滕 斌 于 梅
無限水深下波浪與二維水面物體作用的簡單格林函數(shù)方法*
滕 斌 于 梅
(大連理工大學(xué)海岸和近海工程國家重點實驗室 遼寧大連 116024)
針對無限水深下波浪與二維水面物體相互作用問題, 傳統(tǒng)的波浪格林函數(shù)形式復(fù)雜、計算緩慢, 為了提高計算效率和計算精度, 將流域分為物體周圍的內(nèi)域及遠離物體的外域, 內(nèi)域采用簡單格林函數(shù)法, 外域采用多極子展開方法, 通過內(nèi)外域邊界匹配, 耦合求解得到流域中任意一點的速度勢, 并可計算物體在波浪作用下的波浪激振力、附加質(zhì)量、輻射阻尼及透射和反射系數(shù)。應(yīng)用該方法計算了二維水面漂浮半圓和水面漂浮方箱的算例, 數(shù)值計算結(jié)果表明, 該方法可以方便、準(zhǔn)確、快速地計算無限水深下波浪與任意漂浮物體的作用問題。
無限水深; 邊界元方法; 簡單格林函數(shù); 多極子展開
近年來, 深海開發(fā)已進入千米甚至萬米水深的時代, 對海上平臺等大型漂浮結(jié)構(gòu)設(shè)計和防護提出了更高的安全性要求, 對水動力分析計算提出了新的問題。對于波浪與結(jié)構(gòu)物相互作用的水動力分析問題, 常采用基于格林函數(shù)的邊界元方法進行求解。其格林函數(shù)又可分為簡單格林函數(shù), 滿足波動條件的頻域格林函數(shù)和時域格林函數(shù)。基于滿足自由水面條件和遠場條件波動格林函數(shù)的邊界元方法, 一般只需在物面上剖分網(wǎng)格、布置未知量, 所建立的積分方程尺度較小, 但格林函數(shù)的快速和精確計算是該方法的難題。Liapis等(1985), Newman (1985a, 1985b), Magee等(1989), Lin等(1991), 黃德波(1992), 韓凌(2005)采用分區(qū)計算和擬合方法進行計算; Clément (1989a, 1989b), Duan等(2001), Chuang等(2007), Das等(2010)等通過問題轉(zhuǎn)化, 采用常微分方程方法計算格林函數(shù); Linton (1999), Rahman (2001)等則推導(dǎo)了格林函數(shù)新的解析表達式以加快計算, Huang等(2022)采用機器學(xué)習(xí)方法近似計算水面格林函數(shù)。但無論采用哪種方法, 波動格林函數(shù)都存在表達式冗長、編程難度大、計算費時和精度有限的問題。另外, 基于波動格林函數(shù)的邊界元方法雖只需在物面上建立方程, 但若將方程拆分為齊次部分和非齊次部分, 會發(fā)現(xiàn)齊次部分的積分方程形式與物體內(nèi)部的齊次Dirichlet邊值問題對應(yīng)的積分方程完全一致。對于后者, 我們知道, 在通常頻率下, 齊次邊值只有零解, 但在特征頻率下, 我們所求的邊界問題中也存在著非零解, 因此, 對應(yīng)的積分方程也將出現(xiàn)解的不唯一性現(xiàn)象, 而這些不唯一解對應(yīng)的特征頻率通常被稱為“不規(guī)則頻率”, 因而會給出錯誤的計算結(jié)果。
當(dāng)采用簡單格林函數(shù)時, 需將流域分解為內(nèi)域和外域兩個部分(賀五洲等, 1992), 在內(nèi)域上采用簡單格林函數(shù)建立積分方程, 外域采用速度勢的特征展開式做級數(shù)展開, 最后通過內(nèi)外域交界面上壓強和速度連續(xù)條件聯(lián)立求解。該方法中的格林函數(shù)計算簡便, 但需同時在物面、水面和內(nèi)外域交界面上剖分網(wǎng)格、布置未知量, 離散的線性方程組較大。對于一般的二維問題, 目前的計算機足以滿足其對計算量和存儲量的需求。另外, 該方法外部問題與內(nèi)部問題不使用同一套積分方程, 因而不存在“不規(guī)則頻率”問題, 在各種計算條件下, 該方法構(gòu)造的積分方程均可得到唯一的正確解。因此, 采用簡單格林函數(shù)法求解波浪與二維物體作用問題是一個不錯的選擇。
對于水深中波浪與物體的相互作用問題, 外域速度勢可采用特征函數(shù)展開方法進行構(gòu)造, 特征值為色散關(guān)系2=-tan()的一個虛根和無窮多個實根, 其中為波浪頻率,為波數(shù),為重力加速度。當(dāng)內(nèi)、外域分界面遠離物體時, 速度勢的特征展開式只需取少量幾項即可得到精確的結(jié)果。但隨著水深的增加, 或波浪頻率的增大, 非傳播模態(tài)波數(shù)(實根)變得非常接近而成連續(xù)狀態(tài), 因而速度勢特征展開式趨向于從零到無窮的連續(xù)函數(shù), 這樣需選取非常大的內(nèi)部區(qū)域和較多的特征展開項數(shù)才能得到精確的結(jié)果, 使得計算效率和精度快速下降。而多極子展開方法采用球坐標(biāo)系下的勒讓德函數(shù)級數(shù)形式, 且只需取特征展開的少量項而具有收斂快速、計算精確的特點, 因此, 本文在外域采用多極子展開方法來求解無限水深下波浪對水面二維物體的作用問題。
考慮波浪與無限水深中水面漂浮物體的作用問題。假設(shè)波浪從物體的左側(cè)入射, 入射波浪頻率為, 物體受到簡諧波浪的作用后發(fā)生同頻率的簡諧運動, 由于物體的運動在流域中產(chǎn)生輻射波浪。按物體運動廣義自由度將物體運動的三個方向分解為水平振蕩、垂向振蕩和繞原點的轉(zhuǎn)動。取二維笛卡兒直角坐標(biāo)系,軸垂直向上,平面位于未擾動的靜水面上, 原點位于靜水面與物體交界的中心處, 如圖1所示。將流域分為內(nèi)、外流域, 分界面為圖1所示半徑為J的半圓面。
圖1 波浪與無限水深中浮體的作用及流域分區(qū)示意圖
注:F: 自由水面;B: 物體表面;J: 內(nèi)外域分界面; Ω: 內(nèi)域;J: 半徑;表示笛卡爾直角坐標(biāo)系
在不可壓縮理想流體無粘無旋的假設(shè)下, 速度勢滿足Laplace方程
對于波浪與浮體的相互作用問題, 由于問題是線性的,等物理量都是頻率為的簡諧函數(shù), 這樣, 我們可分離出時間因子e–iωt, 將速度勢做如下分解,
(1) 自由水面條件
式中,為重力加速度。
(2) 物面條件
(3) 深水條件
將物面和水面邊界條件代入式(8), 得
在外部流域, 采用多極展開法將速度勢展開成水面點源、反對稱偶極子和遠場無波勢的線性疊加形式
在遠場, 點源勢可近似為
式中,為漂浮物體半徑。
將物面離散成B個單元, 水面離散成F個單元, 內(nèi)外域交界面上離散成J個單元。采用坐標(biāo)變換, 將每個單元變換到(-1, 1)的局部坐標(biāo)系下, 再在單元內(nèi)引入形狀函數(shù), 則單元內(nèi)的坐標(biāo)和速度勢可寫為
線積分微長度為
將式(20)和式(21)代入方程(19a)和(19b), 得
整理后可得線性方程組
求得了物面和水面節(jié)點處的速度勢后, 物體上的波浪作用力可通過物面上的壓強積分求得,物體上、方向作用力及繞原點的波浪作用力矩為
同樣, 可求得附加質(zhì)量和輻射阻尼為
考慮到遠場無波勢在遠場衰減為零, 遠場散射勢可簡化為
透射波浪高度為
圖2給出了水面固定半圓算例通過兩種方法計算得到的激振力結(jié)果的對比?!癛kGreen”表示本文采用的簡單格林函數(shù)方法, “FsGreen”表示波動格林函數(shù)法(下同)??梢钥闯? 兩種方法計算的結(jié)果吻合很好, 但波動格林函數(shù)法的計算結(jié)果在某些頻率處出現(xiàn)驟然跳躍,即出現(xiàn)了前面所述的“不規(guī)則頻率”問題,這些“不規(guī)則頻率”的產(chǎn)生是由于求解積分方程的方法導(dǎo)致的, 并非物理上真正存在著“不規(guī)則頻率”。而本文方法在整個計算域內(nèi)都得到了準(zhǔn)確的結(jié)果。
圖3是水面固定半圓反射系數(shù)和透射系數(shù)隨波數(shù)的變化曲線。由曲線可以看出, 兩種計算方法的結(jié)果均呈現(xiàn)出低頻區(qū)波浪的反射系數(shù)較小, 高頻區(qū)較大; 而波浪的透射系數(shù)在低頻區(qū)較大, 高頻區(qū)較小, 且一直滿足反射系數(shù)和透射系數(shù)平方和為1的關(guān)系。而波動格林函數(shù)法仍存在“不規(guī)則頻率”問題, 簡單格林函數(shù)算法由于其積分方程解的唯一性便可以很好地解決這一問題。
圖2 簡單格林函數(shù)邊界元與波動格林函數(shù)邊界元求解水面固定半圓激振力對比
圖3 簡單格林函數(shù)邊界元與波動格林函數(shù)邊界元求解透射反射系數(shù)對比
注: RkGreen表示簡單格林函數(shù)法, FsGreen表示波動格林函數(shù)法; 橫坐標(biāo)是深水波數(shù)和半圓半徑的乘積
圖4 水面方箱附加質(zhì)量及輻射阻尼隨波數(shù)的變化曲線
對于波浪與無限水深中水面二維浮體作用問題, 采用簡單格林函數(shù)和Ursell (1950)提出的水面多極展開表達式, 建立了邊界元法與多極展開耦合求解的計算方法。該方法只需取少量的多極展開項數(shù), 應(yīng)用指數(shù)積分計算求解, 避免了水面格林函數(shù)的復(fù)雜計算問題, 具有算法簡單, 計算準(zhǔn)確、快速, 且可避免“不規(guī)則頻率”干擾的特點。應(yīng)用該方法計算了無窮水深中水面方箱的繞射和輻射問題, 求得了水面方箱的附加質(zhì)量、輻射阻尼和波浪激振力隨波數(shù)的變化函數(shù)。結(jié)果表明: 垂蕩附加質(zhì)量在零頻率處趨于無窮, 高頻處趨于有限值; 縱蕩附加質(zhì)量在零頻率處為有限值, 高頻處趨于有限值。垂蕩和縱蕩輻射阻尼在零頻處為零, 高頻處趨于零。
圖5 水面方箱上波浪激振力隨波數(shù)的變化曲線
賀五洲, 戴遺山, 1992. 求解零航速物體水動力的簡單Green函數(shù)方法[J]. 水動力學(xué)研究與進展A輯, 7(4): 449-456.
黃德波, 1992. 時域GREEN函數(shù)及其導(dǎo)數(shù)的數(shù)值計算[J]. 中國造船(4): 16-25.
韓凌, 2005. 應(yīng)用時域格林函數(shù)方法模擬有限水深中波浪對結(jié)構(gòu)物的作用[D]. 大連: 大連理工大學(xué): 83-88.
ABRAMOWITZ M, STEGUN I A, 1972. Handbook of mathematical functions with formulas. Graphs, and mathematical tables [R]. Washington: National Bureau of Standards (DOC): 229.
CHUANG J M, QIU W, PENG H, 2007. On the evaluation of time-domain Green function [J]. Ocean Engineering, 34(7): 962-969.
CLéMENT A H, 1998a. An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics [J]. Journal of Engineering Mathematics, 33(2): 201-217.
CLéMENT A H, 1998b. Recent developments of computational time-domain hydrodynamics based on a differential approach of the green function [C] // Proceedings of the EUROMECH-374. Poitiers: 105-114.
DAS D, MANDAL B N, 2010. Construction of wave-free potential in the linearized theory of water waves [J]. Journal of Marine Science and Application, 9(4): 347-354.
DUAN W Y, DAI Y S, 2001. New derivation of ordinary differential equations for transient free-surface Green functions [J]. China Ocean Engineering, 15(4): 499-507.
HUANG S, ZHU R C, CHANG H Y,, 2022. Machine learning to approximate free-surface Green’s function and its application in wave-body interactions [J]. Engineering Analysis with Boundary Elements, 134: 35-48.
LIAPIS S, BECK R F, 1985. Seakeeping computations using time-domain analysis [C] // Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics. Washington: National Academy of Sciences: 34-56.
LIN W M, YUE D, 1991. Numerical solutions for large-amplitude ship motions in the time domain [C] // Proceedings of the 18th Symposium on Naval Hydrodynamics. Washington, DC: National Academy Press: 41-66.
LINTON C M, 1999. Rapidly convergent representations for Green’s functions for Laplace’s equation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 455(1985): 1767-1797.
LIU Y Y, GOU Y, TENG B,, 2016. An extremely efficient boundary element method for wave interaction with long cylindrical structures based on free-surface Green’s function [J]. Computation, 4(3): 36.
MAGEE A, BECK R F, 1989. Vectorized computations of the time-domain green function [C] // Fourth International Workshop on Water Waves and Floating Bodies. Hardangerfjord Hotel, Oystese, Norway.
NEWMAN J N, 1985a. Algorithms for the free-surface Green function [J]. Journal of Engineering Mathematics, 19(1): 57-67.
NEWMAN J N, 1985b. The evaluation of free-surface Green functions [C] // Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics. Washington.
RAHMAN M, 2001. Simulation of diffraction of ocean waves by a submerged sphere in finite depth [J]. Applied Ocean Research, 23(6): 305-317.
TAYLOR R E, HU C S, 1991. Multipole expansions for wave diffraction and radiation in deep water [J]. Ocean Engineering, 18(3): 191-224.
URSELL F, 1949. On the heaving motion of a circular cylinder on the surface of a fluid [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 2(2): 218-231.
URSELL F, 1950. Surface waves on deep water in the presence of a submerged circular cylinder. I [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 46(1): 141-152.
YU Y S, URSELL F, 1961. Surface waves generated by an oscillating circular cylinder onwater of finite depth:theory and experiment. Journal of Fluid Mechanics 11, 529–551. Mathematical Proceedings of the Cambridge Philosophical Society, 46(1): 141-152.
A BEM WITH SIMPLE GREEN'S FUNCTION FOR WAVE INTERACTION WITH A 2D BODY AT THE SURFACE OF INFINITE WATER
TENG Bin YU Mei
(Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering, Dalian 116024, China)
To understand the interaction of waves with a two-dimensional surface body in infinite water depth, the traditional wave Green’s function has complex form and slow calculation. In order to improve the calculation efficiency and accuracy, the watershed was divided into inner domain around the object and outer domain far away from the object. Simple Green’s function method was adopted in the inner domain, and multi-pole expansion method was adopted in the outer domain. The velocity potential of any point in the watershed can be obtained through coupling solution by matching inner and outer domain boundaries. The wave excitation force, additional mass, radiation damping and transmission and reflection coefficients of the object under wave action can also be calculated. The method was applied to calculate two-dimensional water surface floating semicircle and water surface floating square box, and the numerical results show that the method can conveniently, accurately and quickly calculate the interaction between waves and arbitrary floating objects in infinite water depth.
infinite water depth; boundary element method (BEM); simple Green’s function; multipole expansion
* 國家重點研發(fā)計劃項目, 2021YFB2601100號。滕 斌, 博士生導(dǎo)師, 教授, E-mail: bteng@dlut.edu.cn
2021-12-10,
2022-02-24
TV139.2
10.11693/hyhz20211200318