• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle simulations on propagation and resonance of lower hybrid wave launched by phased array antenna in linear devices

    2022-08-01 11:34:16GuanghuiZHU朱光輝QingLI李清XuanSUN孫玄JianyuanXIAO肖建元JiangshanZHENG鄭江山andHangLI李航
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:李清光輝江山

    Guanghui ZHU(朱光輝),Qing LI(李清),Xuan SUN(孫玄),Jianyuan XIAO(肖建元),Jiangshan ZHENG(鄭江山) and Hang LI(李航)

    1 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    2 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract In this work,we performed first-principles electromagnetic-kinetic simulations to study a phased antenna array and its interaction with deuterium plasmas within the lower hybrid range of frequency.We first gave wave accessibility and resonance results,which agree well with theoretical prediction.In addition,we further investigated the antenna power spectrum with different antenna phases in the presence of the plasma and compared it with that in a vacuum,which directly indicates wave coupling and plasma absorption.Furthermore,for the case with zero phasing difference,our simulation results show that,albeit the launch is away from the accessibility region,tunneling effect and mode conversion occurred,which enhanced coupling and absorption.Moreover,consistent interactions between the injected wave and the plasma concerning various antenna phase differences are shown.We presented the inchoate response of the plasma in terms of the launching directions.Our results could be favorable for the engineering design of wave heating experiments with a tunable phased antenna array in linear devices,such as simple magnetic mirrors or tandem mirrors.

    Keywords:LHW,phased array antenna,tunneling,mode conversion,particle-in-cell simulation

    1.Introduction

    Radio-frequency(RF)waves are widely applied in magnetically confined plasmas for auxiliary heating,and current drive approaches[1–3].Within the broad range of available wave frequencies,waves in the lower hybrid range of frequency,i.e.lower hybrid waves(LHWs),have extensive applications in many devices[4–8].They involve helicon wave,lower hybrid fast and slow wave,applied for the current drive,plasma heating and plasma rotation in toroidal devices[9–11].In addition,a recent study has demonstrated the effectiveness of stochastic ion heating of LHW in magnetic mirror devices,which opens a new aspect for ion heating studies in linear devices,such as tandem mirrors[12].In addition,LHW is economical,which is very helpful for university research on fusion plasma heating.

    In many magnetic confinement devices,the launching structure of LHW is generally a tunable phased waveguide or loop antenna array[13,14].This launching system is simple and flexible.It enables us to control the initial k‖,i.e.the launching angle and polarization of the injected wave,which is necessary for wave propagation into the resonance range near the plasma core and for strong wave absorption under certain conditions.It is worth mentioning that an array antenna with fixed phasing produced by fixing the transmission line is often used in a linear device,which can keep the phasing constant with large reflection power.Meanwhile,with the development of decoupler technology and automatic matching technology,a tunable phased array antenna spectrum can easily be realized by controlling the output phase of RF sources[15–18].However,to couple tremendous external energy into the plasmas under various conditions with high efficiency,it is important to understand wave coupling and plasma response.Although loop antenna sources with a tunable antenna wavenumber spectrum have been successfully achieved in the ion cyclotron range of frequency and a helicon plasma experiment[19,20],the tunable phased array antenna has not been investigated in lower hybrid resonance heating(LHRH),in particular at simulation.

    Nowadays,numerical simulation methods are adopted to study LHWs extensively in fusion plasma.Nevertheless,most methods developed only involve one or a couple of aspects in LHW physics.For example,ray-tracing methods,such as GENRAY and C3PO,are generally applied to study the propagation and linear absorption of LHWs[21,22].Fullwave codes,such as the semi-spectral solver TORLH,finite element solver LHEAF and ALOHA can be applied for coupling LHWs,and more finite studies of wave propagation and energy deposition from the vacuum region with waveguides to the plasma core,which should also have the capability to simulate the tunneling process of evanescent wave are described in this paper[23–25].In addition,Fokker–Planck-based methods,such as LUKE and CQL3D,must be integrated to take the kinetic effect into consideration,which does not satisfy first principles[26,27].Recently,a series of research works on LHW current drive and heating,which were carried out based on the first-principles method without any additional modeling,were presented[28].Specifically,a symplectic structure-preserving electromagnetic particle-incell(PIC)scheme is implemented in the SymPIC code(https://github.com/JianyuanXiao/SymPIC)[29].These simulations use a fully kinetic model for ions and electrons,which guarantees first-principles approximations to the original system,and the preservation of non-canonical symplectic structure provides the ability for long-term simulation without inducing abominable numerical dissipation.Note that,currently,our model does not involve any collision term explicitly and we have also not included any special treatment of the wave absorption on the equation level.Energy transference between the wave and the plasma is effected through spontaneous wave-particle interaction or another kinetic collisionless process.

    The SymPIC code has tremendous advantages.It has the ability to solve the antenna-plasma coupling problem including linear and nonlinear processes.Although this work basically only involves the linear coupling and heating process,with potential nonlinear physics due to high coupled power not being included here,we can still expect that when the coupled power reaches a certain level,the ponderomotive force and background plasma turbulence can be significant and thus result in various nonlinear processes.Nevertheless,the research interests of the previous works only focus on the physics of the injected LHW inside the plasma rather than the coupling and antenna-related physics.Here,we utilize this code to investigate the detailed coupling process of LHW in linear devices with nonuniform plasmas.Note that the 2D slab configuration is adopted in our simulation,and based on the device’s known plasma parameters,our simulation results can provide practical guidance for antenna structure design.

    In this work,different antenna power spectra excited by different phasings from 0 to π for octuplet-loop antenna array are simulated,and good agreement of LHW propagation is found with previous work[30,31].As expected,the high phased antenna can launch a slow wave well,with it propagating into the LHR layer and heat plasma.However,there is an interesting discovery that in the low phased antenna simulation case,we observed that a large electric field is generated from the edge to the plasma core and penetrates the LHR layer.This electric field,in our opinion,behaves as a source that excites a fast wave in the inner region of the LHR layer,which consequently transforms to a slow wave through slow-fast wave mode conversion(MC)[32–34].Moreover,the simulation results also show that the absorption power of plasma in a low phased antenna is higher than that in a high phased antenna in a few wave periods.

    Based on all the observations,this work has been structured to study LHW propagation and plasma absorption through PIC simulations with a phased antenna array.Section 2 describes the experimental setup of a phased array antenna and a simulation setup in a linear device,discussion of LHWs in cold deuterium plasma,and the accessibility condition.Section 3 presents a detailed study and the simulation results of wave launching,propagation,coupling and absorption with phased antenna array for different phasing.Finally,section 4 summarizes the above results and conclusions.

    2.Description of a phased array antenna and simulation setup

    2.1.Description of a phased array antenna

    As is well known,the phased waveguide array or grill antenna has been widely used in launching high-power LHW into toroidal plasmas with a high magnetic field.However,for linear devices with a low magnetic field,the LHW should be excited by a phased multiple-loop array antenna,as shown in figure 1.In the experiment,we can fulfill the current feed of each antenna loop with a certain phase difference through a lossless phase shifter,impedance matcher and RF decoupler.The loop antenna scheme is used to excite the azimuthal mode number m=0 and the Fourier spectrum of the phased array antenna current density Jφ(m=0,kz,Δφ),where Δφ is the phase difference of the adjacent antenna andkzis the axial wavenumber.The Jφ(m=0,kz,Δφ)is defined as follows[19]:

    2.2.Simulation setup

    The linear device is a cylinder rather than a slab,so the radial profile of the LHW electric field should be a Bessel function[35].The geometry effect is important to the wave-particle resonance whenk⊥r?1 is not well satisfied,particularly in the core.However,the 2D slab geometry simulations with greatly simplified computation are a good enough approximation for the cold plasma.In the paper,the simulation domain is in thex-zplane,wherexdenotes the radial direction andzdenotes the axial direction for a linear device.The 2D slab geometry consists of the deuterium plasma with nonuniform density along thex-direction and a homogeneous magnetic field along thez-direction,as shown in figure 2.The phased array antenna is parallel placed along thez-direction with fixed phase difference Δφf(shuō)or adjacent current,and the antenna currentφJ(rèn)is now reduced to two current sheets with opposite direction ±Jyon each side of the plasma in thex-zplane.

    3.Benchmark of simulations

    4.Results and discussion

    4.1.Power spectrum of the antenna with different phasing

    absorption spectrum produced by the plasma.Note that,the power spectrum ofExonly displays a slight difference with respect to different radial positions,which indicates that the inhomogeneous plasma density has little influence on theExspectrum.Thus,only the power spectrum ofExatx=3.6 cm is given here for simplicity.The normalized power spectrum of the injected wave in the plasma is consistent with the normalized antenna spectrum,except for the cases in figures 6(a),(b)and(d).For the case in figure 6(a),Δφ=0,although the dominant value of the parallel wavenumber is smaller thank z,C,i.e.away from the accessibility region,the simulation results show that the wave can still affect the plasma core and is significantly absorbed.The tunneling and MC effects play a key role in this situation,which we discuss in the next section.For the case of Δφ=π/ 8and Δφ=3π/ 8,the part of the power spectrum withkz<k z,C,i.e.sidelobe,also shows dramatic excitation and absorption in figures 6(b)and(d).The excitation of the sidelobe is responsible for improving the heating efficiency in this specific case.

    4.2.Propagation characteristics of the LHW with different phasings

    The propagation images of LHW in plasma for Δφ=0 at different times selected by a significant change in the state are described in figure 7.As expected,there is a perpendicular propagation wave packet,or in other words,a large electric field with a long extension in the perpendicular direction,from the antenna placed in the plasma margin to the plasma center,as shown in figure 7(a).Figure 7(b)shows that the field penetrates the LHR layer and forms a spot inside the LHR region.The corresponding spot has no spatial phasing,and it can be seen as an infiniteksum and be considered a source to excite LHW.As shown in figures 7(e)–(h),the new source evolves new propagation and absorption processes from the plasma core to the exterior.It can be seen that the wave deposition range is between the MC layer and the LHR layer.

    Figure 1.Octuple-loop antenna with phased loop current in Δφ.

    Figure 2.Illustration of the wave launching by the phased array antenna for nonuniform deuterium plasma with a vacuum boundary.There are perfect electric conductor(PEC)layers at the boundary of the x-direction.Boundary conditions of the z-direction are periodic.

    Figure 3.Evolution of the vertical wavenumber k⊥ with range density for fixed f=50 MHz andB0=2000 G.In addition,the parallel wavenumber is k z=0.011 cm -1(a);k z=0.012 cm-1(b);k z=0.03 cm -1(c).Solid gray lines and red lines represent the propagation of slow and fast waves,respectively.

    Figure 4.Comparison of LHW propagations in plasma with(a)PIC simulation for the phasing Δφ=π at t=134 ns and(b)the theoretical ray-tracing calculation with a source having a finite length source from z=-110 cm to z=-40 cm with electric field distribution of .

    Figure 5.(a)Comparison of the radial evolution of Ex with theoretical calculation(the red solid line)at fixed kz=0.292 cm-1 and the simulation results(the black scatters)at t=134 ns;(b)comparison of ⊥k with half-wave fitting calculation of the simulation results(the blue scatters)and theoretical calculation(the red scatters)as a function of plasma density;(c)comparison of the radial evolution of plasma density with t=0 ns(the blue solid line)and t=134 ns(the red solid line).Intersection of the red dotted lines denotes the LHW resonance point.

    Figure 6.Comparison of the normalized wavenumber power spectrum with the antenna(the solid black line)andEx(the solid red line)at x=3.6 cm for different phasings.

    In addition,some relatively weak bright and dark stripes appear from the resonance layer to the plasma center in figure 7(h),which should be the evanescent wave.Figure 8 shows the radial evolution ofExatz=0 cm by a solid black line and the exponential fitting between the resonance layer and plasma center indicating that the magnitude ofExmeets the exponential attenuation in the red dashed line.The tunneling process of the evanescent wave generated proves the authenticity and superiority of the simulation code.

    Figure 7.Propagations of LHW in plasma for Δφ=0 at different times are selected by a significant change in state and marked in the upper right corner box from(a)to(h).Color map is for the Ex component.Red dashed lines denote the theoretical resonance(LHR)layers of a slow wave,and the black dashed lines denote the theoretical MC layer.

    Figure 8.Radial evolution ofEx(the solid black line)at z=0 cm and t=134 ns;blue dashed line is the LHR layer at x=-1.6 cm;red dashed line is the exponential fitting of Ex amplitude with x.

    Figure 9.Illustration of LHW propagation and mode conversion process excited by low-phase antenna.

    Figure 10.Propagations of LHW in the x -z plane for different phasings:(a) Δφ=π/ 8;(b) Δφ=π/4 ;(c) Δφ=3π / 8;(d) Δφ=π/2 at t=134 ns.Color map is for the Ez component,and the red dashed lines denote the theoretical resonance layers of the slow wave.

    Figure 11.Heating effect of the x-direction component of the ion kinetic energyin z- x plane at t=134 ns for different phasings.

    Figure 12.Heating effect of the y direction component of the electron kinetic energy

    Figure 13.Absorption power of ions(the red solid line)and electrons(the black solid line)as a function of Δφ.

    In order to understand the plasma absorption principle,a schematic diagram of LHW propagation is shown in figure 9.The antenna with a low phase excites an electric oscillation with a large radial characteristic scale,which can penetrate the plasma center through the tunneling effect and form a new source of excitation represented by the cyan ellipse labeled‘new source’ in figure 9.It is worth mentioning that the tunneling effect is important because the radial wavelength is close to the evanescent region size for our simulation parameters and the tunneling effect will become weak for a higher⊥kvalue and larger global simulation domain.There should be only a fast wave being excited at the inner region of the LHR,where the plasma density is higher than the LHR density,as shown for the dispersion relation in figures 3(a)–(c).It is clear that the absorption of the fast wave propagating to high density excited by the new source in the plasma core is weak,as indicated by the black dotted arrow in the pink area of figure 9.Furthermore,the case of fast-wave propagation to low density needs to be discussed separately.For monochromatic waves ofkz>kz,Cin the wave packet represented by the cyan ellipse labeled‘Part 1’in figure 9,the decreasing density from the plasma core to the edge yielding⊥kis smaller.In addition,these fast waves gradually disappear as they approach the low-density cut-off layer,as shown in figures 7(d)–(h).For the component withkz≤kz,Cof the wave packet spot represented by the cyan ellipse labeled‘Part 2’in figure 9,it will reach the MC layer from the inner side and convert into slow-wave propagation back to the interior.Then,the slow wave propagates to the resonant layer and achieves resonance absorption.At the same time,resonance promotes the generation of the tunneling effect and improves wave absorption by plasma.Our phenomenological explanation based on the LHW dispersion relation well describes the whole propagation of LHW in the low-phase antenna launching case.

    Next,the cases with phasing Δφ=π/8 to Δφ=π/2 are described in figure 10.The slow wave is no longer symmetrical like Δφ=0 or Δφ=π,and it propagates mainly to the right,which means that the phased antenna array can control the direction of the wave propagation.Thekz,maxexcited by the antenna is 0.039 cm-1at phasing Δφ=π/ 8which satisfiesk z,max>k‖,C,thus,we can see the slow wave is partially propagated from the antenna to the LHR layer in figure 10(a).Because the power spectrum also contains the part ofk z,max<k‖,C,the mode conversion process from fast wave to slow wave also occurs like the case of Δφ=0.Meanwhile,the amplitudes ofExnear the point(z=40 cm,∣x∣=3 cm)on the slow-wave trajectory,(z=115 cm,∣x∣=1.6 cm)on the place where the slowwave field and mode conversion field are superimposed,(z=?75 cm,|x|=1.0 cm)on the place that only has fastwave field and(z=?300 cm,|x|=1.6 cm)on the place where mode conversion predominates are210,300,60 and 230 V cm?1,respectively.This electric field distribution is strong evidence for the existence of two propagation processes.For Δφ=π/4 and Δφ=π/2,only the slow wave propagates and the amplitudes ofExare210 and 170 V cm-1,respectively,as shown in figure 10(b).This is because the lowkzpart of the spectrum launched by the antenna(either the main lobe or the sidelobe)just does not excite,as shown in figure 6(c).For Δφ=3π/ 8,the slow wave and mode conversion both existed in figure 10(c)which is similar to Δφ=π/ 8and the amplitudes ofExnear the point(z=10 cm,∣x∣=3 cm)on the slow-wave trajectory,(z=60 cm,∣x∣=1.6 cm)on the place where the slow-wave field and mode conversion field are superimposed,(z=75 cm,∣x∣=1.0 cm)on the place that only has a fast wave and(z=-320 cm,∣x∣=1.6 cm)on the place where mode conversion predominates are 170,210,50 and 150Vcm-1,respectively.

    4.3.Particle inchoate response under injected waves with different antenna phasing

    In order to guide the experiment better,the earlier plasma response by intense LHW needs to be considered here.Under the action of electrostatic oscillation forceE x0qcos(ωt),the influence of the magnetic field on ions can be ignored and the ions’main movement is along thexdirection with a trajectory approximately that of a straight line.The movement of electrons is mainly through electric drift movement in the electrostatic field and it is along theydirection.Certainly,the electrons also have a motion component in thexdirection.When lower hybrid resonance conditions are achieved,both electrons and ions should be affected at the inchoate stage.The particle movement associated with the coherent wave and the drift motion near the LHW resonance layer leads to an increase in the initial plasma energy,and this effect at different phasings is studied.

    Our simulation of the particle response results well agrees with above description.The plasma-averaged kinetic energy simulated by PIC also shows thatandare relatively strong and other kinetic energy components of particles are basically close to noise level.Note that the wave itself contains a certain amount of energy,where the second term in the bracket indicates the portion of the charged-particle kinetic energy that is associated with the coherent wave motion,i.e.part of the wave energy is intrinsically stored by particle,and as the wave penetrates to the interior,the portion of the electrostatic energy becomes large(the slow wave becomes more electrostatic).Therefore,the plasma energy increased notably along the wave trace.On the other hand,as the wave reached the resonance layer,the perpendicular phase velocity decreased dramatically.Therefore,the wave could interact with plasma,which produces an additional energy transfer channel.As can be seen from figures 11 and 12,the energy deposition of bothandare similar to the trajectories ofExand the kinetic energy increases more obviously near the slow-wave resonance layer att=134 ns.In addition,decreases from 4- 6 eV to about 0.05 eV anddecreases from 1- 2 eV to 0.05 eV when the antenna phasing changes Δφ=0 to Δφ=π.

    Meanwhile,the time evolutions of plasma absorption energyEabsforandwith different phasings are compared and analyzed.TheEabsincreases linearly and the power absorption of ions is greater than that of electrons.The absorption powers of ions and electrons as a function of the antenna phasing are shown in figure 13.ThePabsfor ions(electrons)decreases linearly from30 W(10 W)to 2 W(0.5 W)with the antenna phasing increasing from Δφ=0 to Δφ=π/4 and decreasing slowly from2 W(0.5 W)to about0.5W(0.06 W)with the antenna phasing increasing from Δφ=π/4 to Δφ=π.The strong heating effect of low phased antenna is due to the existence of the mode conversion mechanism,which improves the plasma resonance absorption.

    5.Conclusion

    In this work,the 2D PIC simulation framework for LHWs launched by phased array antenna in nonuniform plasma is applied to a linear device.The reliability and accuracy of the program for cold-plasma wave dispersion relation and propagation can be well verified by theoretical calculation.

    Simulation results show that the plasma absorption power spectrum is well consistent with the antenna power spectrum,which means we can use the antenna power spectrum to calculate the wave accessibility conditions and coupling effect.Meantime,in order to select a better heating method,the effect produced by the sidelobe of the antenna spectrum should also be considered in addition to the main lobe of the antenna spectrum.

    Detailed analysis of wave trajectory over time for Δφ=0 shows that the wave packet radially penetrates to the plasma center as a fast wave with highkzspectrum and gradually converts into a slow wave near the LHR layer.It has been suggested that mode conversion and tunneling effect can be used to enhance the efficiency of plasma heating in fusion plasmas[38].The phenomenon reported here encourages us to develop such experiments in a linear device to systematically study the heating efficiency of the phased array antenna.As the antenna phasing gradually increases,the slow-wave propagation structure has a certain directivity.Meanwhile,the slow-wave propagation structure gradually strengthens and the mode conversion process gradually disappears.When the antenna phasing is Δφ=π,the propagation direction is symmetric and there is only the slow-wave propagation process.The energy is deposited near the LHR layers as expected in this case.Since the electric field componentExexcited in plasma is strongest,the kinetic energy components of(ions mainly accelerated byE q x)and(electrons mainly accelerated bydisplay obvious improvement,while the other kinetic energy components are still at the noise level.

    Finally,the energy coupling effect of plasma gradually decreases until saturation with the antenna phasing increases.Based on the simulation results,it is better to use the antenna with low Δφto achieve better coupling.However,this does not mean that we must use the low-phasing phased array antenna,because it can easily spark breakdown in high-power experiments.In addition,the high power can be fed into plasma quietly and reposefully for the slow wave excited by a large phasing antenna.If we need directional wave propagation,for example,heating the center plasma with the RF wave launched in the tandem mirror,the antenna phasing can be set up to Δφ=π/2 or -π/2,which can realize remote plasma heating.In general,our studies here not only fill the void of PIC simulation for LHRH with phased array antenna coupling in the linear device,but provide strong guidance for linear device experiments in the future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China(No.2017YFE0301802)and National Natural Science Foundation of China(Nos.11905220,11775219 and 12175226).

    猜你喜歡
    李清光輝江山
    發(fā)光的招牌
    如詩(shī)如畫(huà)的江山
    醉了江山醉了我
    青年歌聲(2020年10期)2020-10-23 09:55:56
    春在飛
    火烈鳥(niǎo)
    童話世界(2019年26期)2019-09-24 10:57:36
    就在家門(mén)口
    世界家苑(2018年11期)2018-11-20 10:50:58
    黨的光輝
    繪一紙江山,醉一場(chǎng)迷夢(mèng)
    江山明月在,我發(fā)我的呆
    光輝的七月
    久久99热6这里只有精品| 亚洲国产精品成人综合色| 国产精品人妻久久久影院| 精品国产三级普通话版| 草草在线视频免费看| 神马国产精品三级电影在线观看| 九九在线视频观看精品| 99久久九九国产精品国产免费| 日韩国内少妇激情av| 成人永久免费在线观看视频| 日韩欧美在线乱码| 亚洲人成网站高清观看| 国产 一区 欧美 日韩| 国产av一区在线观看免费| 亚洲国产精品久久男人天堂| 男人狂女人下面高潮的视频| 免费看日本二区| 中出人妻视频一区二区| 亚洲av电影不卡..在线观看| 欧美3d第一页| 91精品国产九色| 国产v大片淫在线免费观看| 国产视频内射| 麻豆精品久久久久久蜜桃| 热99re8久久精品国产| 国产亚洲欧美98| 99热这里只有是精品在线观看| 国产精品美女特级片免费视频播放器| 久久精品夜色国产| 99在线视频只有这里精品首页| 久久国内精品自在自线图片| 一区二区三区免费毛片| 日韩高清综合在线| 亚洲精品久久国产高清桃花| 69av精品久久久久久| 国产精品久久视频播放| 99久久精品国产国产毛片| 99在线视频只有这里精品首页| 51国产日韩欧美| 中文字幕精品亚洲无线码一区| 免费看av在线观看网站| 国产91av在线免费观看| 精品99又大又爽又粗少妇毛片| 国产精品久久电影中文字幕| 国产av一区在线观看免费| 久久久精品大字幕| 国产精品人妻久久久久久| av在线亚洲专区| 国产伦在线观看视频一区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩东京热| 国产精品.久久久| 国产高清不卡午夜福利| 日本黄色视频三级网站网址| 寂寞人妻少妇视频99o| 日韩欧美 国产精品| 亚洲精品久久久久久婷婷小说 | 成人av在线播放网站| 午夜激情欧美在线| 嘟嘟电影网在线观看| 99热这里只有精品一区| 久久久a久久爽久久v久久| 国产伦精品一区二区三区四那| 亚洲无线观看免费| 国产白丝娇喘喷水9色精品| 亚洲国产高清在线一区二区三| 午夜福利在线观看免费完整高清在 | 免费av不卡在线播放| 国产午夜福利久久久久久| 22中文网久久字幕| 日韩一本色道免费dvd| eeuss影院久久| 久久久成人免费电影| 男女边吃奶边做爰视频| 午夜亚洲福利在线播放| 午夜免费激情av| 简卡轻食公司| 三级毛片av免费| 夜夜夜夜夜久久久久| 欧洲精品卡2卡3卡4卡5卡区| 国产色爽女视频免费观看| 99久久人妻综合| 免费观看精品视频网站| 欧美日韩国产亚洲二区| 一个人看的www免费观看视频| 亚洲一区二区三区色噜噜| 亚洲精品久久久久久婷婷小说 | 国产精品.久久久| 身体一侧抽搐| 此物有八面人人有两片| 3wmmmm亚洲av在线观看| 精品午夜福利在线看| 超碰av人人做人人爽久久| 最后的刺客免费高清国语| 久久久色成人| 久久草成人影院| 高清毛片免费看| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| av在线蜜桃| 深夜a级毛片| 国产高清视频在线观看网站| 久久久精品欧美日韩精品| 嫩草影院入口| 国内精品宾馆在线| 干丝袜人妻中文字幕| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱 | 99riav亚洲国产免费| 少妇人妻精品综合一区二区 | 欧美不卡视频在线免费观看| 身体一侧抽搐| 亚洲精品日韩av片在线观看| 高清日韩中文字幕在线| av在线天堂中文字幕| 日韩欧美精品免费久久| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久丰满| 成人欧美大片| 欧美激情国产日韩精品一区| 麻豆久久精品国产亚洲av| 亚洲国产精品sss在线观看| 国产精品一及| 欧美一区二区亚洲| 六月丁香七月| 在线免费观看不下载黄p国产| 欧美高清性xxxxhd video| 欧美变态另类bdsm刘玥| 欧美不卡视频在线免费观看| 大型黄色视频在线免费观看| 亚洲精品成人久久久久久| 五月玫瑰六月丁香| 女人十人毛片免费观看3o分钟| 人妻少妇偷人精品九色| 中文字幕免费在线视频6| 天堂av国产一区二区熟女人妻| 三级男女做爰猛烈吃奶摸视频| 久久欧美精品欧美久久欧美| 国产高清激情床上av| 91久久精品国产一区二区三区| videossex国产| 欧美色欧美亚洲另类二区| 中文字幕人妻熟人妻熟丝袜美| 国产成人午夜福利电影在线观看| 久久久久国产网址| av在线蜜桃| 久久这里只有精品中国| 国产一区二区激情短视频| 欧美成人a在线观看| 午夜激情福利司机影院| 99久久成人亚洲精品观看| 小蜜桃在线观看免费完整版高清| 国内精品一区二区在线观看| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 国产一区二区在线av高清观看| 天天躁日日操中文字幕| 99热6这里只有精品| 观看免费一级毛片| 久久亚洲国产成人精品v| 国产成人精品久久久久久| 国产高清激情床上av| 国产视频首页在线观看| 99久久精品国产国产毛片| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 你懂的网址亚洲精品在线观看 | 精华霜和精华液先用哪个| 丰满乱子伦码专区| 国产成人影院久久av| 99久国产av精品| 精品久久久久久久人妻蜜臀av| 女同久久另类99精品国产91| 91aial.com中文字幕在线观看| 色综合站精品国产| 亚洲精品久久国产高清桃花| 性欧美人与动物交配| 久久久久久久亚洲中文字幕| 欧美激情久久久久久爽电影| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 久久精品影院6| 一边摸一边抽搐一进一小说| 中出人妻视频一区二区| 麻豆一二三区av精品| 国产午夜福利久久久久久| 91麻豆精品激情在线观看国产| 夜夜爽天天搞| 久久99热6这里只有精品| 联通29元200g的流量卡| 99视频精品全部免费 在线| 黄片wwwwww| 中文字幕熟女人妻在线| 久久午夜亚洲精品久久| 国产精品永久免费网站| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站 | 国产精华一区二区三区| 日本在线视频免费播放| 99久久九九国产精品国产免费| 久久人人精品亚洲av| a级毛片免费高清观看在线播放| 国内精品宾馆在线| 国产久久久一区二区三区| 18+在线观看网站| 天天躁夜夜躁狠狠久久av| 日韩欧美一区二区三区在线观看| 国产黄片视频在线免费观看| 韩国av在线不卡| 国产 一区 欧美 日韩| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 国产一区二区三区在线臀色熟女| av女优亚洲男人天堂| 久久人妻av系列| av天堂中文字幕网| 少妇丰满av| 两个人视频免费观看高清| 欧美色欧美亚洲另类二区| 18+在线观看网站| 啦啦啦韩国在线观看视频| 变态另类成人亚洲欧美熟女| 精品久久久久久久久亚洲| 校园人妻丝袜中文字幕| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 一级黄色大片毛片| 最新中文字幕久久久久| 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 国产伦一二天堂av在线观看| 久久久久久九九精品二区国产| 中文精品一卡2卡3卡4更新| 色播亚洲综合网| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 国产精品无大码| 偷拍熟女少妇极品色| 青春草国产在线视频 | 亚洲人成网站在线播放欧美日韩| 午夜a级毛片| 亚洲av一区综合| 久久草成人影院| 国产免费男女视频| 亚洲av中文av极速乱| 亚洲精品粉嫩美女一区| 日本欧美国产在线视频| 乱码一卡2卡4卡精品| 在线观看66精品国产| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 日韩国内少妇激情av| 久久精品国产自在天天线| 我要看日韩黄色一级片| 亚洲成a人片在线一区二区| 尾随美女入室| ponron亚洲| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 午夜老司机福利剧场| 又爽又黄a免费视频| 人人妻人人澡人人爽人人夜夜 | 一本久久中文字幕| 日本三级黄在线观看| av福利片在线观看| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 精品日产1卡2卡| 一个人看的www免费观看视频| 日日撸夜夜添| 一本一本综合久久| 欧美潮喷喷水| 一进一出抽搐gif免费好疼| 亚洲国产欧美人成| 久久久久网色| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕 | 一卡2卡三卡四卡精品乱码亚洲| 久久久久网色| 一夜夜www| 久久久久久九九精品二区国产| 青春草国产在线视频 | 国产精品一区二区三区四区久久| 国产一区二区在线av高清观看| 久久久久网色| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 少妇熟女欧美另类| 国产探花极品一区二区| avwww免费| 99久久精品国产国产毛片| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 深夜精品福利| 99在线视频只有这里精品首页| 99久久精品一区二区三区| 99国产极品粉嫩在线观看| АⅤ资源中文在线天堂| 久99久视频精品免费| 久久久欧美国产精品| 黄片无遮挡物在线观看| 丝袜美腿在线中文| 亚洲精品456在线播放app| 亚洲欧美日韩东京热| 成人国产麻豆网| 最近中文字幕高清免费大全6| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 亚洲成人久久爱视频| 内射极品少妇av片p| 婷婷六月久久综合丁香| 一本一本综合久久| av专区在线播放| 日本五十路高清| 久久6这里有精品| 精品久久久久久久久久免费视频| 日韩精品青青久久久久久| 青春草亚洲视频在线观看| 99久国产av精品| 亚洲成人av在线免费| 亚洲av免费在线观看| 久久国内精品自在自线图片| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 只有这里有精品99| 亚洲av熟女| 亚洲在线自拍视频| 亚洲真实伦在线观看| 亚洲五月天丁香| 99精品在免费线老司机午夜| 国产精品无大码| 亚洲精品久久国产高清桃花| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 好男人视频免费观看在线| 日韩视频在线欧美| 国产av在哪里看| 成人无遮挡网站| 成人美女网站在线观看视频| 22中文网久久字幕| 两个人视频免费观看高清| 成人午夜精彩视频在线观看| 又粗又爽又猛毛片免费看| а√天堂www在线а√下载| 99热这里只有精品一区| 国内精品美女久久久久久| av在线天堂中文字幕| 高清在线视频一区二区三区 | 亚洲国产日韩欧美精品在线观看| 亚洲国产精品sss在线观看| 国产精华一区二区三区| 中文资源天堂在线| 国产高清激情床上av| 简卡轻食公司| 大香蕉久久网| 国产成人福利小说| 校园春色视频在线观看| 日本-黄色视频高清免费观看| a级毛片a级免费在线| 国产精品永久免费网站| 12—13女人毛片做爰片一| 岛国在线免费视频观看| 国产成人精品一,二区 | 亚洲成a人片在线一区二区| 日本成人三级电影网站| a级毛片a级免费在线| 久久精品国产亚洲av天美| 又粗又爽又猛毛片免费看| 卡戴珊不雅视频在线播放| 免费一级毛片在线播放高清视频| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 中文资源天堂在线| 99久久精品热视频| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 天堂√8在线中文| 欧美极品一区二区三区四区| 亚洲成人久久性| 午夜亚洲福利在线播放| 丝袜喷水一区| 亚洲成人中文字幕在线播放| 欧美色视频一区免费| 岛国毛片在线播放| 精品久久国产蜜桃| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| 亚州av有码| 一级av片app| 日本黄色视频三级网站网址| 日韩成人av中文字幕在线观看| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 亚洲av免费在线观看| 亚洲精品456在线播放app| 亚洲一区二区三区色噜噜| 一夜夜www| 午夜视频国产福利| 日日撸夜夜添| 女人被狂操c到高潮| 久久精品91蜜桃| 女人十人毛片免费观看3o分钟| 一级毛片aaaaaa免费看小| 久久这里只有精品中国| 中文字幕精品亚洲无线码一区| 三级经典国产精品| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 最后的刺客免费高清国语| 亚洲人成网站在线观看播放| 久久中文看片网| 国产v大片淫在线免费观看| 亚洲成人久久性| 男女视频在线观看网站免费| 日韩在线高清观看一区二区三区| 丰满人妻一区二区三区视频av| 一级av片app| 91午夜精品亚洲一区二区三区| 免费搜索国产男女视频| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 国产日本99.免费观看| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 直男gayav资源| 亚洲欧美精品专区久久| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 久久精品国产亚洲网站| 我的老师免费观看完整版| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 亚洲国产欧美人成| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 美女黄网站色视频| 人妻久久中文字幕网| 最好的美女福利视频网| 一本一本综合久久| 夫妻性生交免费视频一级片| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 青春草国产在线视频 | 国产成人福利小说| 直男gayav资源| av国产免费在线观看| 精品无人区乱码1区二区| 国产精品一区二区性色av| 插阴视频在线观看视频| h日本视频在线播放| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 黑人高潮一二区| 亚洲第一电影网av| 欧美bdsm另类| 日韩一区二区三区影片| 91久久精品电影网| 男人的好看免费观看在线视频| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 青春草视频在线免费观看| 国产精品,欧美在线| 亚洲人成网站在线播| 免费观看a级毛片全部| 非洲黑人性xxxx精品又粗又长| 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 久久久久久久久久成人| 九九热线精品视视频播放| 国产精品永久免费网站| 午夜a级毛片| 欧美丝袜亚洲另类| 欧美精品一区二区大全| 久久九九热精品免费| 女同久久另类99精品国产91| 嫩草影院新地址| 中文字幕av在线有码专区| 国产成人福利小说| 国产色爽女视频免费观看| 日日撸夜夜添| 久久欧美精品欧美久久欧美| 久久九九热精品免费| 亚洲色图av天堂| av在线播放精品| 国产伦一二天堂av在线观看| 国产视频首页在线观看| 成人欧美大片| 中文精品一卡2卡3卡4更新| 日本一本二区三区精品| 久久99热这里只有精品18| 亚洲人成网站在线播| 26uuu在线亚洲综合色| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 三级毛片av免费| 久久热精品热| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 久久午夜亚洲精品久久| 在线天堂最新版资源| 一区二区三区免费毛片| 日本成人三级电影网站| 国产精品久久久久久av不卡| 亚洲国产精品合色在线| 免费观看人在逋| 中国美白少妇内射xxxbb| 久久久久久国产a免费观看| 国产日韩欧美在线精品| 国产成人91sexporn| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻视频免费看| 亚洲一区高清亚洲精品| 此物有八面人人有两片| av女优亚洲男人天堂| 亚洲成人久久性| 麻豆国产av国片精品| 91久久精品电影网| 精品一区二区三区视频在线| 91久久精品电影网| 51国产日韩欧美| 此物有八面人人有两片| 精品无人区乱码1区二区| 日韩av不卡免费在线播放| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 99视频精品全部免费 在线| 天天躁日日操中文字幕| 在线a可以看的网站| 毛片一级片免费看久久久久| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 伦理电影大哥的女人| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 少妇猛男粗大的猛烈进出视频 | ponron亚洲| 精品人妻熟女av久视频| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 午夜福利在线在线| 性欧美人与动物交配| 久久国产乱子免费精品| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 亚洲国产精品国产精品| 国产精品免费一区二区三区在线| 欧美一级a爱片免费观看看| 床上黄色一级片| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| 亚洲欧美成人精品一区二区| 国产黄色小视频在线观看| 国产免费男女视频| 两个人视频免费观看高清| 国产精品一区二区在线观看99 | 精品久久久久久久久久免费视频| 97超视频在线观看视频| 可以在线观看毛片的网站| 有码 亚洲区| 国产伦在线观看视频一区| 69人妻影院| 女同久久另类99精品国产91| 一本一本综合久久| 国产高潮美女av| 午夜激情福利司机影院| 亚洲乱码一区二区免费版| 久久精品国产99精品国产亚洲性色| 国产 一区精品| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| av在线老鸭窝| 色综合站精品国产| 国产成人freesex在线| 卡戴珊不雅视频在线播放| 高清午夜精品一区二区三区 | 永久网站在线| 欧美xxxx性猛交bbbb| 91av网一区二区| 日本在线视频免费播放| 精品午夜福利在线看| 日韩欧美在线乱码| 日日干狠狠操夜夜爽| 国产熟女欧美一区二区| 麻豆成人午夜福利视频| 亚洲乱码一区二区免费版| 欧美高清性xxxxhd video| 国产成年人精品一区二区| 看黄色毛片网站| 嫩草影院新地址| 插逼视频在线观看|