• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of the effect of aft-loaded magnetic field on multiple ionizations in Hall thruster

    2022-08-01 11:33:46DemaiZENG曾德邁HongLI李鴻JinwenLIU劉金文YongjieDING丁永杰LiqiuWEI魏立秋DarenYU于達(dá)仁andWeiMAO毛威
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:金文

    Demai ZENG(曾德邁),Hong LI(李鴻),2,Jinwen LIU(劉金文),Yongjie DING(丁永杰),2,Liqiu WEI(魏立秋),2,Daren YU(于達(dá)仁),2 and Wei MAO(毛威)

    1 Lab of Plasma Propulsion,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    2 Key Laboratory of Aerospace Plasma Propulsion,Ministry of Industry and Information Technology,Harbin 150001,People’s Republic of China

    3 Qingdao Haier Smart Technology,Qingdao 266100,People’s Republic of China

    4 Beijing Institute of Control Engineering,Beijing 100190,People’s Republic of China

    Abstract It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside,namely the transit from a normal loaded magnetic field to an aft-loaded one,enhances the multiple ionization process in the magnetically shielded Hall thruster.To confirm this conjecture,a comparative study is carried out numerically with a particle-in-cell method.The simulation results prove that compared with the normal loaded magnetic field,the application of aft-loaded magnetic field enhances the multiple ionization process.This study further analyzes the ionization characteristics of the transition from low-charged ions to high-charged ions under two magnetic field conditions and the influence of the magnetic strength of aft-loaded magnetic field on the multiple ionization characteristics.The study described herein is useful for understanding the discharge characteristics of Hall thruster with an aft-loaded magnetic field.

    Keywords:Hall thruster,aft-loaded magnetic field,multiple ionization,electron temperature

    1.Introduction

    A Hall thruster is a type of power device used in the field of electric propulsion,and its main principle is to ionize and accelerate the propellant gas(Xenon in general)using electric and magnetic fields and to generate thrust[1,2].Hall thrusters have the advantage of being highly efficient,of having highly specific impulses and a simple structure.In addition,with the rapid development of the commercial aerospace industry,Hall thrusters will become more widely used in aerospace fields such as the propulsion of small or microsatellites[3,4].

    Hall thruster consists of a discharge channel,anode,magnetic circuit,and cathode.The magnetic field in the Hall thruster is formed by the magnetic circuit,mainly in the radial direction,and the electrons are magnetized,whereas the ions are not.Electrons are emitted from the cathode,they enter the channel,and are captured by the magnetic field.The neutral gas diffuses from the anode to the downstream of the channel.Ions are generated by the ionization collisions between atoms and electrons,and then accelerated by the self-consistent electric field to form thrust.

    Figure 1.Collision section curves:(a)elastic,excitation,and Xe→Xe+ collisions,(b)multiple collisions.

    The magnetically shielded Hall thruster has a significant advantage in extending the service life of a Hall thruster,therefore this technique is widely used[13–16].Hoferet alused anE×Bprobe to measure the proportion of multiple charged ions on two 6 kW thrusters,one provided with magnetic shielding technology and the other without such technology,and found that the application of magnetic shielding significantly enhances the multiple ionization process[17].The main differences between magnetically shielded thrusters and unshielded thrusters in design include,the position of the strong magnetic field region with a positive gradient,the curvature of the magnetic field line near the wall area,and the shape of the discharge channel[18,19].For unshielded thrusters,the magnetic field with a positive gradient is fully located inside the channel,which is a normal loading manner.For magnetically shielded thrusters,part of the magnetic field with a positive gradient is located outside the channel;specifically,the magnetic field peak is shifted from the exit plane to outside.Therefore,it can be called the aft-loading of the magnetic field[20].The experiment confirmed that the ionization zone and acceleration zone move downstream in the magnetically shielded thrusters[18].As a result,part or all of the acceleration zone is located outside the channel.The majority of the potential drop is located downstream from the exit of the channel,which in turn causes great changes in the electron energy conversion process[18].Thus,it is guessed that the transit from a normally loaded magnetic field to an aft-loaded one[20]is the main reason for the enhancement of multiple ionizations in the magnetically shielded Hall thruster.The physical mechanism of it has yet to be clearly explained.Based on this,a numerical simulation is used to compare and analyze the mechanisms of the influence of the two different loading manners of magnetic field on the multiple ionization process,and thereby help to understand the characteristics of the multiple ionization process of a Hall thruster with aft-loaded magnetic field.

    The remainder of this paper is arranged as follows.Section 2 introduces the numerical model and research methods applied.Section 3 describes and analyzes the simulation results.Section 4 provides some concluding remarks.

    2.Research methods

    Particle-in-cell(PIC)simulation is a powerful method to study the physical processes of Hall thrusters[21–24].Because a Hall thruster has an axisymmetric cylindrical structure,its discharge can be considered uniform along the azimuthal direction.Therefore,only the axial(z)and radial(r)directions are considered when constructing the calculation model.Our team has developed a mature PIC platform with a 2D3V framework,which has been used to solve many physical problems.A brief introduction of the PIC model is presented below.The details can be found in[25–30].To investigate the topic of this study,the PIC platform is updated by considering the multiple ionization process.

    2.1.PIC numerical model

    In the previous model,only elastic collision,excitation collision and single ionization collisions between atoms and electrons were considered.In order to study the multiple ionization,a total of eight types of independent collisions between electrons and atoms or ions are considered,where the electron is the incident particle,including an elastic collision,excitation collision,and six types of ionization collisions,namely,Xe→Xe+,Xe→Xe2+,Xe→Xe3+,Xe+→Xe2+,Xe+→Xe3+,Xe2+→Xe3+.In addition,the movement of high-charged ions is also considered.The collision cross-section data of elastic collision,excitation collision and single ionization are the same as those used by Szabo[31]and shown in figure 1(a).The collision crosssection data of multiple ionization collisions are summarized in[32–38]and shown in figure 1(b).The calculation process of an electron collision is optimized using the Monte Carlo Collison(MCC)method and the NULL-collision method proposed by Vahedi[39].After electrons collide,the collision form can be determined through a single estimate.In addition,a Bohm anomalous conduction is also considered in the model[40]and the Bohm collision frequency νBis used to equal this effect:

    whereCBis the semi-empirical coefficient,eis the basic charge quantity,Bis the strength of the magnetic field,andmeis the electron mass.Coulomb and charge exchange collisions have yet to be considered.

    Figure 2.Schematic diagram of simulation domain.

    The induced magnetic field is ignored in the model since its magnitude is much smaller than that of the applied one.Therefore,only the electrostatic model is considered,and the Poisson equation is adopted and numerically solved to obtain the electric field.

    For particle dynamics,the motion of the atoms is processed according to the free molecular flow;the motion of electrons is controlled by an electric and magnetic field;the motion of ions is only influenced by the electric field.

    The renown42 of the Prince and his adventure had gone before him, and the Emperor sat on his throne awaiting the arrival of the Prince and his companions

    Five typical boundary conditions are considered,as shown in figure 2.On the boundary of the anode,the neutral atoms are injected and the potential is set as the discharge voltage.Generally,the material of the discharge channel is BN ceramic.Therefore,the channel wall is regarded as a dielectric boundary.On the boundary of the dielectric wall,a normal electric field is determined by the charge density deposited on the wall.In addition,the secondary electron emission(SEE)effect of an electron-wall collision is considered in the model[41,42].The face of the pole boundary is considered a capacitance boundary,and its potential is determined by the amount of charge deposited on the surface.On the open boundary,electrical neutrality is maintained by injecting electrons,and the potential is set to zero.Moreover,on the symmetry boundary,the radial electric field is set to zero and the particles are specularly reflected.

    2.2.Magnetic field intensity distribution for different loading manners

    In this study,a simulated thruster with a size similar to those of SPT-100 and PPS-1350[43]with a power of 1.35 kW was selected,as shown in figure 2.The magnetic field used in the PIC simulation is calculated using the open-source software named Finite Element Method Magnetics(FEMM).According to the research purpose,two magnetic field configurations,aft-loaded magnetic field and normal loaded magnetic field were designed,as shown in figure 3.For the aft-loaded magnetic field,the position of the maximum magnetic field strength realized along the centerline is pushed from the channel exit to a site 4 mm outside the channel.The magnetic field strength at the channel exit on the channel centerline accounts for 86% of the maximum magnetic field,and this ratio in the 6 kW power magnetic-shielding Hall thruster developed by Jet Propulsion Laboratory(JPL)is 83%[13,14,19].Thus,they are similar in magnetic field intensity distribution,which satisfies the characteristics of the aft-loaded magnetic field.

    Figure 3.Distribution of normalized magnetic field strength along the channel centerline for different magnetic field configurations.

    3.Results and analysis

    In the simulation,the discharge voltage is set as 300 V and the anode mass flow rate is set as 5.65 mg s?1.Regarding the Bohm coefficientCBin the semi-empirical formula,it was found that theCBvalue outside the channel is larger than that inside the channel[40,44].Considering that part of the positive-gradient region of the aft-loaded magnetic field is located outside the channel,different Bohm coefficients are used depending on the gradient of the magnetic field[45].CBis selected as 1/310 for the positive-gradient region and 1/18 for the negative-gradient region.These Bohm coefficients are chosen to ensure that the simulated performance is closer to the experimental one[44,46,47].

    3.1.The influence of the loading manner of the magnetic field on the ionization process

    Table 1 shows the different charged ion currents and their proportions of the total currents under different magnetic field loading manners.It can be seen that the change in loading manner of magnetic field from normal loading to aft-loading enhances the multiple ionization effect,where the proportion of Xe2+and Xe3+increases.

    Table 1.Multiple charged ion currents and ratios under different magnetic field loading manners.

    To further analyze the influence of the magnetic field loading manner on the ionization process,the contour of the ionization collision rate distribution of the particle collisions is given.It should be noted that,according to the introduction to the PIC numerical model in section 2.1,six types of ionization collision processes were considered in this study.Undoubtedly,the process of Xe→Xe+plays a leading role,and the Xe→Xe+ionization collision rate distributions are shown in figure 4.The proportion of Xe2+in the product is second only to Xe+,therefore,the following content will mainly focus on the generation of Xe2+.The generation of Xe2+comes from Xe+→Xe2+and Xe→Xe2+,and their ionization collision rate distributions are shown in figures 5 and 6.

    First,from the perspective of the ionization rate,the ionization rate of the Xe→Xe+ionization process corresponding to the normal loaded magnetic field is higher,and the ionization rates of Xe→Xe2+and Xe+→Xe2+corresponding to the aft-loaded magnetic field are both higher.The ionization rate represents the probability of occurring of multiple ionization.This is consistent with the conclusion that the aft-loading of the magnetic field enhances the multiple ionization process.In addition,the results in figures 5 and 6 can illustrate that there are two ways to generate Xe2+in both cases,namely Xe→Xe2+and Xe+→Xe2+,and between the two,Xe+→Xe2+is dominant.Similarly,by using the PIC for a calculation and comparison,it can be seen that Xe+→Xe3+is dominant among the three ionization processes generated for Xe3+,namely,Xe→Xe3+,Xe+→Xe3+,and Xe2+→Xe3+.So it can be inferred multiply charged ions are more likely created from singly charged ions than directly from neutrals.

    Second,two characteristics of the multiple ionization process can be concluded from the contour of the ionization rate distribution.On one hand,compared to the normal loading case,in the aft-loading case,multiple ionization collisions occur at the position closer to the channel downstream.On the other hand,for the generation of Xe2+,in both cases,compared to the ionization process of Xe→Xe2+,the ionization process of Xe+→Xe2+occurs on closer to the channel downstream.

    In a Hall thruster,the ionization rateRionof the propellant is shown in formula(5),whereneis the electron density,nais the atom density,andβiis the ionization rate coefficient.Since ionization rate coefficient and electron temperature are directly related,the atom density and electron temperature are the main factors determining the magnitude of the ionization rate.The distributions of electric potential and electron temperature on the channel centerline are shown in figure 7.

    In addition,the magnetic field strength is one of the key factors that determine the spatial conductivity of electrons,so the magnetic field strength and its distribution are the key factors that determine spatial conductivity.Combining figures 3 and 7,compared to normal loading,aft-loading of magnetic field makes the positive-gradient magnetic field partly located outside the channel,causing significant changes in the conductivity inside and outside the channel.In the aftloading,the conductivity inside the channel increases,and the potential drop in the channel decreases.

    In the aft-loading case,the main potential drop is located outside the discharge channel,reaching 240 V on the channel centerline.In addition,the electrons emitted from the cathode rapidly reach a high electron temperature with a peak value of 54 eV under the strong heating of the electric field outside the channel.Such a high electron temperature enhances the ionization collision effect outside the channel,although compared to that inside the channel,the density of heavy particles outside the channel remains low,and thus the electrons are still at a high temperature of 32 eV when reaching the channel exit.

    In the normal loading case,the main potential drop is located inside the channel,reaching 80 V on the channel centerline,and thus the heating effect of the electric field outside the channel on the electrons is poor,and the peak temperature of the electrons outside the channel is only 19 eV.As the electrons move toward the channel exit,the ionization energy loss is slightly higher than the heating effect of the electric field,and the temperature of the electrons at the channel exit is 18 eV.

    Figure 4.Contours of Xe→Xe+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 5.Contours of Xe→Xe2+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 6.Contours of Xe+→Xe2+ ionization rate of(a)aft-loading case and(b)normal loading case.

    Figure 7.Distribution of(a)electric potential and(b)electron temperature on the channel centerline.

    Combining figures 4 and 5,when an electron emitted from the cathode moves toward the near-exit,it first encounters a large number of propellant atoms,and when propellant is freely diffused from the anode into the channel downstream,the gas becomes evenly dispersed within the entire channel between the inner and outer walls,and the gas density along the centerline experiences a significant drop from upstream to downstream.In aft-loading case,the temperature of the electron entering the channel is 32 eV.Such a high electron temperature causes an immediately strong ionization collision between the atom and electron.Considering figure 1,the probability of occurrence of a multiple ionization collision is high.In a normal loading case,the electrons entering the channel are at a low electron temperature of 18 eV.According to formula(4),such a propellant density and electron temperature environment fails to meet the condition of a large number of ionizations.Therefore,the electron continues to move upstream under the heating effect of the electric field within the channel,although because the wall surface energy loss of the electron in the channel is also large,the electron temperature is basically maintained at 20 eV,which is much lower than the electron temperature of 32 eV at the channel exit in aft-loading case.However,as the electron moves closer to the anode,the atom density of the propellant increases significantly.According to formula(4),there will be numerous ionization collisions between the electrons and atoms,causing an avalanche effect,and thus ionization is completed.Compared to the aft-loading case,the rate of double and even higher ionization collisions is low owing to the low electron temperature,and as the ionization area is closer to the anode,the propellant is distributed more intensively and the density becomes higher;thus,the rate of single ionization collisions increases.

    Combining figures 3 and 6,the aft-loading of the magnetic field leads to the zone of ionization process of Xe→Xe+to move downstream,and the generation of Xe2+is mainly through process of Xe+→Xe2+.According to formula(4),the zone of ionization process of Xe+→Xe2+must be downstream of the zone of ionization process of Xe→Xe+.Therefore,the zones of ionization process of Xe+→Xe2+and Xe→Xe+both move downstream.Compared to the normal loading case,in the aft-loading case,the main potential drop is outside the channel,where interaction between the channel and the electron is lost,the electron temperature is higher at the channel exit.The distance between the Xe→Xe+ionization process zone and the exit of the channel is reduced,which leads to the weakening of the cooling effect of the channel and heavy particles on the electrons.Finally,electrons in the zone of ionization process of Xe+→Xe2+have higher energy,therefore,the generation of Xe2+is enhanced.

    3.2.The influence of magnetic field strength on the ionization process in aft-loading case

    In section 3.1,the multiple ionization process was simulated under different magnetic field distributions but the same maximum magnetic field strength at the centerline of the channel.The change of the multiple ionization in different loading manners is due to the relative change of the spatial conductivity,and the conductivity is greatly affected by the strength of the magnetic field.Therefore,the influence of magnetic field strength on ionization process in aft-loading case needs to be considered.This part focuses on the influence of magnetic field strength on the ionization process in aft-loading case,because the strength and configuration of the magnetic field are both key factors for the ionization process.Based on previous experimental experience,the range of maximum magnetic field intensity of the channel centerline has been selected.The range of variation of the maximum magnetic field is 180–280 G under the conditions of the aftloaded magnetic field.The simulation result is shown in figure 8.The proportion of Xe2+and Xe3+increases with the increase in magnetic field strength under the aft-loaded magnetic field.

    Figure 8.Multiple charged ion currents ratio with different magnetic field strengths in the aft-loading case.

    This part still uses Xe2+as the research object.It was pointed out in section 3.1 that the Xe+→Xe2+ionization process is dominant in the ionization process with the generation of Xe2+,and thus the Xe+density is a key factor determining the ionization rate of the Xe+→Xe2+process.

    Figure 9.Distributions of(a)electric potential and(b)electron temperature on the channel centerline in the aft-loading case.

    Figure 10.Distributions of(a)Xe→Xe+ and(b)Xe+→Xe2+ ionization rates on the channel centerline in the aft-loading case.

    In the positive gradient region of the magnetic field,the plasma instability is suppressed and the classical conduction is dominant;the electron conductivity is thus inversely proportional to the square of the magnetic field strength.The Bohm conduction is dominant in the negative gradient region of the magnetic field,where the electron conductivity is inversely proportional to the magnetic field strength.Therefore,in the aft-loading case,with the increase of the magnetic field strength,the ratio of the conductivity outside the channel to the inside of the channel increases,and the potential drop outside the channel decreases,as shown in figure 9(a).The value of electron temperature is the result of electric field heating and collision cooling.When the electron gains higher energy in the acceleration zone,the collision loss energy increases,and the electron temperature decreases in the ionization zone,as shown in figure 9(b).The production rate of Xe2+is mainly determined by processes of Xe→Xe+and Xe+→Xe2+,in which the electron temperature is the key factor.So higher electron temperature in the ionization zone is the main reason for the increase in production rate,as shown in figures 10(a)and(b).The results show that the proportion of Xe2+increases as the magnetic field strength increases.

    The variance of the proportion of Xe3+with magnetic field strength has the same trend as that of Xe2+.It can be well-understood since both of them are generated mainly from the ionization of Xe+.

    4.Conclusions

    In this work,the mechanisms of the influence of two different loading manners of a magnetic field,normal loading and aftloading,on the multiple ionization process of a Hall thruster were studied using a particle-in-cell simulation method.The simulation results proved the assumption that the shift of the strong magnetic field region with a positive gradient from the exit plane to outside indeed enhances the multiple ionization process.The increase of electron temperature in the ionization region is the main reason for the enhancement of multiple ionization.Compared with normal loading,in the aft-loading case,the position of the ionization zone moves downstream of the channel,resulting in the weakening of the cooling effect of the channel and the increase of the electron temperature.The increase of the magnetic field strength changes the relative conductivity of the ionization zone,reduces the collision loss in the acceleration zone,and leads to the increase of the electron temperature.

    Acknowledgments

    This work is funded by National Natural Science Foundation of China(Nos.52076054 and 51736003),Advanced Space Propulsion Laboratory of Beijing Institute of Control Engineering and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.LabASP2019-04),the Civil Aerospace Technology Pre-research Project(No.D03015)and the Defense Industrial Technology Development Program(No.JCKY2019603B005).

    猜你喜歡
    金文
    西周金文所見(jiàn)“小學(xué)”史料三題
    甲骨金文所見(jiàn)族考論
    Understanding Chinese Characters
    Special Focus(2019年5期)2019-06-12 02:35:54
    西周金文車器“鞎”補(bǔ)釋*——兼論《詩(shī)經(jīng)》“鞹鞃”
    簡(jiǎn)談對(duì)金文“蔑懋”問(wèn)題的一些新認(rèn)識(shí)
    釋甲骨金文的“徹”字異體——據(jù)卜辭類組差異釋字之又一例
    西周金文所見(jiàn)周天子對(duì)諸侯臣屬的聘問(wèn)之禮
    語(yǔ)法填空專練
    Analysing the cultural osmosis in English film appreciation class—Troy
    萊國(guó)出土異地商周金文通釋繹論
    東方考古(2016年0期)2016-07-31 17:45:44
    蜜桃在线观看..| 99热这里只有是精品在线观看| 91精品伊人久久大香线蕉| 嫩草影院入口| 最近2019中文字幕mv第一页| 亚洲欧美日韩另类电影网站 | 性色avwww在线观看| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 丰满迷人的少妇在线观看| 人人妻人人添人人爽欧美一区卜 | 国产精品国产三级国产专区5o| 免费在线观看成人毛片| 免费在线观看成人毛片| 九九爱精品视频在线观看| 久久久久久久国产电影| 亚洲国产精品国产精品| 亚洲国产毛片av蜜桃av| kizo精华| 欧美激情国产日韩精品一区| 亚洲国产日韩一区二区| 亚洲精品乱码久久久久久按摩| 久久99热这里只有精品18| 日韩不卡一区二区三区视频在线| 三级国产精品欧美在线观看| 伊人久久国产一区二区| 成年女人在线观看亚洲视频| 十八禁网站网址无遮挡 | 欧美极品一区二区三区四区| 久久久久久久久久久丰满| 性色av一级| 国产v大片淫在线免费观看| 如何舔出高潮| 日韩视频在线欧美| 在线播放无遮挡| av福利片在线观看| 亚洲精品,欧美精品| 在线观看一区二区三区| 国产一区二区三区av在线| 中国三级夫妇交换| 有码 亚洲区| 少妇人妻 视频| 最黄视频免费看| 中国三级夫妇交换| 美女xxoo啪啪120秒动态图| videossex国产| a级毛片免费高清观看在线播放| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久久电影| 亚洲中文av在线| 伦理电影大哥的女人| 九九在线视频观看精品| 这个男人来自地球电影免费观看 | 七月丁香在线播放| 多毛熟女@视频| 久久久久久久精品精品| 少妇猛男粗大的猛烈进出视频| 成人无遮挡网站| 亚洲综合精品二区| 水蜜桃什么品种好| 国产v大片淫在线免费观看| 亚洲在久久综合| 深夜a级毛片| 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 五月开心婷婷网| 久久精品国产自在天天线| 欧美日韩视频高清一区二区三区二| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 亚洲美女视频黄频| 在现免费观看毛片| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 在线观看国产h片| 人妻系列 视频| 欧美老熟妇乱子伦牲交| 99热国产这里只有精品6| 亚洲色图综合在线观看| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 亚洲精品国产成人久久av| 狂野欧美激情性bbbbbb| 国产精品人妻久久久久久| 亚洲精品自拍成人| 久久97久久精品| 在线亚洲精品国产二区图片欧美 | h视频一区二区三区| 国产爱豆传媒在线观看| 综合色丁香网| 国产乱人偷精品视频| 色网站视频免费| 日韩三级伦理在线观看| 国产美女午夜福利| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久| 全区人妻精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美一级a爱片免费观看看| 交换朋友夫妻互换小说| 青青草视频在线视频观看| 嘟嘟电影网在线观看| 大香蕉久久网| 色婷婷av一区二区三区视频| 国产 精品1| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 亚洲精品乱码久久久久久按摩| av一本久久久久| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 黄片wwwwww| 美女内射精品一级片tv| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说| 国产精品女同一区二区软件| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看 | 国产精品99久久99久久久不卡 | 色综合色国产| 久久久久久久久大av| 毛片女人毛片| 日韩欧美一区视频在线观看 | 精品一区在线观看国产| 18禁动态无遮挡网站| 看十八女毛片水多多多| 九色成人免费人妻av| 51国产日韩欧美| 国产毛片在线视频| 丰满人妻一区二区三区视频av| 久久久久精品性色| 欧美激情极品国产一区二区三区 | 国产高清三级在线| 91aial.com中文字幕在线观看| 国产黄片视频在线免费观看| 又黄又爽又刺激的免费视频.| 天堂中文最新版在线下载| 欧美国产精品一级二级三级 | 中国美白少妇内射xxxbb| 日本午夜av视频| 欧美成人一区二区免费高清观看| 欧美变态另类bdsm刘玥| 精品国产三级普通话版| 最近2019中文字幕mv第一页| 波野结衣二区三区在线| 一级毛片电影观看| 亚洲图色成人| av网站免费在线观看视频| 亚洲av电影在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 网址你懂的国产日韩在线| xxx大片免费视频| 51国产日韩欧美| 亚洲最大成人中文| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美 | 免费看光身美女| 日本wwww免费看| 国产精品嫩草影院av在线观看| 另类亚洲欧美激情| 99热网站在线观看| 欧美丝袜亚洲另类| 免费观看av网站的网址| 舔av片在线| 亚洲美女搞黄在线观看| 22中文网久久字幕| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 七月丁香在线播放| 超碰97精品在线观看| 黄色日韩在线| 国产精品一区二区在线不卡| 九九爱精品视频在线观看| 大话2 男鬼变身卡| 国精品久久久久久国模美| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 一二三四中文在线观看免费高清| 亚洲第一av免费看| 在线观看一区二区三区| 少妇熟女欧美另类| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 亚洲精品一区蜜桃| 自拍偷自拍亚洲精品老妇| 美女内射精品一级片tv| 麻豆成人av视频| 99热网站在线观看| 男人狂女人下面高潮的视频| 日本黄大片高清| 亚洲av电影在线观看一区二区三区| 直男gayav资源| 午夜福利高清视频| 午夜老司机福利剧场| 国产精品国产av在线观看| 日韩伦理黄色片| 色婷婷久久久亚洲欧美| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 精品视频人人做人人爽| www.色视频.com| 亚洲欧美一区二区三区国产| 日本免费在线观看一区| 国精品久久久久久国模美| 国产免费又黄又爽又色| 最黄视频免费看| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看 | 一级片'在线观看视频| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产大屁股一区二区在线视频| 三级经典国产精品| 国产精品精品国产色婷婷| 免费黄色在线免费观看| 日韩国内少妇激情av| 亚洲自偷自拍三级| 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| av天堂中文字幕网| 亚洲精品久久午夜乱码| kizo精华| 麻豆国产97在线/欧美| 亚洲国产成人一精品久久久| 日韩av在线免费看完整版不卡| 99久久综合免费| 另类亚洲欧美激情| 各种免费的搞黄视频| 欧美丝袜亚洲另类| av网站免费在线观看视频| 天天躁日日操中文字幕| 91狼人影院| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品福利久久| 欧美一区二区亚洲| 国产午夜精品一二区理论片| 久久人人爽人人爽人人片va| 亚洲精品一区蜜桃| 日本与韩国留学比较| 亚洲四区av| 日韩,欧美,国产一区二区三区| 国产精品三级大全| 夜夜爽夜夜爽视频| 99久久中文字幕三级久久日本| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| av国产精品久久久久影院| 午夜视频国产福利| 亚洲综合色惰| 久热久热在线精品观看| 国产极品天堂在线| 国产人妻一区二区三区在| 国产男女超爽视频在线观看| 午夜免费鲁丝| 日韩在线高清观看一区二区三区| 2018国产大陆天天弄谢| 久久久久久久亚洲中文字幕| 色婷婷av一区二区三区视频| 亚洲不卡免费看| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区国产| 国产精品一区二区性色av| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 成年免费大片在线观看| 亚洲激情五月婷婷啪啪| 亚洲欧美中文字幕日韩二区| 身体一侧抽搐| 一级毛片我不卡| 熟女av电影| 国产国拍精品亚洲av在线观看| 国产深夜福利视频在线观看| 久久精品国产自在天天线| 韩国av在线不卡| 男女免费视频国产| 高清欧美精品videossex| 五月开心婷婷网| 欧美一区二区亚洲| 久久亚洲国产成人精品v| 一级片'在线观看视频| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 日韩一区二区三区影片| 中文天堂在线官网| 亚洲精品国产av成人精品| 国产精品一区二区三区四区免费观看| 天堂8中文在线网| 久热这里只有精品99| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 2022亚洲国产成人精品| 国产精品久久久久久精品电影小说 | 国产精品国产三级国产av玫瑰| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久成人| 色视频在线一区二区三区| 国产av一区二区精品久久 | 一级av片app| 中文字幕av成人在线电影| 日本欧美国产在线视频| 全区人妻精品视频| 日本一二三区视频观看| 免费观看在线日韩| av不卡在线播放| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 高清视频免费观看一区二区| 观看美女的网站| 国产精品人妻久久久久久| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 九九久久精品国产亚洲av麻豆| 在线亚洲精品国产二区图片欧美 | 日本黄大片高清| 亚洲va在线va天堂va国产| 人人妻人人澡人人爽人人夜夜| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 久久久久人妻精品一区果冻| 在线播放无遮挡| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 亚州av有码| 涩涩av久久男人的天堂| 99久久中文字幕三级久久日本| 国产在线一区二区三区精| 视频区图区小说| 特大巨黑吊av在线直播| 视频区图区小说| 亚洲av不卡在线观看| 91aial.com中文字幕在线观看| 国产视频内射| 国产真实伦视频高清在线观看| 三级国产精品片| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 国产永久视频网站| 亚洲精品成人av观看孕妇| 国产爱豆传媒在线观看| 免费黄色在线免费观看| 一区二区三区精品91| 一级黄片播放器| 中文字幕av成人在线电影| 精品人妻熟女av久视频| 日韩一本色道免费dvd| av女优亚洲男人天堂| 1000部很黄的大片| 丝袜脚勾引网站| 成人毛片60女人毛片免费| 五月天丁香电影| 永久网站在线| 亚洲国产色片| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| freevideosex欧美| 干丝袜人妻中文字幕| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 日本色播在线视频| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 久久精品国产a三级三级三级| 日韩制服骚丝袜av| av在线老鸭窝| 精品久久久久久久久av| 人人妻人人看人人澡| 我要看日韩黄色一级片| 久久久久久久久久成人| 啦啦啦视频在线资源免费观看| 亚洲中文av在线| 国产成人a∨麻豆精品| 成人亚洲精品一区在线观看 | 午夜免费男女啪啪视频观看| 国产精品爽爽va在线观看网站| 日韩欧美一区视频在线观看 | 国产精品99久久99久久久不卡 | 人妻制服诱惑在线中文字幕| 六月丁香七月| 免费观看在线日韩| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 99热全是精品| 亚洲成人中文字幕在线播放| 老熟女久久久| 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 亚洲精品国产色婷婷电影| 中文资源天堂在线| av在线播放精品| 国产在线免费精品| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 中文乱码字字幕精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲人与动物交配视频| 91aial.com中文字幕在线观看| 香蕉精品网在线| 在线观看一区二区三区| 观看免费一级毛片| 国产亚洲午夜精品一区二区久久| 国产精品不卡视频一区二区| 免费观看性生交大片5| 黄色配什么色好看| 能在线免费看毛片的网站| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 一区二区三区精品91| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| 老师上课跳d突然被开到最大视频| 五月玫瑰六月丁香| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 大香蕉久久网| 中文字幕精品免费在线观看视频 | 国产黄色视频一区二区在线观看| 国产精品福利在线免费观看| 久久久久久人妻| 我的女老师完整版在线观看| 日韩一区二区视频免费看| 国产高清国产精品国产三级 | 婷婷色综合www| 高清黄色对白视频在线免费看 | 国产在线男女| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站 | 亚洲欧美一区二区三区国产| 精品人妻视频免费看| 丝袜脚勾引网站| 纵有疾风起免费观看全集完整版| 人妻系列 视频| 黄片wwwwww| 老师上课跳d突然被开到最大视频| 久久人人爽人人爽人人片va| 91狼人影院| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花 | 国产91av在线免费观看| 一本色道久久久久久精品综合| 精品亚洲成国产av| 九色成人免费人妻av| h视频一区二区三区| 久久人人爽av亚洲精品天堂 | 国产老妇伦熟女老妇高清| 男人舔奶头视频| 国产精品伦人一区二区| 精品一区二区免费观看| 午夜免费观看性视频| 少妇裸体淫交视频免费看高清| 久久久久久久久久久免费av| 老司机影院成人| 久久久午夜欧美精品| 嘟嘟电影网在线观看| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 久久综合国产亚洲精品| 国产男女超爽视频在线观看| 国产精品99久久99久久久不卡 | 大陆偷拍与自拍| 国产片特级美女逼逼视频| 久久99精品国语久久久| 亚洲精品乱码久久久v下载方式| 大码成人一级视频| 人妻一区二区av| 久久午夜福利片| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 少妇人妻久久综合中文| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 欧美日韩一区二区视频在线观看视频在线| 国产中年淑女户外野战色| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 精品国产露脸久久av麻豆| 亚洲欧美一区二区三区国产| 在线观看一区二区三区| 精品视频人人做人人爽| 久久精品久久精品一区二区三区| 欧美日韩综合久久久久久| 亚洲人与动物交配视频| 又大又黄又爽视频免费| 一级毛片aaaaaa免费看小| 久久久久久久精品精品| 欧美xxⅹ黑人| 国产无遮挡羞羞视频在线观看| 日韩制服骚丝袜av| 国产在线男女| 天天躁日日操中文字幕| 日韩人妻高清精品专区| 国产91av在线免费观看| 国产男女内射视频| 人妻制服诱惑在线中文字幕| 亚洲精品日本国产第一区| 欧美日韩视频精品一区| 一级爰片在线观看| 久久综合国产亚洲精品| 欧美日韩一区二区视频在线观看视频在线| a级毛色黄片| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 一区二区三区免费毛片| 婷婷色麻豆天堂久久| 亚洲av在线观看美女高潮| 黑人猛操日本美女一级片| 亚洲色图av天堂| 丝袜脚勾引网站| 黄片wwwwww| 联通29元200g的流量卡| 久久6这里有精品| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲高清精品| 国产国拍精品亚洲av在线观看| 亚洲国产日韩一区二区| av女优亚洲男人天堂| 看非洲黑人一级黄片| 成人一区二区视频在线观看| 91久久精品国产一区二区成人| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 一边亲一边摸免费视频| 女性生殖器流出的白浆| 最近的中文字幕免费完整| 国产精品av视频在线免费观看| 成人午夜精彩视频在线观看| 91精品伊人久久大香线蕉| 男女啪啪激烈高潮av片| 久久精品国产a三级三级三级| 伦理电影免费视频| 欧美最新免费一区二区三区| 秋霞在线观看毛片| 精品一区二区免费观看| 熟女av电影| 中文字幕精品免费在线观看视频 | 中文字幕亚洲精品专区| 国产精品三级大全| 国产精品一区二区在线观看99| 99热6这里只有精品| 美女国产视频在线观看| 欧美97在线视频| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 中文欧美无线码| 在现免费观看毛片| 国产男女超爽视频在线观看| 五月天丁香电影| 国产亚洲5aaaaa淫片| 久久久久久久大尺度免费视频| 99热网站在线观看| 黄色欧美视频在线观看| 国产精品三级大全| 91精品一卡2卡3卡4卡| 亚洲aⅴ乱码一区二区在线播放| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品电影小说 | 国产真实伦视频高清在线观看| 香蕉精品网在线| 亚洲国产av新网站| 成人综合一区亚洲| 国国产精品蜜臀av免费| 亚洲无线观看免费| 毛片一级片免费看久久久久| 日本黄大片高清| 免费黄色在线免费观看| 哪个播放器可以免费观看大片| 内地一区二区视频在线| 大码成人一级视频| 午夜免费观看性视频| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 久久精品国产亚洲网站| 久久久久精品久久久久真实原创| 老女人水多毛片| 夫妻午夜视频| 国产探花极品一区二区| 99久久综合免费| 高清黄色对白视频在线免费看 | 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 国产视频内射| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 夫妻午夜视频| 日韩国内少妇激情av| 久久午夜福利片|