• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of liquid meniscus formation in the ionic liquid electrospray process

    2022-08-01 11:33:58XinyuLIU劉欣宇HanwenDENG鄧涵文YimingSUN孫逸鳴andXiaomingKANG康小明
    Plasma Science and Technology 2022年7期

    Xinyu LIU(劉欣宇),Hanwen DENG(鄧涵文),Yiming SUN(孫逸鳴)and Xiaoming KANG(康小明)

    Shanghai Frontier Science Center for Gravitational Wave Detection,School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of China

    Abstract Though tremendous efforts have been made to investigate electrospray,some aspects,such as the evolution of the menisci on the micropores of porous emitter tips and the transient response of the meniscus during the polarity alternation,need to be further understood.This paper presents a computation fluid dynamics(CFD)model to describe the meniscus formation in the ionic liquid electrospray process.The CFD model,based on the Taylor–Melcher leaky dielectric fluid theory and the volume of fluid(VOF)method,is validated by experiments.The evolution of the meniscus on the basis of a micropore is presented using two typical ionic liquids,EMI-BF4 and EMI-Im.The influences of the pore size,flow rate and applied voltage on the formation of the meniscus have been studied.Results show that a larger pore is more likely to start emission,and the time consumed for liquid meniscus formation decreases with increasing applied voltage and flow rate.Further,it is found that alternation of polarity does not destroy the structure of the meniscus but retards the formation process,and a faster polarity alteration leads to a shorter delay in meniscus formation time.

    Keywords:electrospray,ionic liquid,electric propulsion,liquid meniscus,CFD simulation

    1.Introduction

    As a novel electric propulsion technology,ionic liquid electrospray thrusters(ILETs)are capable of providing thrust ranging from several μN to thousands of μN[1,2].ILETs have the advantages of a high specific impulse,small volume and low power,making them excellent candidates for the propulsion system of nanosatellites.ILETs are developed based on the electrospray phenomenon.Conductive fluids subjected to strong electric fields deform from a rounded shape into a conical structure and emit droplets,ions or a mixture of both[3],which is known as electrospray.Electrospray has been studied for more than one hundred years,since the early 20th century[4].Colloid thrusters are the early application of electrospray in the space propulsion area[5–7].In a colloid thruster,doped organic solvents are utilized as the propellant.However,colloid thrusters suffered from many issues such as having a high operating voltage,low efficiency and difficulties in the fabrication of the capillary array.In 2003,a novel propellant,1-ethyl-3-methyl imidazolium tetrafluoroborate(EMI-BF4),was first tested as a propellant by Romero-Sanzet al[8].In their experiments,pure ion emission was found.The propellant EMI-BF4is one of the typical ionic liquids,which are molten salts at room temperature.Ionic liquids exhibit high electrical conductivities,low volatility and thermal stability,exhibiting a better prospect of improving the propulsion efficiency and the specific impulse[9].Since then,ionic liquids have been applied in electrospray and ILETs have emerged.

    An ILET consists of an emitter,an extractor and a propellant feeding system as depicted in figure 1.The emitter can be a capillary,an externally wetted needle,or a porous tip[10–12].To start the thruster,an electric potential difference is applied between the emitter and the extractor,and a strong electric field is formed between the two electrodes.The electric field attracts ions to accumulate at the interface.As the voltage increases to a certain value,called the ‘starting voltage’,a liquid meniscus is formed based on the emitter and pulled away from its initial position.Ions or charged droplets are extracted from the meniscus tip.

    The formation of the meniscus is the physical basis of the ILETs,which is a complex process involving the coupling of electrostatic pressure,fluid flow and surface tension.In 1964,Taylor assumed a perfect balance between the electrostatic pressure and surface tension and proposed a simplified steadystate equilibrium model[13],indicating that the half cone angle of the cone is 49.3°.However,the apex of the cone is a singularity and it will emit charged particles,which is known as the cone-jet model.Early cone-jet models[14,15]focused mainly on the scaling factors in electrospray.In later studies,Higuera[16]presented a numerical model to investigate the structure of the flow in the transition region.Hartmanet aldeveloped a physical model to calculate the shape of the liquid cone and jet[17].Coffmanet alpresented a family of equilibrium meniscus structures to reveal the pure ion regime[18].However,those calculations started from an assumed condition,such as a certain shape of the meniscus or charge distribution,and could only analyze the steady mode.Recently,some CFD codes have been utilized to simulate the dynamic behavior of the electrospray process.Zeng as well as Senet alreported simulations of the Taylor cone–jet by FLOW-3D[19,20].Apart from CFD simulations,molecular dynamics(MD)simulations were also implemented to investigate the electrospray process.For example,Borneret alestablished a MD model coupled to a 3D Poisson solver and found that an increase in the potential generated higher monomer and total currents[21].Mehtaet alinvestigated the effects of an external electric field on two ionic liquids using MD methods[22].Zhanget alstudied the effect of different interaction potential models on the MD simulations of electrospray and compared electrospray behaviors for the capillary emitter and the hybrid emitter[23,24].Compared to the CFD methods,the MD simulation provides a deep insight into the formation and the products of electrospray at atomistic scale.However,restricted to the computation capabilities,the size of the model and the quantities of the molecules built in the MD simulation is usually far smaller than the real scale,and some macro parameters,such as pressure,are difficult to reflect in the MD simulation.

    Though tremendous efforts have been made in the investigation into meniscus formation,some aspects of the process require greater understanding.For example,the evolution of the meniscus formed on the micropores of the porous tip is difficult to capture in the vacuum chamber due to the small sizes and the focus issues.For the capillary emitter,the inner diameter is hundreds of microns,and the distance between the electrodes is generally several millimeters.The meniscus shape can be directly observed in the atmosphere.It can also be captured in the vacuum chamber,using a macro camera set up outside the chamber to take pictures through the porthole glass.However,for the porous emitter,the tip size of the emitter is usually several microns to tens of microns,and the diameter of the micropores on the emitter tip is only a few microns.Besides,the emitter-to-extractor distance is usually tens to hundreds of microns.Thus,it is very likely to be affected by the breakdown of the air between the two electrodes when operating in the atmosphere.When ignited in the vacuum,it is also difficult to focus on the liquid meniscus stemming from the micropores through the porthole glass.An attempt was made at the Air Force Institute of Technology to photograph the meniscus on the porous emitter in the vacuum chamber.However,it was ultimately unsuccessful due to focusing problems[25].Thus,it is more feasible to study the meniscus formation process by means of simulation.Besides,the ILETs can emit either positive or negative particles by alternating the voltage polarity of the emitter,and this property is significant in the suppression of electrochemical reactions and neutralization of the plume[26,27].However,the transient response during the voltage polarity alternation of the ILETs has not been studied.Therefore,this work is intended to build a CFD model of electrospray with a porous tip as its emitter and get a greater understanding of the electrospray process by simulation methods.

    In the following sections,the theory of the ionic liquid electrospray process is outlined in section 2.Then a CFD model of meniscus formation is established and validated in section 3.The evolution of the meniscus on the basis of a micropore and the transient response of the meniscus during the polarity alternation are studied,and the results and discussion are revealed in section 4.

    2.Theory of the ionic liquid electrospray process

    The CFD simulation is based on the Taylor–Melcher leaky dielectric fluid model using the volume of fluid(VOF)[28]method to track the liquid–gas interface.The simulation is achieved by the CFD codes of FLOW-3D.FLOW-3D provides several physics modules to help the users build and calculate the model.The numerical methods are internally integrated in the physical modules.In the simulation,the‘electromechanics module’,‘surface tension module’,and‘viscosity and turbulence module’ are used.

    The liquid meniscus formation stage can be described by Navier–Stokes equations governing the fluid motion and Poisson equation controlling the electrostatic phenomena.Assuming the liquid to be incompressible(of constant densityρ)and the constant viscosity to beη,and coupling electrostatic effects to fluid dynamics,the motion of the fluid can be described as

    Besides,to track the dynamic motion of the interface,the volume fraction functionFis governed by the kinematic equation:

    3.Modelling and validation

    3.1.Modelling of the ionic liquid electrospray process

    The schematic figure of the simulation model is shown in figure 2(a).A channel serves as a capillary emitter or a micropore on the porous emitter tip.The ionic liquid is transported from the bottom of the channel.The extractor is a solid plate placed upstream from the emitter.A high voltage differenceV0is applied between the two electrodes so that a sufficiently high electric field is formed between the two electrodes.

    The equations presented in section 2 are solved by the codes of FLOW-3D.In the simulation,the model is axisymmetric.Thus,a uniform cylindrical mesh is selected to reduce the computation cost.When determining the size of the meshes,both the simulation accuracy and computation efficiency should be considered.In the initial state,the channel is filled with liquid.The boundary conditions are described in figure 2(b).Boundary 1 is the inlet boundary,settingu z=u0.Boundary 2 and boundary 4 are set as the symmetric boundary conditions.Boundary 3 is the outflow boundary.As for electrical boundary conditions,the electric potential of the emitter isV0while the extractor is set as 0 V.The mechanical boundary condition at the interface is governed by

    3.2.Validation of the established model

    Although the microfluidic simulation model is established in section 3.1,the accuracy of the model needs to be verified before further simulation analysis.To validate the model,a high-speed camera(Phantom V2012)with a macro lens(Tokina 100 mm F/2.8D)is used to capture the morphology of the liquid meniscus during the ignition experiment of a capillary emitter in the atmosphere.In the experiment,the capillary is made of stainless steel with an inner diameter of 150 μm and an outer diameter of 300 μm.The distance between the capillary emitter and the extractor is 2 mm,and the voltage between the two electrodes is maintained at 4000 V.The propellant is ionic liquid EMI-BF4,which is supplied by a flow pump with a flow rate of 1×10?11m3s?1.In the simulation,the simulation conditions are consistent with the experimental parameters,and the mesh size is set as 15 μm.

    Figure 3 shows the comparison between the liquid meniscus shape obtained in stable emission and microfluidic simulation results.The shape of the liquid meniscus obtained in simulation is highly consistent with the experimental image.The measured height of the meniscus is 248 μm and the simulated value is 233 μm,with an error of 6.0%.The good consistency between simulation and experiment shows that the microfluidic model can reflect the formation process of liquid meniscus well.

    Figure 1.Schematic of ionic liquid electrospray setup.

    Figure 2.Modelling and meshing of the ionic liquid electrospray process:(a)simulation model and(b)meshes and boundary conditions.

    Figure 3.Comparison of the meniscus shape in stable emission with microfluidic simulation result:(a)captured meniscus and(b)the simulated result.

    Figure 4.Meniscus evolutions at din=10 μm, V0=2400 V and Q=1.15×10?11 m3 s?1:(a)EMI-BF4 and(b)EMI-Im.

    Table 1.Physical properties of EMI-BF4 and EMI-Im.

    3.3.Parameters set in the simulation

    In the simulation,two typical propellants of the ionic liquid electrospray thruster,EMI-BF4and EMI-Im,are selected.The physical properties[18,29,30]of the two liquids are listed in table 1.The simulation of the evolution of the meniscus based on micropores with different inner diametersdinis carried out,including 3 μm,6 μm and 10 μm.The sizes of the micropores are selected according to the typical specification of porous materials,and the corresponding mesh sizes are 0.15 μm,0.3 μm and 0.5 μm,respectively.The distance between the two electrodes is set as 100 μm.When selecting flow rate,the minimum flow rate[31]for stable emission should be satisfied

    To simulate the operation of the ILETs at a single voltage polarity,the potential of the emitterV0is set from 2000 to 2800 V.Furthermore,the operation of the ILETs at the alternation of the voltage polarity is also simulated.The polarity alteration means that a positive voltageV0is decreased to a negative value ?V0.In practice,the voltage alteration cannot be achieved instantaneously and needs a transitional period.Thus,the voltageV0is set to decline to?V0linearly in the period oft1tot2in the simulation,in whicht1is the time when the polarity alteration starts andt2is the time finishing the polarity reversal,and different conditions of polarity alternation are implemented.

    4.Results and discussion

    4.1.Evolution of the liquid meniscus

    The meniscus evolution of EMI-BF4and EMI-Im in a typical condition is shown in figure 4.The volume fraction function represents whether the cells are occupied by the liquid.It is found that,as the liquid keeps flowing into the channel,a liquid cone is first formed.Then the tip of the cone elongates and starts to emit charged particles.

    It takes a shorter time for EMI-Im to start emission and EMI-Im forms a longer liquid jet than the EMI-BF4.This is mainly due to the larger dielectric constant and smaller surface tension coefficient.Further,the breakup of the jet tends to produce more droplets.This probably results in greater polydispersity,which was found in previous experiments[32].

    The variation of the electric field intensity along the central axis is presented in figure 5.It keeps a small value in the liquid area,increases sharply in the vicinity of the interface and holds steady in the medium.The electric field intensity at the tip of the meniscus becomes larger as the meniscus spreads,increasing from 107to 108V m?1.The electric field intensity at 20 μs is 1.35×108V m?1.Since the charge accumulated at the tip of the meniscus tip is beyond the Rayleigh limit,the tip of the meniscus breaks up and emits charged droplets.The charged droplet atz=35 μm causes another peak of electric field intensity in figure 5(e).

    During the formation of the liquid meniscus,the pressure distribution inside the liquid meniscus is shown in figure 6.It can be found that there is negative pressure at the tip of the liquid cone.With the gradual feeding of the liquid,the negative pressure at the tip of the liquid cone gradually increases,and the negative pressure near the tip of the liquid meniscus is as high as ?8.5×105Pa at the emission time.

    Figure 7 shows the charge distribution inside the liquid meniscus during its formation.It is found that during the formation of the liquid meniscus,the charge gradually accumulates from two flanks of the meniscus towards the middle of the interface,resulting in emission at the tip.

    Figure 5.Variation of electric field intensity along the central axis in the electrospray of EMI-BF4 at din=10 μm, V0=2400 V,Q=1.15×10?11 m3 s?1:(a)5 μs,(b)10 μs,(c)15 μs,(d)19.5 μs and(e)20 μs.

    Figure 6.Variation of the pressure in the electrospray of EMI-BF4 at din=10 μm, V0=2400 V and Q=1.15×10?11 m3 s?1.

    Figure 7.Variation of the charge density in the electrospray of EMIBF4 at din=10 μm, V0=2400 V and Q=1.15×10?11 m3 s?1.

    Figure 8.Formation of the liquid meniscus at different pore sizes of 3 μm,6 μm and 10 μm(V0=2400 V, Q=1.15×10?11 m3 s?1).

    Figure 9.Meniscus formation time of EMI-BF4 as a function of applied voltage, Q=1.15×10?11 m3 s?1.

    Figure 10.Meniscus formation time of EMI-BF4 as a function of flow rate at V0=2400 V.

    4.2.Influences of the pore size,flow rate,and applied voltage

    The formation of the liquid meniscus at different pore sizes is shown in figure 8.Results show that with the increase in the size of the micropores,the liquid cone is easier to draw out.The smaller the diameter of the micropore,the higher the applied voltage needed to form the liquid cone.This is because the meniscus formed on the pore is more likely to cause instability when the micropore is larger.Thus,a smaller electric field will stimulate instability and lead to emission,which is also consistent with the description of the starting voltage estimation equation of the ILETs.As figure 8 shows,at the applied voltage of 2400 V,micropores with inner diameters of 6 μm and 10 μm can form a liquid cone and produce emission,while the micropores with inner diameters of 3 μm cannot generate any emission.

    Besides,different voltages and flow rates are implemented in the simulation.To obtain the response of the meniscus formation,the meniscus formation time(referring to the time when the first emission occurs),is observed in different simulation parameters.The relation between the applied voltage and the meniscus formation time is shown in figure 9.The meniscus formation time decreases with the applied voltage.As for the shape of the meniscus,at a low voltage of 2000 V,it is a round drop with a sharp tip on the top,while the meniscus turns into a cone at a higher voltage.

    Figure 10 shows the variation in the meniscus formation time with the flow rates.Results show that the meniscus formation time drops with the increase in flow rate.The meniscus formation time is around 1 ms at 50Q0,while it is tens of μs at 5000Q0.

    4.3.Alternation of the voltage polarity after stable emission

    According to the simulation results in section 4.1,with the applied voltageV0=2400 V and the flow rateQ=1.15×10?11m3s?1,the meniscus formation time of EMI-BF4is 20 μs.The time to accomplish a full polarity reversal depends on the power supply circuit,with a minimum value of several microseconds using a high voltage pulse generator.In this work,to study the transient response of the meniscus when the voltage polarity alters after stable emission,two conditions are executed in the simulation,which is condition 1:t1=20 μs andt2=30 μs,representing a slower polarity alteration,and condition 2:t1=20 μs andt2=22 μs,representing a faster polarity alteration.

    As figure 11 shows,when the polarity alteration begins,the emission is interrupted,and then the liquid cone shrinks.After the polarity switch ends,the liquid cone continues to be drawn out,resulting in a second emission.

    Figure 12 presents the charge density at the meniscus apex under the two switching conditions.The charge density at the tip decreases with the decline in positive voltage,reaching zero simultaneously at the moment when the applied positive voltage decreases to zero.As the polarity of the applied voltage turns negative,the negative charge gradually gathers at the tip of the cone.The charge density gradually increases until the emission restarts.It is found that the delay of the meniscus formation is shorter in condition 2,meaning that a faster polarity alteration contributes to a shorter delay in reforming emission.

    Figure 11.Shape of liquid meniscus affected by polarity switch after stable emission(EMI-BF4,V0=2400 V,Q=1.15×10?11 m3 s?1).

    Figure 12.Charge density at the meniscus apex affected by polarity switch after stable emission(EMI-BF4, V0=2400 V,Q=1.15×10?11 m3 s?1).

    The time taken to reform emission after switching to negative polarity is smaller than the time taken to first form emission under the same voltage.The reason is that in the process of polarity switching,although the liquid cone shrinks,it can still maintain a certain radius of curvature,and the charge can accumulate at the tip in a shorter time.

    5.Conclusions

    ILETs are capable of achieving high specific impulse and efficiency within limited volume and power,which can provide micro thrust for nanosatellites.The thruster is developed based on the electrospray phenomenon.Liquid meniscus formation is the physical foundation of the electrospray process.This paper presents a CFD model of meniscus formation.The CFD simulation is based on the Taylor–Melcher leaky dielectric fluid model using the VOF method to track the liquid–gas interface.The dynamic formation process of a meniscus based on a micropore of the porous emitter tip is presented using two typical ionic liquids,EMI-BF4and EMI-Im.The influences of the pore size,flow rate and applied voltage on the formation of the meniscus have been studied.Results indicate that a larger pore is more likely to start emission,and an increased applied voltage and flow rate will reduce the time of meniscus formation.Further,it is found that alternation of polarity does not damage the structure meniscus but just retards the formation process.A faster polarity alteration leads to a shorter delay in meniscus formation time.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(No.52075334).

    国产欧美亚洲国产| 精品亚洲成国产av| 一边摸一边抽搐一进一出视频| 手机成人av网站| 亚洲五月色婷婷综合| 成人特级黄色片久久久久久久| 亚洲av成人一区二区三| 国产精品电影一区二区三区 | 看黄色毛片网站| 亚洲午夜理论影院| 国产1区2区3区精品| 丰满迷人的少妇在线观看| 亚洲成国产人片在线观看| av超薄肉色丝袜交足视频| 满18在线观看网站| 亚洲七黄色美女视频| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清 | 黑人操中国人逼视频| 啦啦啦在线免费观看视频4| 欧美精品av麻豆av| 法律面前人人平等表现在哪些方面| 日韩一卡2卡3卡4卡2021年| 一进一出抽搐动态| 午夜老司机福利片| tocl精华| 久久精品亚洲av国产电影网| 男人的好看免费观看在线视频 | 精品人妻在线不人妻| 国产日韩欧美亚洲二区| av线在线观看网站| 18禁观看日本| 亚洲专区中文字幕在线| 国产精品综合久久久久久久免费 | 亚洲成人国产一区在线观看| 日韩欧美一区视频在线观看| 亚洲美女黄片视频| 大型黄色视频在线免费观看| 日韩免费av在线播放| 中文字幕制服av| 美女视频免费永久观看网站| www.999成人在线观看| 精品国产美女av久久久久小说| 91麻豆精品激情在线观看国产 | 天堂动漫精品| 一二三四社区在线视频社区8| 美女高潮喷水抽搐中文字幕| 99re6热这里在线精品视频| 在线免费观看的www视频| 18禁国产床啪视频网站| 99热只有精品国产| 99国产精品免费福利视频| 捣出白浆h1v1| 黄频高清免费视频| 18禁美女被吸乳视频| 国产成人精品久久二区二区91| 人成视频在线观看免费观看| 欧美日韩成人在线一区二区| 中文字幕人妻熟女乱码| 成熟少妇高潮喷水视频| 亚洲av欧美aⅴ国产| 国产精品久久久人人做人人爽| 午夜两性在线视频| 99精品在免费线老司机午夜| 国产欧美日韩一区二区精品| 日韩熟女老妇一区二区性免费视频| 三上悠亚av全集在线观看| 丝袜美足系列| 久久国产精品人妻蜜桃| 十分钟在线观看高清视频www| 在线观看免费日韩欧美大片| 精品免费久久久久久久清纯 | 伦理电影免费视频| x7x7x7水蜜桃| 亚洲熟女精品中文字幕| cao死你这个sao货| 视频区欧美日本亚洲| 精品人妻在线不人妻| 午夜福利视频在线观看免费| 婷婷成人精品国产| 男女高潮啪啪啪动态图| 午夜福利在线观看吧| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区三| 波多野结衣av一区二区av| 欧美日韩亚洲高清精品| 日韩欧美国产一区二区入口| 亚洲国产毛片av蜜桃av| 亚洲全国av大片| 天堂俺去俺来也www色官网| 色老头精品视频在线观看| 亚洲欧美一区二区三区久久| 看免费av毛片| 久久久久精品国产欧美久久久| 精品欧美一区二区三区在线| 热99re8久久精品国产| 波多野结衣一区麻豆| a级毛片在线看网站| а√天堂www在线а√下载 | 黄色毛片三级朝国网站| 久久影院123| 狂野欧美激情性xxxx| 日本wwww免费看| 香蕉国产在线看| 午夜福利在线观看吧| 久久99一区二区三区| 亚洲性夜色夜夜综合| 久久久水蜜桃国产精品网| 99热只有精品国产| 丰满的人妻完整版| 国产精品香港三级国产av潘金莲| 国产男靠女视频免费网站| 欧美日韩亚洲高清精品| 国产99白浆流出| 久久香蕉精品热| 在线观看66精品国产| 下体分泌物呈黄色| 久久精品亚洲熟妇少妇任你| 精品久久久精品久久久| 亚洲中文日韩欧美视频| 怎么达到女性高潮| 国产日韩一区二区三区精品不卡| 制服人妻中文乱码| 午夜久久久在线观看| 视频区图区小说| 别揉我奶头~嗯~啊~动态视频| 在线观看免费日韩欧美大片| 18禁裸乳无遮挡免费网站照片 | 国产成人精品在线电影| 欧美日韩中文字幕国产精品一区二区三区 | 岛国毛片在线播放| 午夜福利,免费看| 日韩欧美三级三区| 1024香蕉在线观看| 国产欧美日韩一区二区三| 国产高清激情床上av| 久久精品aⅴ一区二区三区四区| 国产淫语在线视频| 啦啦啦免费观看视频1| 在线观看一区二区三区激情| tube8黄色片| tube8黄色片| 久久狼人影院| 亚洲欧美一区二区三区黑人| 日本vs欧美在线观看视频| 男女高潮啪啪啪动态图| 久久久国产一区二区| 老司机午夜十八禁免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 桃红色精品国产亚洲av| 国产精品 国内视频| 男女下面插进去视频免费观看| 丝袜美腿诱惑在线| 免费高清在线观看日韩| 岛国毛片在线播放| 亚洲熟妇熟女久久| a级片在线免费高清观看视频| 欧美av亚洲av综合av国产av| 午夜免费成人在线视频| 黑人巨大精品欧美一区二区蜜桃| 一进一出抽搐gif免费好疼 | 国产欧美日韩一区二区三区在线| 午夜激情av网站| 黑人操中国人逼视频| 久久青草综合色| 久久影院123| 婷婷丁香在线五月| 老司机午夜十八禁免费视频| 午夜精品久久久久久毛片777| a级毛片在线看网站| 亚洲欧美一区二区三区黑人| 免费人成视频x8x8入口观看| 热99久久久久精品小说推荐| 少妇被粗大的猛进出69影院| 99精品欧美一区二区三区四区| 久久久水蜜桃国产精品网| 国产三级黄色录像| 亚洲成av片中文字幕在线观看| 国产91精品成人一区二区三区| 男女之事视频高清在线观看| 男女下面插进去视频免费观看| 国产精品一区二区在线观看99| 99re6热这里在线精品视频| 欧美老熟妇乱子伦牲交| avwww免费| 757午夜福利合集在线观看| 日韩免费高清中文字幕av| 在线观看免费高清a一片| 黄色a级毛片大全视频| 正在播放国产对白刺激| 成熟少妇高潮喷水视频| 女人精品久久久久毛片| 欧美日韩福利视频一区二区| 桃红色精品国产亚洲av| 色精品久久人妻99蜜桃| 男人操女人黄网站| 很黄的视频免费| 成人三级做爰电影| 中文字幕色久视频| 久久久久精品国产欧美久久久| 亚洲欧美日韩高清在线视频| 亚洲av成人一区二区三| 国产精品乱码一区二三区的特点 | 国产精品久久久久久人妻精品电影| a在线观看视频网站| 午夜精品久久久久久毛片777| 99热网站在线观看| 欧洲精品卡2卡3卡4卡5卡区| xxx96com| 亚洲国产欧美网| 成年版毛片免费区| 成人特级黄色片久久久久久久| 亚洲全国av大片| 国产真人三级小视频在线观看| 宅男免费午夜| 国产一区二区激情短视频| 91av网站免费观看| 日韩大码丰满熟妇| 国产极品粉嫩免费观看在线| 久久草成人影院| 久久ye,这里只有精品| 亚洲 欧美一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲专区国产一区二区| 美女视频免费永久观看网站| 国产欧美亚洲国产| 日韩有码中文字幕| 黑人欧美特级aaaaaa片| 亚洲aⅴ乱码一区二区在线播放 | 日本五十路高清| 久久精品国产亚洲av香蕉五月 | 欧美国产精品一级二级三级| 精品国内亚洲2022精品成人 | 色在线成人网| 国产一卡二卡三卡精品| 午夜福利免费观看在线| 老鸭窝网址在线观看| 精品国产一区二区久久| 91在线观看av| 日本五十路高清| 亚洲熟妇中文字幕五十中出 | 中文欧美无线码| 无人区码免费观看不卡| www.熟女人妻精品国产| 亚洲午夜理论影院| 国产亚洲精品久久久久久毛片 | 欧美精品一区二区免费开放| 久久久久视频综合| 日日摸夜夜添夜夜添小说| 女性被躁到高潮视频| 精品电影一区二区在线| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜一区二区| 国产成人精品无人区| 国产成人av教育| 91大片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 成人黄色视频免费在线看| 亚洲男人天堂网一区| 亚洲,欧美精品.| 久久精品国产亚洲av高清一级| 成人黄色视频免费在线看| 多毛熟女@视频| 亚洲欧美一区二区三区久久| 身体一侧抽搐| 在线观看66精品国产| 亚洲国产精品sss在线观看 | 夜夜躁狠狠躁天天躁| 久久久久国产精品人妻aⅴ院 | 超色免费av| 久久久久国产一级毛片高清牌| 91老司机精品| 国产精品国产高清国产av | 男人的好看免费观看在线视频 | 午夜影院日韩av| 高清视频免费观看一区二区| 大型av网站在线播放| 99香蕉大伊视频| www.熟女人妻精品国产| 国产精品久久久久成人av| 午夜视频精品福利| 精品视频人人做人人爽| 国产xxxxx性猛交| 捣出白浆h1v1| 亚洲人成电影观看| 女人被狂操c到高潮| 国精品久久久久久国模美| 女同久久另类99精品国产91| 国产成人系列免费观看| 国产日韩一区二区三区精品不卡| 成人永久免费在线观看视频| 中文字幕制服av| 国产欧美亚洲国产| 中文欧美无线码| 黑人猛操日本美女一级片| 亚洲专区字幕在线| 男人舔女人的私密视频| 亚洲男人天堂网一区| 亚洲五月天丁香| 99久久综合精品五月天人人| 亚洲av成人一区二区三| 欧美日韩亚洲高清精品| 黄片小视频在线播放| 国产成人精品久久二区二区91| 99久久精品国产亚洲精品| 国产精品电影一区二区三区 | 久久人妻福利社区极品人妻图片| 在线观看日韩欧美| xxx96com| 麻豆成人av在线观看| 一区福利在线观看| 亚洲av日韩在线播放| 欧美丝袜亚洲另类 | 黑丝袜美女国产一区| 视频区图区小说| 50天的宝宝边吃奶边哭怎么回事| 激情在线观看视频在线高清 | 日本一区二区免费在线视频| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 一区福利在线观看| 99国产精品一区二区蜜桃av | 丝瓜视频免费看黄片| 在线天堂中文资源库| 中文欧美无线码| 91大片在线观看| 亚洲精品成人av观看孕妇| 在线观看免费视频网站a站| 天堂中文最新版在线下载| 99热网站在线观看| 热re99久久国产66热| 热re99久久精品国产66热6| 亚洲视频免费观看视频| 国产精品久久视频播放| svipshipincom国产片| 精品福利观看| 国产淫语在线视频| 高清黄色对白视频在线免费看| 欧美一级毛片孕妇| 手机成人av网站| 欧美黄色片欧美黄色片| 久久精品91无色码中文字幕| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 一进一出抽搐gif免费好疼 | 亚洲成人国产一区在线观看| 18在线观看网站| 伦理电影免费视频| 亚洲熟女毛片儿| 在线永久观看黄色视频| 一级,二级,三级黄色视频| www.熟女人妻精品国产| 又紧又爽又黄一区二区| 日韩欧美一区二区三区在线观看 | 女人被狂操c到高潮| 欧美人与性动交α欧美软件| 亚洲国产毛片av蜜桃av| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 国产在线一区二区三区精| 90打野战视频偷拍视频| 精品一区二区三区四区五区乱码| 一区二区三区国产精品乱码| 99久久人妻综合| 欧美日韩乱码在线| 狂野欧美激情性xxxx| 免费日韩欧美在线观看| 天天影视国产精品| 亚洲一码二码三码区别大吗| av网站在线播放免费| 一二三四在线观看免费中文在| 一进一出好大好爽视频| 十八禁人妻一区二区| 欧美久久黑人一区二区| 国产无遮挡羞羞视频在线观看| 99精品欧美一区二区三区四区| 日韩有码中文字幕| 精品国产国语对白av| tube8黄色片| 人成视频在线观看免费观看| 成人18禁在线播放| 一区二区三区激情视频| 亚洲熟妇中文字幕五十中出 | 亚洲人成电影免费在线| 亚洲 欧美一区二区三区| www.自偷自拍.com| 叶爱在线成人免费视频播放| 久久久久国产一级毛片高清牌| 老司机在亚洲福利影院| 亚洲专区字幕在线| 女人被躁到高潮嗷嗷叫费观| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区四区五区乱码| 久久草成人影院| 欧美日韩精品网址| 午夜福利,免费看| 久99久视频精品免费| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 欧美久久黑人一区二区| 日韩制服丝袜自拍偷拍| 亚洲av第一区精品v没综合| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 女人久久www免费人成看片| 人妻久久中文字幕网| 一级黄色大片毛片| 捣出白浆h1v1| 国产区一区二久久| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 在线观看免费午夜福利视频| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 夜夜躁狠狠躁天天躁| 老熟女久久久| cao死你这个sao货| 午夜免费鲁丝| 亚洲精品在线观看二区| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 91字幕亚洲| 男女下面插进去视频免费观看| 成人影院久久| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人| 国产高清videossex| 婷婷成人精品国产| 久久人妻福利社区极品人妻图片| 伦理电影免费视频| 午夜精品国产一区二区电影| 一夜夜www| 国产高清videossex| 自线自在国产av| cao死你这个sao货| 脱女人内裤的视频| 国产一区有黄有色的免费视频| 99riav亚洲国产免费| 在线国产一区二区在线| 久久精品熟女亚洲av麻豆精品| 久久午夜亚洲精品久久| 亚洲一区二区三区不卡视频| 精品国产美女av久久久久小说| 视频区图区小说| 手机成人av网站| 国产精品自产拍在线观看55亚洲 | 欧美+亚洲+日韩+国产| 男女午夜视频在线观看| 女性生殖器流出的白浆| 婷婷丁香在线五月| 亚洲精品在线美女| 午夜亚洲福利在线播放| 久久人妻av系列| 老熟女久久久| 午夜福利在线观看吧| 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 99精品欧美一区二区三区四区| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 狠狠婷婷综合久久久久久88av| 久久影院123| 午夜影院日韩av| 欧美精品一区二区免费开放| av不卡在线播放| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人精品二区 | 九色亚洲精品在线播放| 一个人免费在线观看的高清视频| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| a级毛片在线看网站| 在线观看舔阴道视频| 99热只有精品国产| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| 韩国av一区二区三区四区| 99re6热这里在线精品视频| 亚洲第一欧美日韩一区二区三区| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 中文字幕精品免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 国产精品久久电影中文字幕 | 中文字幕人妻丝袜制服| 精品高清国产在线一区| 捣出白浆h1v1| 伦理电影免费视频| av欧美777| 亚洲精品国产一区二区精华液| tube8黄色片| aaaaa片日本免费| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片 | 精品卡一卡二卡四卡免费| 午夜福利,免费看| 黑人欧美特级aaaaaa片| avwww免费| svipshipincom国产片| 国产不卡一卡二| 国产成人欧美在线观看 | 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影| 狠狠婷婷综合久久久久久88av| 男男h啪啪无遮挡| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 777米奇影视久久| 免费在线观看亚洲国产| 妹子高潮喷水视频| 亚洲精品自拍成人| 欧美 亚洲 国产 日韩一| 高清视频免费观看一区二区| √禁漫天堂资源中文www| 国产成人系列免费观看| 操美女的视频在线观看| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 久久久精品区二区三区| 99riav亚洲国产免费| 少妇 在线观看| 一边摸一边抽搐一进一小说 | 黑丝袜美女国产一区| 亚洲成人手机| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 美女高潮喷水抽搐中文字幕| av天堂久久9| 国产免费av片在线观看野外av| 高清av免费在线| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区| av中文乱码字幕在线| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 操美女的视频在线观看| 免费看a级黄色片| 极品人妻少妇av视频| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 丝瓜视频免费看黄片| x7x7x7水蜜桃| 波多野结衣av一区二区av| 首页视频小说图片口味搜索| 亚洲美女黄片视频| 操美女的视频在线观看| 老熟女久久久| 极品人妻少妇av视频| 精品人妻1区二区| 日本vs欧美在线观看视频| 亚洲av成人不卡在线观看播放网| 无人区码免费观看不卡| 好男人电影高清在线观看| 久99久视频精品免费| 亚洲专区中文字幕在线| 在线观看免费午夜福利视频| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| 黄色片一级片一级黄色片| 久久久久久久国产电影| 亚洲av熟女| 一级黄色大片毛片| 超色免费av| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 国产成人精品在线电影| 亚洲色图综合在线观看| 捣出白浆h1v1| 中文字幕高清在线视频| 老司机影院毛片| 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 日韩人妻精品一区2区三区| 一级黄色大片毛片| 黄片大片在线免费观看| 激情视频va一区二区三区| 成年人黄色毛片网站| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 久久人人97超碰香蕉20202| 美女 人体艺术 gogo| 极品少妇高潮喷水抽搐| 女人精品久久久久毛片| 日本欧美视频一区| 国产精品永久免费网站| 亚洲成av片中文字幕在线观看| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 日韩免费高清中文字幕av| 国产精品久久久久久人妻精品电影| 国产精品1区2区在线观看. | av网站在线播放免费| 久久精品国产亚洲av香蕉五月 | 精品视频人人做人人爽| 搡老乐熟女国产| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 午夜福利在线免费观看网站| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 国产精品一区二区精品视频观看|