• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    G-α-preinvex functions and non-smooth vector optimization problems

    2022-08-02 12:25:14ChenYuYanXuelingKuangKai

    Chen Yu,Yan Xueling,Kuang Kai

    (School of Mathematics and Statistics,Guangxi Normal University,Guangxi 541004,China)

    Abstract:In this paper,the non-smooth G-α-preinvex function is introduced by generalizing α-invex function and G-preinvex function,and some solution properties about non-smooth vector optimization problems and vector variational-like inequality problems are discussed under the condition of non-smooth G-α-preinvexity.Moreover,it is also proved that the vector critical points,weakly efficient points and the solutions of the nonsmooth weak vector variational-like inequality problem are equivalent under non-smooth pseudo-G-α-preinvexity assumptions.

    Keywords:vector variational-like inequality problems,G-α-preinvex functions,non-smooth vector optimization,weakly efficient point

    1 Introduction

    In this paper,we consider the following nonsmooth vector optimization problem(NVOP for short):

    whereSis a subset of Rn,fi:S→R(i=1,2,···,p)are nondifferentiable and locally Lipschtiz functions.

    A vector variational inequality was first introduced by Reference[1].Since vector variational inequality problem has widely been applied in many fields,such as vector optimization and traffic equilibrium,it has been generalized by many researchers to various directions.Among them,the vector variational-like inequality is a significant generalization about the vector variational inequality problem,which has been discussed extensively(see References[2-10]and the references therein).

    The existence of the solution of variational-like inequality and the convex programming was studied in Reference[5].Reference[11]showed that the solution of variational-like inequality coincides with the solution of a certain mathematical programming problem under the conditions of the generalized invexity and monotonicity.

    It is proved by Reference[2]that the above results can be generalized to the vectorial problem for Euclidean spaces.Lately,the results in Reference[2]have been extended toα-invex functions by Reference[12].Under the condition of non-smooth invexity,the relations between NVOP and vector variational-like inequality problems(VVLIP for short)are also established in Reference[13].

    Reference[14]introduced a new concept ofα-pseudo-univex function,which is generalized convex function by associating the concepts ofα-invex functions and pseudounivex.Furthermore,under the assumptions ofα-pseudo-univex functions,some relationships are established between VVLIP and vector optimization problems.The results in Reference[2]are also extended to the vectorial optimization problems for Banach spaces which the domination structure is convex cones[15].

    Reference[16]discussed(weak)vector optimization problems and(weak)VVLIP under the condition ofα-invexity,and established their relationships through the existence of solutions in topological vector spaces.Reference[17]discused the solution properties among vector optimization problem,Stampacchia vector variational-like inequality problem and Minty vector variational-like inequality problem under smooth(G,α)-invex functions assumption.

    In this paper,we introduce the concept of non-smooth G-α-preinvex function which is a generalization ofα-invex function and G-preinvex function,and establish relationships between NVOP and VVLIP.These conditions are weaker than the earlier works existing in References[2,13-14].

    2 Preliminaries

    In this section,we firstly review some notations and some results about convex analysis.

    For anyu=(u1,u2,···,un)T,v=(v1,v2,···,vn)T∈Rn,we define

    (i)u=vif and only ifui=vi,i=1,2,···,n;

    (ii)u<vif and only ifui<vi,i=1,2,···,n;

    (iii)u≦vif and only ifui≤vi,i=1,2,···,n;

    (iv)u≤vif and only ifui≤vi,i=1,2,···,n,where for at least onei,strict inequality holds.

    Definition 2.1[13]A functionφ:S→R is called a Lipschitz function nearw∈Sif there exists a constantK>0 such that

    whereU(w)is a neighbourhood ofw.

    φ:S→R is called a locally Lipschitz function onSif it is a Lipschitz function near any point ofS.

    Definition 2.2[13]Letφ:S→R be a Lipschitz function at nearu∈S.

    (i)The Clarke generalized derivative ofφatu∈Sin the directiond∈Rnis defined by

    Denote the Clarke generalized derivative ofφatu∈Sin the directiond∈Rnbyφ0(u;d).

    (ii)The Clarke generalized gradient ofφatu∈Sis defined by

    Denote the Clarke generalized gradient ofφatu∈Sby?φ(u).

    Remark 2.1Obviously,for anyd∈Rn,

    Let each functionfi:X→R be a Lipschitz function at nearu∈S,i=1,2,···,p,the Clarke generalized gradient offatu∈Sis defined by the set

    Definition 2.3[13]Let the functionsη:S×S→Rnandα:S×S→R+{0},we say that the setSisα-invex set if?u,v∈S,t∈[0,1],v+tα(u,v)η(u,v)∈S.

    Before introducing the definition of G-α-preinvex,we recall the concepts of Gpreinvexity andαpreinvexity.Firstly,we give the following useful lemma,whose proofs are omitted in this paper.

    Definition 2.4[18]We say that the functionG:R→R is increasing if

    Lemma 2.1[18]G-1is an increasing function if and only ifGis an increasing function.

    Definition 2.5[18-19]Let S be a non-empty invex subset of RnandG:R→R be a continuous differentiable real-valued increasing function.A functionf:S→Rpis called

    (i)G-preinvex if there existsη:S×S→Rnsuch that for anyu,v∈S,

    (ii)α-preinvex ifSis a closed andα-invex non-empty set and there exists the functionη:S×S→Rnsuch that for anyu,v∈S,

    Remark 2.2It is clear that the following result can been obtained

    Now,we introduce the G-α-preinvexity by combining theα-preinvexity and Gpreinvexity.

    Definition 2.6LetSbe a closed and non-emptyα-invex set andG:R→R be a continuous differentiable real-valued increasing function.The non-differentiable functionf:S→Rpis called

    (i)G-α-preinvex if there exist the functionsη:S×S→Rnandα:S×S→R+{0}satisfying for anyu,v∈S,

    (ii)strictly G-α-preinvex if there exist the functions

    satisfying for anyu,v∈S,u/=v,

    (iii)pseudo-G-α-preinvex if there exist the functions

    satisfying for anyu,v∈S,

    Remark 2.3IfG(x)=x,then the G-α-preinvexity reduces to the nonsmooth case ofα-preinvexity[19].Ifα(u,v)=1,then the G-α-preinvexity reduces to the nonsmooth case of G-preinvexity[18].

    Similar to the definitions in Reference[13],the following definitions will be utilized under the G-α-preinvexity in next analysis.

    Definition 2.7For a given open subsetS?Rnand the G-α-preinvex functionf:S→Rp,a point∈Sis said to be

    (i)an efficient(Pareto)solution to NVOP,if there does not exist av∈Ssatisfyingf(v)≤f();

    (ii)a weakly efficient(Pareto)solution to NVOP,if there does not exist av∈Ssatisfyingf(v)<f(ˉu).

    Definition 2.8For a given open subsetS?Rnand the G-α-preinvex functionf:S→Rp.

    (i)For nonsmooth case,VVLIP is to find a pointv∈S,and for anyξi∈?fi(v),there exists nou∈S,satisfying(u,v)≤0,i=1,2,···,p;

    (ii)For nonsmooth case,a weak vector variational-like inequality problem(WVVLIP for short)is to find a pointv∈S,and for anyξi∈?fi(v),there exists nou∈S,satisfying(u,v)<0,i=1,2,···,p.

    3 Main results

    In the following,under the condition of G-α-preinvexity,we will establish some solution properties about VVLIP and NVOP.

    Theorem 3.1LetSbe a closed and non-emptyα-invex set andf:S→Rpbe locally Lipschitz and G-α-preinvex with respect toηandα(see Definition 2.6).Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Ifv∈Sis a solution to the VVLIP with respect to the sameηand

    thenvis an efficient solution to the NVOP.

    ProofAssume thatvis not an efficient solution to NVOP.Then it followed from Definition 2.7 that there exists au∈Ssuch thatf(u)-f(v)≤0.In view ofG(.)be an increasing function,we know that

    Sincefis G-α-preinvex,G′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,we can conclude that there existsu∈Ssuch that this implies thatvis not a solution of the VVLIP.This is a contradiction.Sovis an efficient solution to the NVOP.

    The following two theorems show that the converse theorem of the above theorem holds under some conditions.

    Theorem 3.2LetSbe a closed and non-emptyα-invex set andf:S→Rpbe a locally Lipschitz function and-fbe strictly G-α-preinvex with respect toηandα.Supposed thatG:R→R is a continuous differentiable and increasing realvalued function.Ifv∈Sis a weak efficient solution to NVOP andG′(fi(v))>0,i=1,2,···,p,thenvis a solution to VVLIP.

    ProofAssume thatvis not a solution to the VVLIP.Then there existsu∈Ssuch that(u,v)≤0,?ξi∈?fi(v).Taking into account-fbe strictly G-α-preinvex,G′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,we have

    In view ofG-1be increasing,one getsf(u)-f(v)<0.This contradicts with the fact thatvis a weak efficient solution of NVOP.

    Based on Theorem 3.2,we can conclude that the following result holds.

    Corollary 3.1LetSbe a closed and non-emptyα-invex set andf:S→Rpbe a locally Lipschitz function and-fbe strictly G-α-preinvex with respect toηandα.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Ifv∈Sis an efficient solution to NVOP andG′(fi(v))>0,i=1,2,···,p,thenvis a solution to the VVLIP.

    Theorem 3.3LetSbe a closed and non-emptyα-invex set andf:S→Rpbe a locally Lipschitz function andfbe G-α-preinvex with respect toηandα.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Ifv∈Sis a weak efficient solution for NVOP andG′(fi(v))>0,i=1,2,···,p,thenvis a solution to WVVLIP.

    ProofLetv∈Sbe a weak efficient solution for NVOP.Then there exists nou∈Ssuch thatf(u)<f(v).SinceGis increasing,it follow that

    In view offbe G-α-preinvex with respect toηandα,one gets that there exists nou∈Ssuch that

    Taking into accountG′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,we have that there exists nou∈Ssatisfying(u,v)<0,?ξi∈?fi(v).Thereforevis a solution to WVVLIP.

    Theorem 3.4LetSbe a closed and non-emptyα-invex set andf:S→Rpbe locally Lipschitz and pseudo-G-α-preinvex with respect toηandα.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Ifv∈Ssolves the WVVLIP with respect toηandG′(fi(v))>0,i=1,2,···,p,thenvis a weak efficient solution to NVOP.

    ProofAssume thatvis not a weak efficient solution to NVOP.Then there exists au∈Ssuch thatf(u)<f(v).In view ofG(.)be increasing,one gets

    Sincefis pseudo-G-α-preinvex,G′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,we can get that there existsu∈Ssuch that

    This contradicts with the fact thatvsolves WVVLIP.Thereforevis a weak efficient solution to NVOP.

    Theorem 3.5LetSbe a closed and non-emptyα-invex set andf:S→Rpbe locally Lipschitz and strictly G-α-preinvex with respect toηandα.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Ifv∈Sis a weak efficient solution to NVOP andG′(fi(v))>0,i=1,2,···,p,thenvis an efficient solution to NVOP.

    ProofSuppose thatvis not an efficient solution to NVOP.Sincevis a weak efficient solution to NVOP,then there existsu∈Ssuch thatf(u)≤f(v),In view ofG(·)be increasing,one getsG(fi(u))≤G(fi(v)),i=1,2,···,p.Sincefis strictly G-α-preinvex,G′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,we know that there existu∈Ssuch that

    i.e.,there existsu∈Ssuch that(u,v)<0,?ξi∈?fi(v).Therefore,vdoes not solve WVVLIP,which contradicts with Theorem 3.3.Hence,vis a weak efficient solution to NVOP.

    Reference[20]introduced a concept of vectorial critical point for the differentiable function,and the following definition for non-differentiable function is a direct extension of the definition of their vectorial critical point.

    Definition 3.1[13]We say that a feasible solutionv∈Sis a vectorial critical point for NVOP if there exists a vector∈Rnwithˉλ≥0 satisfying

    Theorem 3.6LetSbe a closed and non-emptyα-invex set andv∈Sbe vector critical point for NVOP.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function.Iff:S→Rpis locally Lipschitz and pseudo-G-αpreinvex with respect toηandα,andG′(fi(v))>0,i=1,2,···,p,thenv∈Sis a weak efficient solution to NVOP.

    ProofSuppose thatv∈Sis not a weak efficient solution to NVOP.Then there exists au∈Ssuch thatf(u)<f(v).In view ofG(.)be increasing,one getsG(fi(u))<G(fi(v)),i=1,2,···,p.Sincefis pseudo-G-α-preinvex,we know that there exists au∈Ssuch that

    Taking account with the fact thatG′(fi(v))>0(i=1,2,···,p)andα(u,v)>0,one can conclude that there existsu∈Ssuch that(u,v)<0 for anyξi∈?fi(v).By the Gordan theorem,there exists no vectorˉλwithˉλ≥0 such that=0,?ξi∈?fi(v),which is a contradiction with the fact thatvis a vector critical point.The proof is completed.

    Furthermore,we can get the following result.

    Theorem 3.7LetSbe a closed and non-emptyα-invex set.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function andf:S→Rpis locally Lipschitz function and pseudo-G-α-preinvex with respect toηandαandG′(fi(w))>0,i=1,2,···,p,w∈S.Then an weak efficient solution to NVOP is also a vector critical point for NVOP.

    ProofLetv∈Sis a weak efficient solution to NVOP.Then there exists nou∈Ssuch thatf(u)<f(v).SinceG(·)is increasing,one getsG(fi(u))-G(fi(v))<0,i=1,2,···,p.Sincefis pseudo-G-α-preinvex with respect toηandα,then there exists no

    Ifv∈Sis not a vector critical point to NVOP.Then there exists no vectorˉλwithˉλ≥0 such that=0,?ξi∈?fi(v).From the Gordan theorem,we know that there exists ausuch that

    Take account intoG′(fi(w))>0,i=1,2,···,p,w∈S,we have that

    This is a contradiction.The proof is completed.

    Based on the above theorems,we can establish the relationship between the vector critical points with the solutions to WVVLIP.

    Corollary 3.2LetSbe a closed and non-emptyα-invex set.Supposed thatG:R→R is a continuous differentiable and increasing real-valued function,andf:S→Rpis locally Lipschitz and pseudo-G-α-preinvex with respect toηandα,andG′(fi(w))>0,i=1,2,···,p,wherew∈S,then the weak efficient points,the vector critical points and the solutions to WVVLIP are equivalent.

    4 Conclusion

    In this paper,by introducing the concept of non-smooth G-α-preinvex function which is a generalization ofα-invex function and G-preinvex function,we discuss the solution properties about NVOP and VVLIP under the non-smooth G-α-preinvexity.These conditions are weaker than ones of the earlier works existing in References[2,13-14].Moreover,our results can be also extend to the vectorial optimization problems in Banach spaces.

    制服人妻中文乱码| 亚洲精品国产一区二区精华液| 亚洲aⅴ乱码一区二区在线播放 | 久久婷婷成人综合色麻豆| 欧美人与性动交α欧美软件| 女人爽到高潮嗷嗷叫在线视频| 窝窝影院91人妻| 精品国产国语对白av| 色综合婷婷激情| 91大片在线观看| 亚洲精品中文字幕一二三四区| 在线看a的网站| 国产精品av久久久久免费| 久久久国产精品麻豆| 嫩草影院精品99| 免费高清在线观看日韩| 亚洲中文av在线| 91成年电影在线观看| 久久亚洲真实| 电影成人av| 两性夫妻黄色片| 国产熟女午夜一区二区三区| 国产精品久久久久久人妻精品电影| a级毛片在线看网站| 在线观看午夜福利视频| 丝袜人妻中文字幕| 久久九九热精品免费| av福利片在线| 操美女的视频在线观看| 国产成人欧美在线观看| 国产高清videossex| 久久国产精品人妻蜜桃| 欧美最黄视频在线播放免费 | 水蜜桃什么品种好| 一边摸一边抽搐一进一出视频| 一级黄色大片毛片| 美女国产高潮福利片在线看| 手机成人av网站| 999久久久精品免费观看国产| 丝袜在线中文字幕| 久久久久国产精品人妻aⅴ院| 韩国av一区二区三区四区| 成人三级做爰电影| 婷婷丁香在线五月| 精品久久蜜臀av无| 午夜成年电影在线免费观看| 伦理电影免费视频| 亚洲 欧美一区二区三区| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 国产精品一区二区精品视频观看| 一边摸一边做爽爽视频免费| 精品国产超薄肉色丝袜足j| 亚洲av成人不卡在线观看播放网| 在线观看一区二区三区激情| 宅男免费午夜| videosex国产| 久久精品91无色码中文字幕| 亚洲黑人精品在线| 亚洲一区二区三区欧美精品| 免费看十八禁软件| 国产精品偷伦视频观看了| 精品国产一区二区久久| 久久久国产一区二区| 视频区图区小说| 首页视频小说图片口味搜索| 久久影院123| 亚洲色图综合在线观看| 精品国产乱子伦一区二区三区| 一本综合久久免费| 日韩中文字幕欧美一区二区| 老熟妇仑乱视频hdxx| 国产一区在线观看成人免费| 黄网站色视频无遮挡免费观看| 热re99久久精品国产66热6| 色在线成人网| 日本 av在线| 久久久国产精品麻豆| 国产精品 国内视频| 欧美色视频一区免费| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 在线观看舔阴道视频| 欧美人与性动交α欧美软件| 一级a爱视频在线免费观看| 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 亚洲中文av在线| 久久久久亚洲av毛片大全| 80岁老熟妇乱子伦牲交| 午夜福利一区二区在线看| 88av欧美| 好男人电影高清在线观看| 国产精品久久久av美女十八| 他把我摸到了高潮在线观看| 国产精品九九99| 亚洲九九香蕉| 精品久久久久久久毛片微露脸| 大型av网站在线播放| 精品一区二区三区四区五区乱码| 欧美中文综合在线视频| 国产免费男女视频| 亚洲精品在线美女| 亚洲成人免费av在线播放| 日韩欧美三级三区| 国产午夜精品久久久久久| 亚洲精品国产精品久久久不卡| 免费在线观看完整版高清| 亚洲av成人av| av网站免费在线观看视频| 午夜老司机福利片| 久久人人爽av亚洲精品天堂| 亚洲自偷自拍图片 自拍| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产看品久久| 欧美日韩中文字幕国产精品一区二区三区 | 大陆偷拍与自拍| av超薄肉色丝袜交足视频| 精品无人区乱码1区二区| √禁漫天堂资源中文www| 在线国产一区二区在线| 97人妻天天添夜夜摸| 日韩成人在线观看一区二区三区| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| av超薄肉色丝袜交足视频| 女警被强在线播放| 国产精品 欧美亚洲| 午夜日韩欧美国产| 亚洲精品在线美女| av在线播放免费不卡| 亚洲精品国产精品久久久不卡| 日韩大码丰满熟妇| 亚洲男人的天堂狠狠| 一本大道久久a久久精品| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 香蕉丝袜av| 久久久国产成人免费| 日本三级黄在线观看| 91九色精品人成在线观看| 悠悠久久av| 精品乱码久久久久久99久播| 香蕉丝袜av| 最新在线观看一区二区三区| 99国产精品99久久久久| 日韩中文字幕欧美一区二区| 男女下面进入的视频免费午夜 | 制服诱惑二区| 无人区码免费观看不卡| 黑人猛操日本美女一级片| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼 | 国产精品一区二区在线不卡| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 五月开心婷婷网| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 久久久久国产一级毛片高清牌| 女人爽到高潮嗷嗷叫在线视频| 天堂俺去俺来也www色官网| 巨乳人妻的诱惑在线观看| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 亚洲人成电影免费在线| 久久影院123| 欧美精品亚洲一区二区| 国产成人系列免费观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩福利视频一区二区| 91大片在线观看| 欧美日韩精品网址| 成人三级黄色视频| 俄罗斯特黄特色一大片| 久久这里只有精品19| 国产99久久九九免费精品| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 欧美激情高清一区二区三区| 精品无人区乱码1区二区| 精品一区二区三区av网在线观看| 超碰成人久久| 免费看a级黄色片| 欧美日本中文国产一区发布| 亚洲黑人精品在线| 熟女少妇亚洲综合色aaa.| 美国免费a级毛片| 午夜影院日韩av| 国内毛片毛片毛片毛片毛片| 成人国语在线视频| 亚洲av成人一区二区三| 久久欧美精品欧美久久欧美| 欧美日本中文国产一区发布| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 精品久久久久久成人av| 色老头精品视频在线观看| 亚洲欧美日韩无卡精品| 国产精品av久久久久免费| 在线观看舔阴道视频| 91麻豆av在线| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 91老司机精品| 欧美成人午夜精品| 久久精品国产亚洲av香蕉五月| 在线看a的网站| 女人被狂操c到高潮| av电影中文网址| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| 日本wwww免费看| 一区二区三区国产精品乱码| 黄色 视频免费看| 在线天堂中文资源库| tocl精华| 91老司机精品| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 不卡一级毛片| 日本黄色日本黄色录像| 国产成人av教育| 99国产精品99久久久久| 三上悠亚av全集在线观看| 亚洲久久久国产精品| av福利片在线| 看片在线看免费视频| 黑人巨大精品欧美一区二区蜜桃| 91成年电影在线观看| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看 | 一进一出好大好爽视频| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 一级毛片女人18水好多| 亚洲欧美一区二区三区久久| 少妇 在线观看| 新久久久久国产一级毛片| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 91在线观看av| 日本五十路高清| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 高清在线国产一区| 黑人巨大精品欧美一区二区mp4| 欧美黄色片欧美黄色片| 午夜免费激情av| 黄色怎么调成土黄色| 亚洲成人久久性| 99在线人妻在线中文字幕| 亚洲色图 男人天堂 中文字幕| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 露出奶头的视频| 性少妇av在线| 久久精品亚洲熟妇少妇任你| 精品久久久久久,| 日韩欧美免费精品| 首页视频小说图片口味搜索| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 日韩人妻精品一区2区三区| 在线播放国产精品三级| 一区二区三区激情视频| 亚洲av成人av| 欧美人与性动交α欧美精品济南到| 91精品国产国语对白视频| 国产三级在线视频| 丝袜美腿诱惑在线| 在线av久久热| 亚洲专区国产一区二区| 新久久久久国产一级毛片| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 国产精品香港三级国产av潘金莲| 日韩欧美免费精品| 精品久久久久久成人av| 一边摸一边做爽爽视频免费| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 丝袜美足系列| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片 | 巨乳人妻的诱惑在线观看| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 久久久久久免费高清国产稀缺| 国产一区二区在线av高清观看| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 午夜a级毛片| 男人的好看免费观看在线视频 | 在线观看免费视频日本深夜| 国产一卡二卡三卡精品| 黄片大片在线免费观看| 精品一区二区三区av网在线观看| 午夜精品国产一区二区电影| 日韩视频一区二区在线观看| 女人被狂操c到高潮| 成人永久免费在线观看视频| 久久狼人影院| 日韩大码丰满熟妇| 中文字幕av电影在线播放| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 亚洲国产精品999在线| 国产成人影院久久av| 国产成人免费无遮挡视频| 亚洲美女黄片视频| 亚洲精华国产精华精| 窝窝影院91人妻| 久久久国产欧美日韩av| 中亚洲国语对白在线视频| 国产激情欧美一区二区| 亚洲自拍偷在线| 亚洲五月天丁香| 一级毛片精品| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| 国产精品日韩av在线免费观看 | 后天国语完整版免费观看| 好看av亚洲va欧美ⅴa在| 免费少妇av软件| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 国产xxxxx性猛交| 免费看十八禁软件| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 久久久水蜜桃国产精品网| 欧美成人免费av一区二区三区| av免费在线观看网站| 长腿黑丝高跟| 久久草成人影院| 亚洲欧美激情在线| 色综合站精品国产| 精品午夜福利视频在线观看一区| 不卡一级毛片| 欧美日韩乱码在线| 久久人妻av系列| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| 久久青草综合色| 午夜影院日韩av| 超色免费av| 丝袜美足系列| 男人舔女人下体高潮全视频| 一区在线观看完整版| 欧美精品啪啪一区二区三区| 亚洲av成人av| 人妻久久中文字幕网| 国产无遮挡羞羞视频在线观看| 一夜夜www| 久久人妻av系列| 久久人人精品亚洲av| 亚洲一区二区三区欧美精品| 9191精品国产免费久久| 国产一区在线观看成人免费| 午夜精品久久久久久毛片777| 老司机亚洲免费影院| 99国产精品免费福利视频| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 精品久久久久久电影网| 一本大道久久a久久精品| 免费高清视频大片| 校园春色视频在线观看| 12—13女人毛片做爰片一| 大型av网站在线播放| 一级毛片精品| 国产免费av片在线观看野外av| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 国产精品爽爽va在线观看网站 | 纯流量卡能插随身wifi吗| 最近最新免费中文字幕在线| 在线观看免费高清a一片| 一a级毛片在线观看| 欧美日韩福利视频一区二区| 九色亚洲精品在线播放| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 777久久人妻少妇嫩草av网站| 色综合站精品国产| 伦理电影免费视频| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 岛国在线观看网站| 女性生殖器流出的白浆| 国产片内射在线| 国产成人系列免费观看| 欧美日韩一级在线毛片| 手机成人av网站| 久久中文字幕一级| 久久青草综合色| 国产精品国产av在线观看| 中出人妻视频一区二区| 天天躁夜夜躁狠狠躁躁| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院精品99| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产 | 啦啦啦免费观看视频1| 精品国产一区二区久久| 变态另类成人亚洲欧美熟女 | 狠狠狠狠99中文字幕| 好看av亚洲va欧美ⅴa在| 国产欧美日韩精品亚洲av| 久久午夜综合久久蜜桃| av欧美777| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 99在线视频只有这里精品首页| 亚洲欧美日韩另类电影网站| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人精品中文字幕电影 | 亚洲国产看品久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区中文字幕在线| 超色免费av| 亚洲欧美日韩另类电影网站| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 国产午夜精品久久久久久| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 色婷婷av一区二区三区视频| 国产精品综合久久久久久久免费 | 99精国产麻豆久久婷婷| 亚洲欧美日韩高清在线视频| 亚洲激情在线av| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜人妻中文字幕| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 午夜福利影视在线免费观看| videosex国产| 日日爽夜夜爽网站| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 久久久久亚洲av毛片大全| 国产极品粉嫩免费观看在线| 国产成人欧美| 久久精品亚洲av国产电影网| 少妇 在线观看| 日韩人妻精品一区2区三区| 色老头精品视频在线观看| 男女之事视频高清在线观看| 欧美人与性动交α欧美软件| 亚洲性夜色夜夜综合| av电影中文网址| 一级,二级,三级黄色视频| 99久久久亚洲精品蜜臀av| 亚洲免费av在线视频| 国产免费av片在线观看野外av| 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 欧美成人午夜精品| 老司机午夜十八禁免费视频| 国产精品久久久人人做人人爽| 中文字幕av电影在线播放| 亚洲七黄色美女视频| 动漫黄色视频在线观看| 在线av久久热| 岛国视频午夜一区免费看| 咕卡用的链子| a在线观看视频网站| 日韩欧美国产一区二区入口| 黑人猛操日本美女一级片| 亚洲精品国产精品久久久不卡| 久久精品亚洲熟妇少妇任你| tocl精华| 免费少妇av软件| 亚洲在线自拍视频| 精品免费久久久久久久清纯| 色哟哟哟哟哟哟| 中文字幕色久视频| 亚洲久久久国产精品| 又黄又粗又硬又大视频| 两性夫妻黄色片| 色在线成人网| 人人澡人人妻人| 久久中文字幕一级| 一区二区三区激情视频| 欧美黄色淫秽网站| 深夜精品福利| 欧美 亚洲 国产 日韩一| 中文欧美无线码| 久久国产乱子伦精品免费另类| 久久国产精品人妻蜜桃| 免费观看人在逋| 午夜两性在线视频| 首页视频小说图片口味搜索| 男女床上黄色一级片免费看| 欧美性长视频在线观看| 久久久国产成人免费| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 宅男免费午夜| 久久 成人 亚洲| 交换朋友夫妻互换小说| 丝袜在线中文字幕| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| 在线播放国产精品三级| 99精国产麻豆久久婷婷| 久久精品91蜜桃| 中文字幕色久视频| 天堂√8在线中文| 日韩精品中文字幕看吧| 日本一区二区免费在线视频| 国产av一区二区精品久久| 国产成人精品久久二区二区免费| 在线观看午夜福利视频| 午夜影院日韩av| 久久午夜综合久久蜜桃| 欧美激情高清一区二区三区| 国产一区二区三区视频了| 欧美成人免费av一区二区三区| 亚洲精品美女久久av网站| 亚洲av五月六月丁香网| 精品无人区乱码1区二区| 国产一卡二卡三卡精品| 无限看片的www在线观看| 国产av又大| 啦啦啦免费观看视频1| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 满18在线观看网站| 18禁观看日本| av天堂久久9| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| √禁漫天堂资源中文www| 嫩草影院精品99| 在线观看www视频免费| 大码成人一级视频| 美女高潮到喷水免费观看| 黄色成人免费大全| 国产97色在线日韩免费| 老汉色av国产亚洲站长工具| 国产精品一区二区精品视频观看| 亚洲成a人片在线一区二区| 中文字幕人妻丝袜一区二区| a级毛片黄视频| 国产麻豆69| 18禁国产床啪视频网站| 亚洲va日本ⅴa欧美va伊人久久| 日韩有码中文字幕| 91麻豆精品激情在线观看国产 | 欧美乱妇无乱码| 男女下面进入的视频免费午夜 | 成人国语在线视频| 亚洲熟妇熟女久久| 国产精品99久久99久久久不卡| av片东京热男人的天堂| 长腿黑丝高跟| 一级黄色大片毛片| 久久草成人影院| 视频区欧美日本亚洲| 丰满饥渴人妻一区二区三| 大码成人一级视频| 淫秽高清视频在线观看| 国产99白浆流出| 欧洲精品卡2卡3卡4卡5卡区| 亚洲九九香蕉| 老熟妇仑乱视频hdxx| 国产高清国产精品国产三级| 久久精品国产亚洲av高清一级| 伊人久久大香线蕉亚洲五| 欧美久久黑人一区二区| 人成视频在线观看免费观看| 99久久人妻综合| 黄色怎么调成土黄色| 一级,二级,三级黄色视频| 国产成人系列免费观看| 最近最新中文字幕大全电影3 | 午夜免费成人在线视频|