• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic and valley-resolved beamsplitter based on a tilted Dirac system

    2022-08-02 03:01:40XixuanZhouJianlongZheng鄭建龍andFengZhai
    Communications in Theoretical Physics 2022年7期

    Xixuan Zhou, Jianlong Zheng (鄭建龍)and Feng Zhai

    Abstract We investigate theoretically valley-resolved lateral shift of electrons traversing an n–p–n junction bulit on a typical tilted Dirac system (8-Pmmn borophene).A gauge-invariant formula on Goos–H?nchen (GH) shift of transmitted beams is derived, which holds for any anisotropic isoenergy surface.The tilt term brings valley dependence of relative position between the isoenergy surface in n region and that in the p region.Consequently,valley double refraction can occur at the n–p interface.The exiting positions of two valley-polarized beams depend on the incident angle and energy of incident beam and barrier parameters.Their spatial distance D can be enhanced to be ten to a hundred times larger than the barrier width.Due to tilting-induced high anisotropy of the isoenergy surface, D depends strongly on the barrier orientation.It is always zero when the junction is along the tilt direction of Dirac cones.Thus GH effect of transmitted beams in tilted Dirac systems can be utilized to design anisotropic and valleyresolved beam-splitter.

    Keywords: Goos–H?nchen shift, anisotropic isoenergy surface, 8-Pmmn borophene, valley double refraction

    1.Introduction

    The common wave nature of light and electrons makes it possible to manipulate electrons by means of components inspired by geometrical optics [1–19].For ballistic electrons traversing a boundary separating two uniform regions with different potentials, reflection and refraction happen in analogy to a light beam incident on an interface between materials with different optical indices.Both positive and negative refraction have been observed [14] experimentally in graphene junctions.It is well known that a totally reflected beam of light undergoes a lateral displacement relative to the incident point.This phenomenon is referred to as Goos–H?nchen(GH)shift[20]and has been generalized to partial reflections and also transmitted beams[3].The GH effect in graphene p–n–p junctions has been predicted to result in an 8e2/h conductance plateau [8].The GH shifts of transmitted electron beams have been utilized to design a spin beam splitter [6]based on a two-dimensional(2D)electron gas or valley beam splitter [11] based on strained graphene.There are extensive studies on the GH shift of electrons in materials with an isotropic Fermi surface, especially in Dirac materials with linear dispersion.Very recently,Ghadiri and Saffarzadeh[19]have calculated the GH shift of transmitted electrons on the surface of a topological insulator with a potential barrier and a warped Fermi surface.Their derivation on the GH shift is made only for a special barrier orientation which is straightforward but cumbersome.A general formula and numerical approach are necessary for the GH shift of electrons on an anisotropic Fermi surface.

    Materials with a gapless dispersion and anisotropic Fermi surface are similar to anisotropic optical medium.Among these materials tilted Dirac systems have attracted great research interest.Tilted Dirac cones can appear in 8-Pmmn borophene[21, 22], organic conductor α -(BEDT-TTF)2I3[23, 24], quinoid-type or partially hydrogenated graphene [25, 26], and 1T′monolayer transition metal dichalcogenides [27, 28].Among them, the organic 2D conductor α-(BEDT-TTF)2I3has been experimentally verified to host a pair of tilted and anisotropic Dirac cones.Some unusual electronic and transport properties caused by the tilt of the Dirac cone have been demonstrated theoretically, such as strongly anisotropic plasmon [29] and optical conductivities[30],unique intervalley damping effect in magnetoplasmons[31],valley-dependent Weiss oscillation[32],nearly perfect valley polarization induced by a single ferromagnetic gate [33], and light-driven metal–insulator transition[34,35].Electron optics based on tilted Dirac systems has been discussed in several works [33, 36, 37] which concern valleydependent electron retroreflection, oblique Klein tunneling,generalized Klein tunneling, and Veselago focusing.The GH shift in tilted Dirac systems has not been studied so far.In this work,we take 8-Pmmn borophene as an example to investigate the GH shift of electrons on an anisotropic Fermi surface.

    2.Model and formalism

    The 2D electron system in 8-Pmmn borophene under consideration is depicted in figure 1, which is modulated by an electric potential U(r) (yellow-shadowed region) due to a metallic gate on top.The electric potential in the borophene plane(XOY)varies only along the x axis and vanishes outside the region 0 <x <W.The X axis is perpendicular to the σvmirror in pristine 8-Pmmn borophene.The angle between these two directions is denoted as α (0 ≤α ≤π/2).The motion of an electron in a given valley τ can be described by the low-energy effective Hamiltonian [22, 32, 37]

    Figure 1.Schematic of the considered device.The electric potential varies only along the x axis and vanishes outside the shadowed region.The x axis has angle α to a symmetry axis X of pristine 8-Pmmn borophene.

    Here τ=±1 stands for the kDand-kDvalleys, σX, σYtogether with σZare three Pauli matrices, σ0is a unit matrix,and= -i??is the momentum operator.Hereafter the velocity, length and energy are, respectively, in units of vF=106m s-1, L0=50 nm and E0=?vF/L0=13.2 meV.Without specification,the three velocity parameters vX,vYand vtin units of vFare taken,respectively,as[22]0.86,0.69,and 0.32.For some 2D organic conductors [23, 24] or graphenetype materials [25, 26] with two degenerate and tilted Dirac cones,the low-lying excitations near Dirac points can be also described by the Hamiltonian equation (1).

    2.1.Scattering states

    Here Cj1and Cj2are underdetermined coefficients, the function P=P(k;q) and Q=Q(k;q) are defined as

    and the wave vectors kj1and kj2are two solutions of the quadratic equation (with unkown k)

    2.2.GH shift of outgoing beams

    Consider a wavepacket consisting of incident electrons in valley τ with the same energy E but different transverse wave vector q

    For the numerator

    the integral over y is given by

    Using the identity

    we get

    Here we have removed the term

    which is purely imaginary.A similar calculation leads to

    The GH shift is defined as the difference in the transverse position between the outgoing beam (at the interface with abscissa x >W(wǎng))and the incident beam(at the interface x=0)

    3.Results and discussions

    For simplicity, we consider the electric potential with a rectangular shape [see figure 2(a)], i.e.U(x)=UΘ(x)Θ(W-x)with Θ(x) the Heaviside step function and U >0 the barrier height.For an energy E >0 and barrier orientation α=15°,the isoenergy line in the lead region for electrons in valley τ is plotted in figure 2(b),which is an ellipse centered at the point with pX=0 andHere pXand pYare(dimensionless) momentum components along the X and Y axis depicted in figure 1.The ellipse equation is given by equation (7) and denoted as fτ(k, q;E)=0.Note that f-1(k,q;E)=f1(-k, -q;E).The major and minor axis of the ellipse is along the pYand pXaxis and have lengthandOne can see from equation (9) that the incident direction is perpendicular to the tangent of the isoenergy line in the (k, q) plane.As an example,in figure 2(b)we show a positive incident angle φc2for electrons in valley τ=-1.Note that electrons in two valleys with the same incident angle φ have different transverse wave vectors q±.The isoenergy surfaces in the barrier region are given by fτ(k, q;E-U)=0, which are similar to those in the lead region with a scaling factor|E-U|/E.In the case E <U, the ellipse f-1(k, q;E-U)=0 is below the ellipse f1(k, q;E-U)=0, as shown in figure 2(b).In the (k,q) plane a horizontal (dashed) line q=q0represents the conserved transverse wave vector.When it intersects with both the ellipse fτ(k, q;E)=0 and fτ(k, q;E-U)=0,refraction occurs at interface x=0 for an incident electron in valley τ.The sector of allowed q0depends on the topmost and bottommost points of the two ellipses.For 0 <2E <U the critical values qc1and qc2together with the critical angle φc2are depicted in figure 2(b) for valley τ=-1.In this case, a valley-unpolarized beam with incident angle φ ∈(-φc2,φc2)will split in the barrier region.The two refracted beams with valley index τ=±1 propagate at different angles φ±, as depicted in figure 2(c).The refracted angles can be determined from the ellipse fτ(k, q, E-U)=0.The existing position of refracted beam τ at the interface x=W is given by the GH shift sτ=sGH(qτ;x=W), which usually differs from=Wtanφτpredicted by the geometric ray.

    Figure 2.(a) Rectangular potential barrier with height U and width W.(b) Isoenergy lines (for an energy E >0) of electrons in valley τ=1 (blue lines) and τ=-1 (red lines) in the lead and in the barrier.(c) Representation of valley-dependent refraction angle φ±and GH shift s±.

    For the barrier orientation α=0, such a lengthy expression can be simplified as

    In figure 3 we plot the valley-resolved transmission probability Tτ=|tτ|2and GH shift sτat the interface x=W as functions of the barrier width W under a fixed incident angle φ and energy E.The barrier height and orientation are fixed at U=4 and α=0.Four typical cases are considered and discussed as follows.

    The case of normal incidence(φ=0)is presented for E=1(an n–p–n junction) in figure 3(a), where positive/negative refraction (see blue lines) happens in the barrier region for electrons in valley τ=+1/-1.Obviously, this observation violates Snell’s law.The reason is that the anisotropy of the isoenergy line results in an orientation deviation between the momentum and group velocity.For α=0, the isoenergy lines for the two valleys are symmetric about the horizontal k axis.Therefore,the transverse wave vectors q±and refraction angles φ±satisfy q-=-q+and φ-=-φ+.One can also observe that the transmission probability for two valleys coincides.Actually,due to the fact that the inversion operator transforms the Hamiltonianintothe transmission coeffciient satisfies a general relation

    Since q-=-q+, this relation leads to T-1=T+1and s-1=-s+1, as seen in figure 3(a).The oscillation of transmission probability with the width W arises from the Fabry–Perot interference.The GH shift sτoscillates around the classical valuewith a small amplitude.

    In figure 3(b), the incident angle and energy are chosen as φ=60°and E=1 so that φ is close to the critical angle φc2depicted in figure 2(b) (but for α=0).The two refraction angles are φ+=13°and φ+=-60°.In the barrier region,the longitudinal wave vector for valley τ=+1 is much larger than that for valley τ=-1.Consequently, the Fabry–Perot oscillation for valley τ=-1 has a longer period and larger peak-to-trough ratio than that for valley τ=+1.The wave effect on GH shift is weak for valley τ=+1 but drastic for valley τ=-1.At the first(second)resonant peaks of T-1,the amplitude of GH shift s-1exceeds 48(96),which is 20 times larger than the corresponding barrier width.As demonstrated in[11],the GH shift at a resonant peak increases quickly with the peak-to-trough ratio.When the energy E turns from 1 to 1.1, the critical angle φc2is much close to φ=60° so that|s-1|can exceed 800 >100W.Near these resonant peaks,the valley spatial separation D=|s+1-s-1| is much larger than the counterpart

    Figure 3.Transmission T±1 (in black) and GH shift s±1 (in red) at the existing position as functions of barrier width W for electrons in valley τ=1 (solid lines) and τ=-1 (dashed lines).The blue lines representcorresponding refracted beam exists.The barrier height and orientation are U=4 and α=0.The incident energy E and incident angle are (a) E=1, φ=0;(b) E=1, φ=60°;(c)E=1.2, φ=60°;and (d) E = -1, φ=60°.

    Once the critical angle φc2is smaller than the incident angle φ,the refracted beam for valley τ=-1 vanishes.Such a case is presented in figure 3(c) with φ=60° and E=1.2.One can see that the transmission T-1and GH shift s-1decays quickly with the barrier width.The corresponding transmitted beam is difficult to detect.The refracted beam for valley τ=-1 remains.In comparison with the case of normal incidence, the oscillation ofwith the width W i s more remarkable due to the larger peak-to-trough ratio in the transmission T+1.Accordingly, the polarity of s+1alternates with W.One can see offsets between peaks of T+1and s+1,which are absent in strained graphene [11].

    In the case E <0 <U (a p–p′–p junction), the isoenergy line fτ(k,q;E)=0 is enclosed in the ellipse fτ(k,q;E-U)=0 so that the valley double refraction happens for all incident angles.For E=-1 , the refracted beams for φ=60° are shown as blue lines in figure 3(d), whose orientation angles 25.4° and-7.66° are close to their limits (26.3° and-7.03°)under φ—90°.Now bothandoscillate rapidly with W.The two oscillations have close periods and amplitudes.The valley separation D can vary from 0 to a value higher than 2Dcl.

    Hereafter we consider only the n–p–n junction with barrier width W=3 and barrier height U=4.We plot in figures 4 and 5 the variation of transmission T±1and GH shift s±1with the incident angle φ.For the barrier orientation α=0, the transmission (GH shift) for electrons in valley τ=+1 and that for electrons in valley τ=-1 are symmetric(antisymmetric) about the incident angle φ=0, as shown in figure 4.This feature results from equation (29).It is absent for other barrier orientations (see figure 5 for α=45°).For a given valley, in all cases the angular distribution of transmission (GH shift) is not symmetric (antisymmetric) about φ=0.There are several angles where the transmission Tτis perfect.For a resonant peak of Tτ,when its left/right(nearest)transmission minimum is lower than the right/left one, the corresponding maximum of |sτ| locates on its left/right side.The highest|sτ|depends on the incident energy E and barrier orientation α.For E ≤U/2 (such as E=1), the transmission T-τis remarkable near the angle with the largest|sτ|,enabling beam splitting with a large valley spatial separation.In contrast, For E >U/2 (such as E=3), the angular sector with large transmission T-τdoes not overlap with that with large Tτ(or |sτ|), allowing valley filtering of incident beams.For E=U/2 and α=0, both T-1and T+1reach 1 at φ=0.The valley spatial separation in this case is almost twice the largest|s±1|.For E=1 (E=2 and E=3), the largest |sτ| for all incident angles under α=45° is near half (twice) of that under α=0.One can understand these features from the isoenergy surfaces as the way in figure 2(b).

    Figure 4.Transmission T±1 (in black) and GH shift s±1 (in red) as functions of incident angle φ for electrons in valley τ=1 (solid lines) and τ=-1 (dashed lines).The barrier height and width are U=4 and W=3.We take α=0 and set E=1 (a), 2(b), and 3(c).

    Figure 5.Same as figure 4, but for the barrier orientation α=45°.

    Since isoenergy lines depcited in figure 2(b) are high anisotropic,one can expect that the valley spatial separation D depends strongly on the barrier orientation α.In figure 6 we plot the transmission and GH shift as functions of α for a fixed energy E=1.For the transport along the tilted direction of the Dirac cone (α=90°), the product of σzand conjugation K transforms the Hamiltonian H+1into H-1, which leads to t-1(E,q)=t+1(E,q).As a result,the transmission and GH shift are valley-independent at α=90°.In the case of normal incidence (figure 6(a)), as α increases from 0° to 90°, the transmission T±1>0.6 is noticeable.The valley separation D moves up firstly to its global maximum ≈5(at α ≈29.8°)and then decreases oscillatingly to zero.At the fixed incident angle φ=60° (figure 6(b)), there are several values of α where T-1approaches 1 and T+1is remarkable.The valley separation D has a maximum ≈39 at α ≈32.3° near the first peak of T-1.

    Figure 6.Transmission T±1 (in black) and GH shift s±1 (in red) as functions of barrier orientation α for electrons in valley τ=1(solid lines) and τ=-1 (dashed lines).The barrier height and width are U=4 and W=3.We take E=1 and set φ at 0 in(a)and 60°in(b).

    Figure 7.Transmission T±1 (in black) and GH shift s±1 (in red) as functions of tilt velocity vt for electrons in valley τ=1 (solid lines)and τ=-1(dashed lines).The barrier height,width,and orientation are U=4,W=3,and α=0.We take E=1 and set φ at 0 in(a)and 60° in (b).

    The tilt term in equation (1) is essential for the valley spatial separation of transmitted beams.In figure 7 we plot the transmission and GH shift as functions of tilt velocity vtfor the barrier orientation α=0 and a fixed energy E=1.In the case vt=0, one has T+1=T-1and s+1=s-1for all incidences.At normal incidence (figure 7(a)), when vtincreases from 0 to 0.35 the transmission T±1varies slightly while the valley separation D increases gradually from 0 to 4.9.The valley separation D exceeds 77 (16) at large vt≈0.51 (0.46).As for the incident angle φ=60° (figure 7(b)), the transmission T-1has two sharp peaks located at vt≈0.27 and 0.34 where the valley separation D is larger than 27 and 150.

    4.Conclusions

    In summary,we have derived a general expression for the GH shift of transmitted beams.The formula is independent of the phase choice of incident states and applies for any anisotropic isoenergy surface.We take 8-Pmmn borophene as an example to demonstrate valley beam-splitter based on tilted Dirac systems.The tilt term leads to valley-dependent isoenergy surfaces.Valley double refraction can happen at the n–p interface because the relative position between isoenergy surfaces in the lead and in the barrier region depends on the valley index.A valley-unpolarized beam traversing a potential barrier may split into two valley-polarized beams.When the refracted angle for one valley is close to its critical value,it is shown that the valley spatial separation D of transmitted beams can be ten to a hundred times larger than the barrier width.The high anisotropy of the isoenergy surface leads to a drastic variation of D with the barrier orientation α.D is always zero when the barrier is along the tilted direction(α=90°) and usually reaches a maximum at α ≠0 for a given incident angle and energy.It is also shown that D can be enhanced by the tilt velocity.The remarkable GH shift of valley-polarized beams can be measured by the transverse magnetic focusing technique as in [14].

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.11774314).

    ORCID iDs

    最新中文字幕久久久久| 我要搜黄色片| 国产精品一区二区三区四区久久| 国产一区二区激情短视频| 欧美性猛交黑人性爽| 日本a在线网址| 国内精品久久久久久久电影| 91在线观看av| 国产精品无大码| 国产精品一及| 香蕉av资源在线| 香蕉av资源在线| 88av欧美| 嫩草影院精品99| 我要看日韩黄色一级片| 免费大片18禁| 一本久久中文字幕| 午夜免费激情av| 国产黄a三级三级三级人| 亚洲国产精品久久男人天堂| 嫩草影院精品99| 色综合站精品国产| 我要看日韩黄色一级片| 色吧在线观看| 天堂√8在线中文| 亚洲专区国产一区二区| 高清在线国产一区| 免费观看的影片在线观看| 日本爱情动作片www.在线观看 | 99热精品在线国产| 成人精品一区二区免费| 国产免费男女视频| 三级国产精品欧美在线观看| 午夜福利欧美成人| 亚洲av熟女| 国产精品伦人一区二区| 看十八女毛片水多多多| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 国产av一区在线观看免费| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| 最近中文字幕高清免费大全6 | 我的老师免费观看完整版| 丰满人妻一区二区三区视频av| 深爱激情五月婷婷| 亚洲七黄色美女视频| 亚洲第一电影网av| 精品99又大又爽又粗少妇毛片 | h日本视频在线播放| 国产探花极品一区二区| 在线观看免费视频日本深夜| 亚洲av中文av极速乱 | 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区| 欧美高清性xxxxhd video| 99热精品在线国产| 欧美不卡视频在线免费观看| 亚洲色图av天堂| 国产黄片美女视频| 久久精品91蜜桃| 亚洲av中文av极速乱 | 欧美成人性av电影在线观看| 我要看日韩黄色一级片| 乱人视频在线观看| 超碰av人人做人人爽久久| 色播亚洲综合网| 亚洲欧美日韩高清专用| 久久草成人影院| 99久久成人亚洲精品观看| av福利片在线观看| 精品午夜福利在线看| 亚洲四区av| 亚洲在线观看片| 午夜福利在线观看免费完整高清在 | 亚洲av熟女| 99热这里只有精品一区| 一区二区三区激情视频| 国产一区二区激情短视频| 亚洲人与动物交配视频| 国产午夜精品论理片| 欧美日本亚洲视频在线播放| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 国产三级中文精品| 亚洲av一区综合| 成人鲁丝片一二三区免费| 亚洲欧美日韩东京热| 欧美bdsm另类| 男插女下体视频免费在线播放| av在线老鸭窝| 国产精品一区二区性色av| 精品久久久久久久久av| 简卡轻食公司| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 亚洲av免费高清在线观看| 联通29元200g的流量卡| 国产三级在线视频| 国产精品久久久久久av不卡| 啦啦啦观看免费观看视频高清| 国内精品美女久久久久久| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 亚洲国产欧美人成| 免费看日本二区| 精品福利观看| 国产av不卡久久| 能在线免费观看的黄片| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 色精品久久人妻99蜜桃| 真人做人爱边吃奶动态| 国产真实伦视频高清在线观看 | 免费观看在线日韩| 精品久久久久久久久av| 国产亚洲欧美98| 搞女人的毛片| 日日撸夜夜添| 亚洲人与动物交配视频| 婷婷亚洲欧美| 长腿黑丝高跟| 老司机午夜福利在线观看视频| h日本视频在线播放| 亚州av有码| 日韩 亚洲 欧美在线| 韩国av一区二区三区四区| 亚洲国产精品sss在线观看| 一级毛片久久久久久久久女| 高清在线国产一区| 成人国产一区最新在线观看| 欧美一区二区亚洲| 在线播放国产精品三级| 亚洲 国产 在线| 欧美性感艳星| 国产aⅴ精品一区二区三区波| 国产精品一区二区性色av| 露出奶头的视频| 久久久久性生活片| 啦啦啦观看免费观看视频高清| 老司机深夜福利视频在线观看| 免费观看的影片在线观看| 十八禁国产超污无遮挡网站| 亚洲中文字幕日韩| 色吧在线观看| 午夜福利视频1000在线观看| 乱码一卡2卡4卡精品| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 少妇的逼好多水| 国产精品99久久久久久久久| 亚洲欧美日韩无卡精品| 欧美日韩乱码在线| 在线免费观看不下载黄p国产 | 亚洲美女视频黄频| 女人十人毛片免费观看3o分钟| 桃红色精品国产亚洲av| 免费观看精品视频网站| 久久久久久九九精品二区国产| 久久精品综合一区二区三区| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 黄色日韩在线| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 中文字幕精品亚洲无线码一区| 国产精品电影一区二区三区| 国产探花极品一区二区| 一区二区三区高清视频在线| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 日本爱情动作片www.在线观看 | 久久精品国产亚洲网站| 国产精品永久免费网站| 国产成人a区在线观看| 欧美成人性av电影在线观看| 亚洲国产色片| 色av中文字幕| 午夜日韩欧美国产| 国内精品美女久久久久久| 99热只有精品国产| 一本久久中文字幕| 亚洲欧美日韩东京热| 亚州av有码| 美女高潮的动态| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 99久国产av精品| 国产精品久久久久久久电影| 69人妻影院| 久久人妻av系列| 精品人妻1区二区| 97热精品久久久久久| 国产av麻豆久久久久久久| 日本色播在线视频| 麻豆成人午夜福利视频| 国产乱人伦免费视频| 国产av不卡久久| 中出人妻视频一区二区| 在线观看av片永久免费下载| 97热精品久久久久久| 色综合婷婷激情| 搡女人真爽免费视频火全软件 | 一本久久中文字幕| 又黄又爽又免费观看的视频| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 老熟妇仑乱视频hdxx| 欧美激情在线99| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 国产美女午夜福利| 动漫黄色视频在线观看| 久久6这里有精品| 大又大粗又爽又黄少妇毛片口| 久久人人精品亚洲av| 美女cb高潮喷水在线观看| 搡老熟女国产l中国老女人| 亚洲综合色惰| 如何舔出高潮| 人人妻,人人澡人人爽秒播| 色精品久久人妻99蜜桃| 成人高潮视频无遮挡免费网站| 91麻豆精品激情在线观看国产| 免费看av在线观看网站| 麻豆久久精品国产亚洲av| 日本爱情动作片www.在线观看 | 亚洲中文字幕一区二区三区有码在线看| 最近视频中文字幕2019在线8| 久久精品国产鲁丝片午夜精品 | 亚洲国产精品久久男人天堂| 深夜a级毛片| 在现免费观看毛片| 国产精品一区二区三区四区免费观看 | 国国产精品蜜臀av免费| 国产成人a区在线观看| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 国产熟女欧美一区二区| 欧美激情在线99| 国产在线男女| 免费电影在线观看免费观看| 人妻久久中文字幕网| 在线观看av片永久免费下载| www.www免费av| 一个人看视频在线观看www免费| 国产亚洲91精品色在线| 九色国产91popny在线| 深夜a级毛片| 在线免费十八禁| 精品福利观看| 欧美zozozo另类| a级一级毛片免费在线观看| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 亚洲aⅴ乱码一区二区在线播放| 天堂av国产一区二区熟女人妻| 国产免费av片在线观看野外av| 99热这里只有是精品在线观看| 久久精品91蜜桃| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 色综合站精品国产| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 成年免费大片在线观看| 久久精品人妻少妇| 最近在线观看免费完整版| av福利片在线观看| 69av精品久久久久久| 成人精品一区二区免费| 国产精品三级大全| 久久久精品大字幕| 国产精品免费一区二区三区在线| 国产久久久一区二区三区| 亚洲真实伦在线观看| 久久久色成人| 一区二区三区激情视频| 久久久久九九精品影院| 欧美区成人在线视频| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 天堂网av新在线| 色综合亚洲欧美另类图片| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 国产美女午夜福利| 久久热精品热| 国产真实乱freesex| 在线天堂最新版资源| 日韩av在线大香蕉| 少妇高潮的动态图| av视频在线观看入口| 国产亚洲精品综合一区在线观看| 亚洲国产欧美人成| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 精品人妻一区二区三区麻豆 | 日本精品一区二区三区蜜桃| 男女那种视频在线观看| 99热只有精品国产| 十八禁国产超污无遮挡网站| 国产精品一及| 国产 一区 欧美 日韩| 少妇丰满av| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 国产主播在线观看一区二区| 亚洲人成网站在线播| 深夜a级毛片| 国产日本99.免费观看| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 国产午夜福利久久久久久| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 中文字幕熟女人妻在线| 欧美日本视频| 最近视频中文字幕2019在线8| 免费一级毛片在线播放高清视频| 国产国拍精品亚洲av在线观看| 又爽又黄a免费视频| 成年女人看的毛片在线观看| 国产精品久久视频播放| 麻豆成人av在线观看| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 国产高清有码在线观看视频| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 欧美一区二区亚洲| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 精品久久国产蜜桃| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 国产色婷婷99| 国产av不卡久久| 淫妇啪啪啪对白视频| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 亚州av有码| av在线老鸭窝| 亚洲av美国av| 欧美最黄视频在线播放免费| 精品久久国产蜜桃| 18+在线观看网站| 免费高清视频大片| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 嫩草影院精品99| 18+在线观看网站| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 联通29元200g的流量卡| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 丰满乱子伦码专区| 国产亚洲精品综合一区在线观看| 免费观看人在逋| 欧美激情国产日韩精品一区| 亚洲av熟女| 99久久九九国产精品国产免费| 69av精品久久久久久| 欧美激情久久久久久爽电影| 男女视频在线观看网站免费| 熟女电影av网| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 亚洲欧美日韩高清专用| 久久精品人妻少妇| 美女高潮的动态| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| 直男gayav资源| 国产高清激情床上av| 欧美国产日韩亚洲一区| 亚洲精品色激情综合| 亚洲在线观看片| 哪里可以看免费的av片| 日韩在线高清观看一区二区三区 | 亚洲三级黄色毛片| 久久久久久国产a免费观看| 成人精品一区二区免费| 少妇裸体淫交视频免费看高清| 成人永久免费在线观看视频| 欧美一区二区亚洲| 色综合色国产| 一边摸一边抽搐一进一小说| 免费观看在线日韩| 国产麻豆成人av免费视频| 91午夜精品亚洲一区二区三区 | 国产高清激情床上av| 在线播放国产精品三级| 99热只有精品国产| 看片在线看免费视频| 嫩草影院精品99| 欧美人与善性xxx| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 国模一区二区三区四区视频| 国产免费一级a男人的天堂| 精品一区二区三区视频在线| 国产三级中文精品| 极品教师在线视频| 国产蜜桃级精品一区二区三区| 九色国产91popny在线| 长腿黑丝高跟| 亚洲成av人片在线播放无| av在线天堂中文字幕| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 日本黄大片高清| 午夜精品久久久久久毛片777| 久久精品人妻少妇| 中出人妻视频一区二区| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区| 少妇的逼好多水| 小蜜桃在线观看免费完整版高清| 男女之事视频高清在线观看| 在线a可以看的网站| 久久午夜亚洲精品久久| 午夜免费成人在线视频| 成人亚洲精品av一区二区| 久久99热这里只有精品18| 久久国产精品人妻蜜桃| 欧美精品国产亚洲| 亚洲午夜理论影院| 欧美成人性av电影在线观看| 亚洲成人免费电影在线观看| 国产成人aa在线观看| 欧美日本亚洲视频在线播放| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品综合一区在线观看| 欧美成人性av电影在线观看| 亚洲成人免费电影在线观看| 国产成人av教育| 最好的美女福利视频网| 校园春色视频在线观看| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 俄罗斯特黄特色一大片| 精品福利观看| 精品一区二区三区视频在线| 色在线成人网| 别揉我奶头 嗯啊视频| 97超视频在线观看视频| 成人精品一区二区免费| 欧美zozozo另类| 国产熟女欧美一区二区| 午夜激情福利司机影院| 午夜福利欧美成人| 91在线精品国自产拍蜜月| 成年版毛片免费区| 欧美色视频一区免费| 日日啪夜夜撸| 欧美日韩亚洲国产一区二区在线观看| 国产精品一及| 欧美高清成人免费视频www| av视频在线观看入口| 亚洲成人免费电影在线观看| 亚洲人成伊人成综合网2020| 日韩精品有码人妻一区| 精品久久久噜噜| 九九热线精品视视频播放| 欧美日韩瑟瑟在线播放| 国产精华一区二区三区| 亚洲真实伦在线观看| 欧洲精品卡2卡3卡4卡5卡区| 九色成人免费人妻av| av专区在线播放| 超碰av人人做人人爽久久| 免费av不卡在线播放| 成人性生交大片免费视频hd| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 丰满乱子伦码专区| 看十八女毛片水多多多| 国产人妻一区二区三区在| 精品人妻视频免费看| 乱码一卡2卡4卡精品| 欧美性猛交黑人性爽| 成人国产综合亚洲| 国产淫片久久久久久久久| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| 国产成人福利小说| 又黄又爽又免费观看的视频| 1024手机看黄色片| 亚洲成人中文字幕在线播放| 亚洲av成人精品一区久久| 国产精品精品国产色婷婷| 国产乱人伦免费视频| 麻豆成人午夜福利视频| www日本黄色视频网| 亚洲在线观看片| 日韩欧美免费精品| 亚洲国产高清在线一区二区三| 韩国av在线不卡| 黄色女人牲交| 色综合婷婷激情| 天天躁日日操中文字幕| 成人毛片a级毛片在线播放| 久久精品国产99精品国产亚洲性色| 国产私拍福利视频在线观看| 欧美日本视频| 一本久久中文字幕| 亚洲乱码一区二区免费版| 国产av一区在线观看免费| a级毛片免费高清观看在线播放| 亚洲av五月六月丁香网| 国产精品美女特级片免费视频播放器| 久久精品久久久久久噜噜老黄 | 日本黄色片子视频| 婷婷六月久久综合丁香| 成人精品一区二区免费| 久久午夜福利片| 此物有八面人人有两片| 久久精品国产亚洲av天美| 国产精品日韩av在线免费观看| 亚洲国产精品合色在线| 午夜爱爱视频在线播放| 国产主播在线观看一区二区| 少妇的逼水好多| 国产精品久久久久久av不卡| 22中文网久久字幕| 欧美国产日韩亚洲一区| 亚洲最大成人av| .国产精品久久| 精品无人区乱码1区二区| 婷婷六月久久综合丁香| 亚洲午夜理论影院| 嫁个100分男人电影在线观看| av天堂在线播放| 老师上课跳d突然被开到最大视频| 黄色视频,在线免费观看| 又紧又爽又黄一区二区| 国产视频内射| 亚洲av.av天堂| 国产亚洲精品av在线| 一本久久中文字幕| 成人三级黄色视频| 精品久久久噜噜| 女人十人毛片免费观看3o分钟| 国产精品综合久久久久久久免费| 成人亚洲精品av一区二区| 成年女人永久免费观看视频| 国产精品98久久久久久宅男小说| 国产中年淑女户外野战色| 一a级毛片在线观看| 真人做人爱边吃奶动态| 亚洲精华国产精华精| 午夜免费成人在线视频| 亚洲人成网站高清观看| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 欧美国产日韩亚洲一区| 美女xxoo啪啪120秒动态图| 国产精品98久久久久久宅男小说| 在线看三级毛片| 88av欧美| 99久久九九国产精品国产免费| 无人区码免费观看不卡| 99久久中文字幕三级久久日本| 特级一级黄色大片| 国产精品嫩草影院av在线观看 | 干丝袜人妻中文字幕| 免费高清视频大片| 亚洲av二区三区四区| 能在线免费观看的黄片| 精品一区二区免费观看| av在线亚洲专区| 久9热在线精品视频| 色噜噜av男人的天堂激情| 久久久久久久久中文| 日本一二三区视频观看| 搡老岳熟女国产| 午夜视频国产福利| 最后的刺客免费高清国语| 午夜福利18| 欧美潮喷喷水| 最后的刺客免费高清国语| 成人三级黄色视频| 日韩一区二区视频免费看| 色精品久久人妻99蜜桃| 国产精品无大码| av专区在线播放| 性色avwww在线观看| 97人妻精品一区二区三区麻豆| 国产激情偷乱视频一区二区| 性色avwww在线观看| 亚洲精品成人久久久久久| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 国产在线男女| 精品久久久久久久末码| 村上凉子中文字幕在线| 乱码一卡2卡4卡精品| 两个人视频免费观看高清| 日韩欧美国产一区二区入口| 久久人妻av系列| 欧美在线一区亚洲| 国产三级在线视频| 亚洲欧美日韩高清在线视频|