,and diastolic perfusion pressure,

    . In glaucomatous neurodegeneration, the increase in intraocular pressure or imbalance of trans-laminar cribrosa pressure continuously stresses the RGCs and their supporting glia, leading to the progressive loss of RGCs and axons

    . In contrast to glaucoma, NAION is presumed to be correlated with factors that can disrupt vascular autoregulation, such as nocturnal hypotension and other predisposed conditions such as smallto-disc ratio,

    . Transient infarction of the anterior segment of the optic nerve nourished by the posterior ciliaryartery circulation also results in the deterioration of RGCs and axons

    , where NAION may mimic POAG with regard to the average pRNFL thickness.

    We included cross-sectional studies if they met the following requirements: 1) original article; 2) inclusion of NAION at the atrophic stage where optic disc swelling had to occur at least 3mo prior to the documentation and has resolved at the time of the study; 3)inclusion of both NAION and POAG with the same diagnostic standards; 4) inclusion of NAION and POAG with similar severities in terms of the MD of the VF; 5) inclusion of pRNFL thickness assessed by SD-OCT.

    To clarify the sources of heterogeneity, we performed a“l(fā)eave-one-out” sensitivity analysis. No obvious change in the average and sectoral pRNFL thickness was observed after excluding each study, demonstrating that our data were stable and reliable. However, the results indicated that the two studies by Fard

    (more deviated from the estimate line; Figure 7B) contributed to the heterogeneity mostly of the superior pRNFL thickness (

    =54.7%). Nevertheless, heterogeneity was largely reduced after excluding these two studies separately(the heterogeneity dropped from 54.1% to 9% when we excluded Fard

    ; the heterogeneity dropped from 54.1%to 8% when we excluded Fard

    ).

    The loss of pRNFL thickness is reported to reach a plateau at 6mo from the onset of NAION, and to be more correlated with VF at the atrophic stage

    . Similarly, the pRNFL decreases rapidly in early-to-moderate glaucoma, showing a “floor effect” where the pRNFL decreases relatively slower in the advanced stage

    . For this reason, we included most of the studies that enrolled POAG patients at moderate or more severe stages with comparable MD of the VF to ensure the similar severities in these diseases. However, pRNFL thickness is also shown to decrease slowly 3mo after NAION onset

    .Based on these findings, we performed a subgroup analysis attributed by the time from the onset of NAION. Our pooled results indicated a significant decrease of inferior pRNFL thickness in POAG eyes compared with that in NAION eyes,regardless of the onset time (onset time >3mo:

    =0.002; onset time >6mo:

    ≤0.001). Nevertheless, unlike the combined data of the superior pRNFL thickness (

    =9), there was no significant difference between NAION and POAG eyes (onset time >3mo,

    =0.075,

    =4; onset time >6mo,

    =0.201,

    =5).This may be due to the sources of heterogeneity introduced by Fard

    when patients were enrolled at 6mo from the onset,and the relatively small sample size of this subgroup (

    =5).

    根據(jù)商務(wù)英語專業(yè)跨境電商方向人才培養(yǎng)目標(biāo)和對(duì)行業(yè)企業(yè)的調(diào)研,在全面分析跨境電商崗位所需知識(shí)結(jié)構(gòu)和崗位技能的基礎(chǔ)上,我們提出基于職業(yè)素養(yǎng)的崗位基本能力、崗位核心能力和拓展能力構(gòu)建跨境電商方向的課程體系。

    這位來自奧地利薩爾茨堡的女賽車手是全世界速度最快的女性之一。2018年,她以車手身份出戰(zhàn)了X-Bow杯對(duì)抗賽、紐博格林24小時(shí)耐力賽等賽事。順便提一下,她的日常用車不過是一輛毫不起眼的BMW。

    In the subgroup analysis according to the SD-OCT type, the pooled results demonstrated that the inferior pRNFL thickness was significantly lower in the POAG eyes regardless of the SD-OCT type (Spectralis:

    ≤0.001; Cirrus:

    =0.007; Optovue:

    =0.003). Interestingly, in the subgroup analysis regarding the superior pRNFL thickness, a significant decrease was found in patients compared to that in POAG patients when the Spectralis SD-OCT was used (

    =0.002). However, the superior pRNFL thickness was lower in NAION than in POAG, but no significant difference was observed when Cirrus and Optovue SD-OCT were used (Cirrus:

    =0.150; Optovue:

    =0.896). One reason may be the differences in the parameters, algorithms and software in different types of SD-OCT, although all types of SD-OCT devices can provide similar diagnostic abilities to detect the typical pattern of glaucomatous pRNFL deterioration

    . In addition, since the relatively small sample size in Cirrus (

    =2) and Optovue (

    =2) groups, more studies are needed to fully assess the influence of SD-OCT types on measuring the sectoral pRNFL thickness.

    This study has several limitations despite its strengths. First,the 10 included studies were cross-sectional studies. Further longitudinal studies and studies using eight-quadrant or clock-hour classification method are needed to verify our findings. Second, the sample size in the subgroup analyses was relatively small when Cirrus and Optovue SD-OCT were used.This may have introduced difficulties in completely assessing heterogeneity due to inadequate data. Therefore, interpreting the results should be cautious. In addition, we did not perform subgroup analysis according to the severity of glaucoma because most of the studies recruited patients with moderate to severe glaucoma. Nevertheless, we only included studies that enrolled NAION and POAG patients with comparable MD of the VF, to ensure similar severities in these diseases.

    In conclusion, SD-OCT-based evaluation of pRNFL thickness reveals that the superior pRNFL was significantly lower in NAION eyes, whereas the inferior pRNFL thickness was significantly lower in POAG eyes. In the future, the application of SD-OCT in evaluating pRNFL thickness may help us better understand the different pathophysiological mechanisms between NAION and POAG, and help in differentiating these two diseases in a non-invasive manner.

    ACKNOWLEDGEMENTS

    Tong YX, Zhang XY and Jiang B:Conceptualization and design. Tong YX, Zhang XY and He Y:Literature search, data extraction, quality assessment and data analysis. Tong YX, Zhang XY, He Y, Chen ZL and Jiang B:Manuscript writing and editing. Jiang B: Supervision.

    Supported by National Natural Science Foundation of China (No.82070967; No.81770930); National Natural Science Foundation of Hunan Province Grant(No.2020jj4788); China Hunan Provincial Science and Technology Department (No.2020SK2086).

    None;

    None;

    None;

    None;

    None.

    1 Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening,diagnosis, and management: a review.

    2021;325(2):164-174.

    2 Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head.

    2020;77:100840.

    3 Weinreb RN, Khaw PT. Primary open-angle glaucoma.

    2004;363(9422):1711-1720.

    4 Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S.Glaucoma.

    2017;390(10108):2183-2193.

    5 Danesh-Meyer HV, Boland MV, Savino PJ, Miller NR, Subramanian PS, Girkin CA, Quigley HA. Optic disc morphology in open-angle glaucoma compared with anterior ischemic optic neuropathies.

    2010;51(4):2003-2010.

    6 Bajpai V, Madan S, Beri S. Arteritic anterior ischaemic optic neuropathy: an update.

    2021;31(6):2818-2827.

    7. Hayreh SS. Ischemic optic neuropathy.

    2009;28(1):34-62.

    8 Kalyani VK, Bharucha KM, Goyal N, Deshpande MM. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma.

    2021;69(5):1108-1112.

    9 Brusini P. OCT Glaucoma Staging System: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT.

    2018;32(1):113-119.

    10 Toprak I, Yaylal? V, Yildirim C. Diagnostic consistency and relation between optical coherence tomography and standard automated perimetry in primary open-angle glaucoma.

    2017;32(2):185-190.

    11 Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT).

    2017;57:46-75.

    12 Alnawaiseh M, H?mberg L, Eter N, Prokosch V. Comparison between the correlations of retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography and visual field defects in standard automated white-on-white perimetry versus pulsar perimetry.

    2017;2017:8014294.

    13 Seymeno?lu G, Ba?er E, Oztürk B. Comparison of spectral-domain optical coherence tomography and Heidelberg retina tomograph III optic nerve head parameters in glaucoma.

    2013;229(2):101-105.

    14 Vazquez LE, Bye A, Aref AA. Recent developments in the use of optical coherence tomography for glaucoma.

    2021;32(2):98-104.

    15 Pazos M, Biarnés M, Blasco-Alberto A, Dyrda A, Luque-Fernández Má, Gómez A, Mora C, Milla E, Muniesa M, Antón A, Díaz-Alemán VT. SD-OCT peripapillary nerve fibre layer and ganglion cell complex parameters in glaucoma: principal component analysis.

    2021;105(4):496-501.

    16 Hou HY, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC,Akagi T, Manalastas PIC, Weinreb RN. Macula vessel density and thickness in early primary open-angle glaucoma.

    2019;199:120-132.

    17 Shin JW, Lee JY, Lee BJ, Lim HT, Kook MS. Clinical characteristics of choroidal microvasculature dropout in normal-tension glaucoma versus nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study.

    2021;11:21391.

    18 Hondur G, Sen E, Budakoglu O. Microvascular and structural alterations in the optic nerve head of advanced primary openangle glaucoma compared with atrophic non-arteritic anterior ischemic optic neuropathy.

    2021;259(7):1945-1953.

    19 Fard MA, Fakhraee G, Ghahvechian H, Sahraian A, Moghimi S,Ritch R. Macular vascularity in ischemic optic neuropathy compared to glaucoma by projection-resolved optical coherence tomography angiography.

    2020;209:27-34.

    20 Rebolleda G, Pérez-Sarriegui A, Díez-álvarez L, De Juan V, Mu?oz-Negrete FJ. Lamina cribrosa position and Bruch’s membrane opening differences between anterior ischemic optic neuropathy and openangle glaucoma.

    2019;29(2):202-209.

    21 Lee EJ, Han JC, Park DY, Kee C. Difference in topographic pattern of prelaminar and neuroretinal rim thinning between nonarteritic anterior ischemic optic neuropathy and glaucoma.

    2019;60(7):2461-2467.

    22 Resch H, Mitsch C, Pereira I, Schwarzhans F, Wasserman L, Hommer A, Reitner A, Vass C. Optic nerve head morphology in primary openangle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography.

    2018;96(8):e1018-e1024.

    23 Mastropasqua R, Agnifili L, Borrelli E, Fasanella V, Brescia L,Di Antonio L, Mastropasqua L. Optical coherence tomography angiography of the peripapillary retina in normal-tension glaucoma and chronic nonarteritic anterior ischemic optic neuropathy.

    2018;43(6):778-784.

    24 Fard MA, Suwan, Moghimi S, Geyman LS, Chui TY, Rosen RB, Ritch R. Pattern of peripapillary capillary density loss in ischemic optic neuropathy compared to that in primary open-angle glaucoma.

    2018;13(1):e0189237.

    25 Liu CH, Wu WC, Sun MH, Kao LY, Lee YS, Chen HSL. Comparison of the retinal microvascular density between open angle glaucoma and nonarteritic anterior ischemic optic neuropathy.

    2017;58(9):3350-3356.

    26 Lee YH, Kim KN, Heo DW, Kang TS, Lee SB, Kim CS. Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy.

    2017;12(10):e0187093.

    27 Han M, Zhao C, Han QH, Xie SY, Li Y. Change of retinal nerve layer thickness in non-arteritic anterior ischemic optic neuropathy revealed by Fourier domain optical coherence tomography.

    2016;41(8):1076-1081.

    28 Fard MA, Afzali M, Abdi P, Yasseri M, Ebrahimi KB, Moghimi S.Comparison of the pattern of macular ganglion cell-inner plexiform layer defect between ischemic optic neuropathy and open-angle glaucoma.

    2016;57(3):1011-1016.

    29 Fard MA, Afzali M, Abdi P, Chen R, Yaseri M, Azaripour E, Moghimi S. Optic nerve head morphology in nonarteritic anterior ischemic optic neuropathy compared to open-angle glaucoma.

    2016;57(11):4632-4640.

    30 Han S, Jung JJ, Kim US. Differences between non-arteritic anterior ischemic optic neuropathy and open angle glaucoma with altitudinal visual field defect.

    2015;29(6):418-423.

    31 Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma.

    2011;22(2):115-123.

    32 Horowitz J, Fishelzon-Arev T, Rath EZ, Segev E, Geyer O.Comparison of optic nerve head topography findings in eyes with nonarteritic anterior ischemic optic neuropathy and eyes with glaucoma.

    2010;248(6):845-851.

    33 Saito H, Tomidokoro A, Sugimoto E, Aihara M, Tomita G, Fujie K,Wakakura M, Araie M. Optic disc topography and peripapillary retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy and open-angle glaucoma.

    2006;113(8):1340-1344.

    34 Pasol J. Neuro-ophthalmic disease and optical coherence tomography:glaucoma look-alikes.

    2011;22(2):124-132.

    35 Liberati A, Altman DG, Tetzlaff J, Mulrow C, G?tzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.

    2009;62(10):e1-e34.

    36 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group.

    2000;283(15):2008-2012.

    37 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses.

    2003;327(7414):557-560.

    38 Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test.

    1997;315(7109):629-634.

    39 Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias.

    1994;50(4):1088-1101.

    40 Tong YX, Wang TT, Zhang XY, He Y, Jiang B. Optical coherence tomography evaluation of peripapillary and macular structure changes in pre-perimetric glaucoma, early perimetric glaucoma, and ocular hypertension: a systematic review and meta-analysis.

    (

    ) 2021;8:696004.

    41 Akbari M, Abdi P, Fard MA, Afzali M, Ameri A, Yazdani-Abyaneh A,Mohammadi M, Moghimi S. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy.

    2016;36(2):141-146.

    42 Wu J, Hao J, Du Y, Cao K, Lin C, Sun R, Xie Y, Wang N. The association between myopia and primary open-angle glaucoma: a systematic review and meta-analysis.

    2021.

    43 Torabi R, Harris A, Siesky B, Zukerman R, Oddone F, Mathew S,Januleviciene I, Vercellin A. Prevalence rates and risk factors for primary open angle glaucoma in the middle east.

    2021;16(4):644-656.

    44 Siggs OM, Han XK, Qassim A, Souzeau E, Kuruvilla S, Marshall HN, Mullany S, MacKey DA, Hewitt AW, Gharahkhani P,MacGregor S, Craig JE. Association of monogenic and polygenic risk with the prevalence of open-angle glaucoma.

    2021;139(9):1023-1028.

    45 Schuster AK, Wagner FM, Pfeiffer N, Hoffmann EM. Risk factors for open-angle glaucoma and recommendations for glaucoma screening.

    2021;118(2):145-152.

    46 Liuska PJ, Harju M, Kivel? TT, Turunen JA. Prevalence of MYOC risk variants for glaucoma in different populations.

    2021;99(7):e1090-e1097.

    47 Wurster P, Harris A, Gonzalez AC, Adjei S, Verticchio Vercellin A,Mathew S, Lang M, Eikenberry J, Siesky B. Risk factors for openangle glaucoma in persons of Latin American descent.

    2020;29(3):217-225.

    48 Ren RJ, Wang NL, Zhang XJ, Cui TT, Jonas JB. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma.

    2011;249(7):1057-1063.

    49 Berry S, Lin WV, Sadaka A, Lee AG. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management.

    2017;9:23-28.

    50 Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders.

    1999;213(2):76-96.

    51 Hayreh SS, Zimmerman B. Visual field abnormalities in nonarteritic anterior ischemic optic neuropathy: their pattern and prevalence at initial examination.

    2005;123(11):1554-1562.

    52 Choi J, Cho HS, Lee CH, Kook MS. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma.

    2006;113(11):1954-1960.

    53 Gerling J, Meyer JH, Kommerell G. Visual field defects in optic neuritis and anterior ischemic optic neuropathy: distinctive features.

    1998;236(3):188-192.

    54 Traustason OI, Feldon SE, Leemaster JE, Weiner JM. Anterior ischemic optic neuropathy: classification of field defects by Octopus?automated static perimetry.

    1988;226(3):206-212.

    55 Sommer A. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.

    1991;109(1):77.

    56 Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage.

    1980;98(9):1564-1571.

    57 Contreras I, Noval S, Rebolleda G, Mu?oz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography.

    2007;114(12):2338-2344.e1.

    58 Jonas JB, Fernández MC, Stürmer J. Pattern of glaucomatous neuroretinal rim loss.

    1993;100(1):63-68.

    59 Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography.

    2009;127(12):1603-1609.

    60 Leung CKS, Cheung CYL, Weinreb RN, Qiu QL, Liu S, Li HT, Xu GH, Fan N, Huang LN, Pang CP, Lam DSC. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography.

    2009;116(7):1257-1263.e2.

    61 Chen TC, Hoguet A, Junk AK, Nouri-Mahdavi K, Radhakrishnan S,Takusagawa HL, Chen PP. Spectral-domain OCT: helping the clinician diagnose glaucoma.

    2018;125(11):1817-1827.

    猜你喜歡
    主調(diào)保稅區(qū)面源
    化肥行業(yè)綠色低碳發(fā)展成主調(diào)
    農(nóng)業(yè)面源污染的危害與治理
    澄江市農(nóng)業(yè)面源污染成因及對(duì)策
    中國民族音樂中復(fù)調(diào)性的探究
    廣西憑祥綜合保稅區(qū)簡(jiǎn)介
    基于SWAT模型的漳河流域面源污染模擬研究
    昆明綜合保稅區(qū)今年底建成
    農(nóng)業(yè)面源污染對(duì)水質(zhì)的影響及防治對(duì)策
    藝術(shù)品保稅區(qū)有待深度利用
    中國收藏(2015年12期)2015-12-16 17:53:39
    貴州省貴安綜合保稅區(qū)獲國務(wù)院批準(zhǔn)
    新西部(2015年1期)2015-07-31 18:08:27
    av在线观看视频网站免费| 99热6这里只有精品| 亚洲人成网站在线播| 日韩在线高清观看一区二区三区| 中文字幕av成人在线电影| 国产成年人精品一区二区| 亚洲高清免费不卡视频| 午夜久久久久精精品| 国产成人一区二区在线| 日韩精品青青久久久久久| 爱豆传媒免费全集在线观看| 久久久色成人| 中文字幕久久专区| 边亲边吃奶的免费视频| 国产精品三级大全| 精品无人区乱码1区二区| 国产一区有黄有色的免费视频 | 免费观看在线日韩| 长腿黑丝高跟| 少妇人妻精品综合一区二区| 99久久精品一区二区三区| 永久网站在线| 日韩大片免费观看网站 | 国产伦理片在线播放av一区| 午夜福利在线在线| 视频中文字幕在线观看| 亚洲欧美精品综合久久99| 中国美白少妇内射xxxbb| 国产爱豆传媒在线观看| 久久久久久久午夜电影| 青春草国产在线视频| 久久久久久久久中文| 边亲边吃奶的免费视频| 久久久精品欧美日韩精品| 国产中年淑女户外野战色| 成人欧美大片| 汤姆久久久久久久影院中文字幕 | 岛国在线免费视频观看| 中文字幕制服av| 不卡视频在线观看欧美| 日本午夜av视频| 免费观看人在逋| 建设人人有责人人尽责人人享有的 | 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频| 极品教师在线视频| 亚洲经典国产精华液单| 97超视频在线观看视频| 日韩亚洲欧美综合| 中文字幕av在线有码专区| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区 | 精品久久国产蜜桃| 少妇熟女欧美另类| 国产精品乱码一区二三区的特点| 热99在线观看视频| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 国产亚洲av片在线观看秒播厂 | 中文字幕av成人在线电影| 国国产精品蜜臀av免费| 麻豆av噜噜一区二区三区| 国产亚洲精品av在线| 午夜福利在线在线| 一个人观看的视频www高清免费观看| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 久久精品夜夜夜夜夜久久蜜豆| 欧美zozozo另类| 中文字幕制服av| 亚洲色图av天堂| 搡女人真爽免费视频火全软件| 久久午夜福利片| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区| 97在线视频观看| 三级毛片av免费| 人人妻人人看人人澡| 午夜福利在线在线| 我要搜黄色片| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 青春草亚洲视频在线观看| a级毛色黄片| 高清在线视频一区二区三区 | 色综合站精品国产| 亚洲成人久久爱视频| 精品人妻一区二区三区麻豆| 国产精品99久久久久久久久| 国产av码专区亚洲av| 亚洲av中文字字幕乱码综合| 好男人视频免费观看在线| 国产老妇女一区| 高清午夜精品一区二区三区| 男人舔奶头视频| www日本黄色视频网| 日韩三级伦理在线观看| 中文字幕熟女人妻在线| 欧美成人a在线观看| 日韩 亚洲 欧美在线| 亚洲国产成人一精品久久久| 大又大粗又爽又黄少妇毛片口| 欧美+日韩+精品| 成年女人看的毛片在线观看| 欧美日韩在线观看h| 久久久久久久久大av| 免费看美女性在线毛片视频| 国产片特级美女逼逼视频| 观看免费一级毛片| 日本与韩国留学比较| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 国产免费福利视频在线观看| 欧美性猛交黑人性爽| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜 | 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 纵有疾风起免费观看全集完整版 | 毛片一级片免费看久久久久| 亚洲在线观看片| 成人毛片60女人毛片免费| 高清av免费在线| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 久久亚洲精品不卡| 精品人妻熟女av久视频| 国产精品国产高清国产av| 久久久久久伊人网av| 国产精品嫩草影院av在线观看| a级一级毛片免费在线观看| 汤姆久久久久久久影院中文字幕 | 久久国内精品自在自线图片| 97超碰精品成人国产| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲在线观看片| 波多野结衣高清无吗| 久久久久久久亚洲中文字幕| 汤姆久久久久久久影院中文字幕 | 一本一本综合久久| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看| 99热6这里只有精品| 亚洲国产精品合色在线| 国产精品,欧美在线| 嫩草影院入口| 国产探花在线观看一区二区| 黄片wwwwww| 最近中文字幕高清免费大全6| 高清毛片免费看| 国产极品精品免费视频能看的| 久久久久久久午夜电影| 国产精品永久免费网站| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 久久久a久久爽久久v久久| 91久久精品电影网| 性插视频无遮挡在线免费观看| 国产免费又黄又爽又色| 亚洲真实伦在线观看| 69av精品久久久久久| 国产色爽女视频免费观看| 国产乱人视频| 成人无遮挡网站| 免费人成在线观看视频色| 日本五十路高清| 91久久精品国产一区二区成人| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 亚洲五月天丁香| 一级毛片aaaaaa免费看小| 2021天堂中文幕一二区在线观| 最近中文字幕高清免费大全6| 国产又黄又爽又无遮挡在线| 国产精品无大码| 丰满少妇做爰视频| 国产精品人妻久久久久久| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲丝袜综合中文字幕| 婷婷六月久久综合丁香| 国产精品国产三级国产专区5o | 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 最近视频中文字幕2019在线8| 成年av动漫网址| 成人毛片a级毛片在线播放| 免费大片18禁| 青春草视频在线免费观看| 国产一区二区三区av在线| 久久久久九九精品影院| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲内射少妇av| 中文字幕制服av| 1000部很黄的大片| 69人妻影院| 老女人水多毛片| 天天一区二区日本电影三级| 国产精品无大码| 免费搜索国产男女视频| 色5月婷婷丁香| 国产精品,欧美在线| 桃色一区二区三区在线观看| 国产高潮美女av| 久久精品久久精品一区二区三区| 联通29元200g的流量卡| 精品一区二区免费观看| 一级av片app| 亚洲第一区二区三区不卡| 色综合站精品国产| 天堂影院成人在线观看| 少妇丰满av| 精品人妻熟女av久视频| av.在线天堂| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 亚洲精品色激情综合| 干丝袜人妻中文字幕| 久久精品91蜜桃| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 欧美日韩在线观看h| 久久久色成人| 欧美区成人在线视频| av在线天堂中文字幕| av在线老鸭窝| 日本wwww免费看| 热99re8久久精品国产| 精品国产一区二区三区久久久樱花 | 人妻少妇偷人精品九色| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 亚洲国产精品合色在线| 青青草视频在线视频观看| 黄色欧美视频在线观看| 丰满人妻一区二区三区视频av| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 国产精品日韩av在线免费观看| av线在线观看网站| av免费观看日本| 亚洲欧美一区二区三区国产| 欧美最新免费一区二区三区| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 哪个播放器可以免费观看大片| 亚洲国产色片| 欧美最新免费一区二区三区| 国产免费视频播放在线视频 | 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 高清视频免费观看一区二区 | 少妇人妻精品综合一区二区| ponron亚洲| 性色avwww在线观看| 亚洲在久久综合| 久久久久久久午夜电影| 久久精品熟女亚洲av麻豆精品 | 亚洲欧洲日产国产| 真实男女啪啪啪动态图| 七月丁香在线播放| 国产91av在线免费观看| 亚洲精品日韩av片在线观看| 超碰97精品在线观看| 成人毛片a级毛片在线播放| 亚洲va在线va天堂va国产| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 国产色婷婷99| 日韩三级伦理在线观看| av在线老鸭窝| 日韩欧美三级三区| videos熟女内射| av免费观看日本| 国产乱来视频区| 成人毛片a级毛片在线播放| 嫩草影院新地址| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 日韩一区二区视频免费看| 国产精品一及| 国产乱人偷精品视频| eeuss影院久久| 人妻系列 视频| 1000部很黄的大片| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 亚洲综合精品二区| 中文亚洲av片在线观看爽| 毛片一级片免费看久久久久| 国内精品一区二区在线观看| 69人妻影院| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 日韩视频在线欧美| 国产精品人妻久久久影院| 亚洲图色成人| 亚洲欧美成人综合另类久久久 | 国产成人91sexporn| 特大巨黑吊av在线直播| 哪个播放器可以免费观看大片| 久久久久性生活片| 日日啪夜夜撸| 日韩一区二区三区影片| 国产三级在线视频| 成人二区视频| 深夜a级毛片| 韩国av在线不卡| 天天躁夜夜躁狠狠久久av| 欧美色视频一区免费| 亚洲中文字幕日韩| 2021少妇久久久久久久久久久| 九九在线视频观看精品| 午夜免费激情av| 亚洲成色77777| 两个人视频免费观看高清| 国产精品99久久久久久久久| 免费观看性生交大片5| 欧美+日韩+精品| 一级二级三级毛片免费看| 久久久久久久久中文| 色哟哟·www| 国产免费又黄又爽又色| 九色成人免费人妻av| 亚洲在线观看片| 亚洲精品色激情综合| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 成人欧美大片| or卡值多少钱| 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 国产又色又爽无遮挡免| 嫩草影院精品99| 看片在线看免费视频| 男女边吃奶边做爰视频| 国产在线男女| 18禁在线播放成人免费| 欧美人与善性xxx| 中国国产av一级| 小蜜桃在线观看免费完整版高清| 我要看日韩黄色一级片| 特级一级黄色大片| 深爱激情五月婷婷| 国产免费男女视频| 一二三四中文在线观看免费高清| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| 精品酒店卫生间| 国产免费视频播放在线视频 | 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 精品国产三级普通话版| 亚洲精品一区蜜桃| 免费电影在线观看免费观看| 一级爰片在线观看| 亚洲内射少妇av| 秋霞伦理黄片| 国产精品精品国产色婷婷| 色5月婷婷丁香| 视频中文字幕在线观看| 白带黄色成豆腐渣| 欧美成人一区二区免费高清观看| 熟女电影av网| 在线免费十八禁| 22中文网久久字幕| 午夜激情福利司机影院| 久久99精品国语久久久| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| 国产成人91sexporn| 老女人水多毛片| 亚洲国产欧洲综合997久久,| 少妇的逼水好多| 国产精品精品国产色婷婷| 欧美人与善性xxx| 国产高清有码在线观看视频| 久久久久久久久久久免费av| 能在线免费看毛片的网站| 国产精品久久久久久久电影| 精品一区二区三区视频在线| 亚洲精品久久久久久婷婷小说 | 22中文网久久字幕| 韩国高清视频一区二区三区| 色噜噜av男人的天堂激情| 久久精品国产亚洲av天美| 高清日韩中文字幕在线| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜 | 日韩一区二区三区影片| 国产一区二区在线观看日韩| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 在现免费观看毛片| 高清午夜精品一区二区三区| 人妻少妇偷人精品九色| 中文天堂在线官网| 国产精华一区二区三区| 精品国产一区二区三区久久久樱花 | 午夜久久久久精精品| 亚洲18禁久久av| a级一级毛片免费在线观看| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 九九在线视频观看精品| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 极品教师在线视频| 国产精品,欧美在线| 成人一区二区视频在线观看| 免费大片18禁| 国产高清不卡午夜福利| 成人av在线播放网站| 亚洲精品日韩在线中文字幕| 久热久热在线精品观看| 亚洲伊人久久精品综合 | 日韩精品有码人妻一区| 国产又黄又爽又无遮挡在线| 欧美一区二区国产精品久久精品| 亚洲,欧美,日韩| 国产免费视频播放在线视频 | 五月玫瑰六月丁香| 久久久久久久久中文| 日本爱情动作片www.在线观看| 精品久久久久久久末码| 你懂的网址亚洲精品在线观看 | 97人妻精品一区二区三区麻豆| 精品久久久久久成人av| 亚洲av福利一区| 午夜视频国产福利| 嫩草影院新地址| 国产精品99久久久久久久久| 嫩草影院精品99| 国产伦精品一区二区三区四那| 九九久久精品国产亚洲av麻豆| 亚洲一区高清亚洲精品| 国产免费一级a男人的天堂| 岛国在线免费视频观看| 亚洲精华国产精华液的使用体验| 亚洲av成人av| 又爽又黄a免费视频| 成人国产麻豆网| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 小说图片视频综合网站| 成人午夜高清在线视频| av在线亚洲专区| 七月丁香在线播放| 亚洲精品一区蜜桃| 国产不卡一卡二| 晚上一个人看的免费电影| 少妇人妻一区二区三区视频| 99热全是精品| 久久久亚洲精品成人影院| 欧美色视频一区免费| 天堂中文最新版在线下载 | 亚洲av中文字字幕乱码综合| 中文字幕熟女人妻在线| 波野结衣二区三区在线| 亚洲国产精品成人久久小说| 国产午夜精品久久久久久一区二区三区| 国产精品蜜桃在线观看| 亚洲国产欧美在线一区| 亚洲无线观看免费| 一级毛片我不卡| 男女啪啪激烈高潮av片| 18禁动态无遮挡网站| 日韩大片免费观看网站 | 欧美精品国产亚洲| 色5月婷婷丁香| 丰满少妇做爰视频| 欧美又色又爽又黄视频| 九九爱精品视频在线观看| 99在线人妻在线中文字幕| 亚洲性久久影院| 久久午夜福利片| 日韩av不卡免费在线播放| 欧美另类亚洲清纯唯美| 国产亚洲91精品色在线| 日本熟妇午夜| 日韩亚洲欧美综合| 97人妻精品一区二区三区麻豆| 久久久a久久爽久久v久久| 舔av片在线| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美精品综合久久99| 国产一区亚洲一区在线观看| 可以在线观看毛片的网站| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 成人鲁丝片一二三区免费| 美女黄网站色视频| 欧美日本视频| 国产在视频线精品| 久久99蜜桃精品久久| 99热这里只有精品一区| 国产一区二区亚洲精品在线观看| 免费无遮挡裸体视频| 精品一区二区三区视频在线| 黄片wwwwww| 免费人成在线观看视频色| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 久久久久久久国产电影| 国国产精品蜜臀av免费| 国产精品一区二区在线观看99 | 亚洲av不卡在线观看| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 国产老妇伦熟女老妇高清| 美女大奶头视频| 亚洲三级黄色毛片| 狠狠狠狠99中文字幕| 欧美精品一区二区大全| 高清毛片免费看| 久久精品影院6| 久久久久久久久中文| 18禁在线播放成人免费| 99久久九九国产精品国产免费| 最近手机中文字幕大全| 91aial.com中文字幕在线观看| 一级爰片在线观看| 狠狠狠狠99中文字幕| 欧美精品一区二区大全| 亚洲国产精品久久男人天堂| 国产精品日韩av在线免费观看| 黄色日韩在线| 非洲黑人性xxxx精品又粗又长| 日日撸夜夜添| 中文资源天堂在线| 日本欧美国产在线视频| 精品久久久久久久久亚洲| 亚洲三级黄色毛片| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 亚洲天堂国产精品一区在线| 日本免费a在线| 国产免费福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久午夜电影| 欧美区成人在线视频| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 岛国毛片在线播放| 国产人妻一区二区三区在| 亚洲怡红院男人天堂| 中文资源天堂在线| 日韩亚洲欧美综合| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美在线乱码| 午夜免费激情av| www日本黄色视频网| 精品久久久久久久人妻蜜臀av| 午夜老司机福利剧场| 久久99蜜桃精品久久| 啦啦啦观看免费观看视频高清| 一个人观看的视频www高清免费观看| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文av极速乱| 男女那种视频在线观看| 女人十人毛片免费观看3o分钟| 午夜福利高清视频| 乱码一卡2卡4卡精品| 69人妻影院| 国产三级中文精品| 国产亚洲av片在线观看秒播厂 | 99久国产av精品国产电影| 少妇被粗大猛烈的视频| 国产成人午夜福利电影在线观看| 亚洲最大成人手机在线| 日韩中字成人| 亚洲人成网站在线观看播放| 免费观看的影片在线观看| 久久精品久久久久久噜噜老黄 | 好男人视频免费观看在线| 黄片无遮挡物在线观看|