• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combustion Synthesis of Si3N4-BN-SiC Composites by in-situ Introduction of BN and SiC

    2022-07-27 03:22:14ZHANGYeYAODongxuZUOKaihuiXIAYongfengYINJinweiZENGYuping
    無機(jī)材料學(xué)報 2022年5期
    關(guān)鍵詞:空心球微結(jié)構(gòu)原位

    ZHANG Ye, YAO Dongxu, ZUO Kaihui, XIA Yongfeng, YIN Jinwei, ZENG Yuping

    Combustion Synthesis of Si3N4-BN-SiC Composites byIntroduction of BN and SiC

    ZHANG Ye1,2, YAO Dongxu1, ZUO Kaihui1, XIA Yongfeng1, YIN Jinwei1, ZENG Yuping1

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Si3N4-BN-SiC compositespresent desirable potential for engineering applications because of their improved mechanical properties and oxidation resistance. In present work, Si3N4-BN-SiC composites were successfully fabricated by combustion synthesis using Si, Si3N4diluent, B4C, and Y2O3as initial powders. BN and SiC wereintroduced into Si3N4ceramics by the reaction between Si, B4C, and N2gas. The obtained Si3N4-BN-SiC composites were composed of elongated-Si3N4matrix and hollow spherical composites. The formation mechanism of the hollow spherical microstructure was investigated. The results show that the generated SiC and BN particles and glass phase cover on the raw materials, and hollow spherical microstructure is formed when raw particles are depleted. Furthermore, the impacts of B4C content on the mechanical properties of Si3N4-BN-SiC composites were investigated in detail. Theintroduction of BN and SiC is beneficial to improving mechanical properties of the composites to some extent. Finally, Si3N4-BN-SiC composites with bending strength of 28–144 MPa, fracture toughness of 0.6–2.3 MPa·m1/2, Young's modulus of 17.4–54.5 GPa, and porosity of 37.7%–51.8% were obtained for the samples with 0–20% (in mass) B4C addition.

    combustion synthesis; Si3N4-BN-SiC composites;introduction; phase compositions; hollow sphere; formation mechanism

    Silicon nitride (Si3N4) ceramics have been extensively used as structural and/or functional components in various engineering fields such as filtration, aerospace, and me-mbrane support. It possesses low thermal expansion coe-fficient, excellent mechanical properties, good thermal shock resistance, and high chemical stability due to its strongly covalent bonds between atoms[1-3]. Several tech-nologies can be used to fabricate Si3N4ceramics, inclu-ding pressureless sintering[4-5], reactive sintering[6-7], car-bothermal synthesis[8], and combustion synthesis (CS)[9-10]. Among these approaches, combustion synthesis can ac-hieve rapid and low-cost fabrication of Si3N4ceramics by the self-propagating of combustion waves using Si as starting material[9].

    Compared with Si3N4ceramics, Si3N4-BN-SiC com-posites present some improved properties such as lower dielectric constant, lower thermal expansion coefficient, and higher flexural strength, which draws attractive atte-ntions in engineering applications[11-12]. The traditional introduction way of an additional phase is to add the required phase into the initial powders[13]. However, the introduced phase is difficult to disperse homogeneously into the sintered product.introduction can solve this difficulty and achieve good interface bonding bet-ween the matrix and introduced phases[14]. But investiga-tions involving theintroduction of BN or SiC into Si3N4matrix are limited. Kusunose[15]reported the preparation of Si3N4/BN nanocomposites by hot-pressing the t-BN coated-Si3N4powders, t-BN wassyn-thesized by the reducing reaction between boric acid and urea. Zheng[16]used B4C and Si as raw materials to prepare h-BN-SiC compositestheir combustion reac-tion at high-pressure N2gas (60–120 MPa). Inspired by the above work, present study attempts tointroduce BN/SiC into Si3N4matrix by B4C addition. The microstructural evolution of thefabricated BN/SiC and its effects on the properties of the sintered Si3N4-BN-SiC composites is studied.

    1 Experimental

    The initial powders were Si powder (Peixian Tianna-yuan Silicon Materials Co., Ltd., Jiangsu, China; purity≥99.99%;50=4.1 μm), Si3N4powder (Yantai Tomley Hi-Tech Advanced Materials Co., Ltd., Shandong, China; purity≥99.9%; α-phase content=42.3% (in mass);50= 22 μm), B4C powder (Dalian Jinma Boron Technology Group Co., Ltd, Shandong, China; purity≥99.99%;50= 1.5 μm), and Y2O3powder (Yuelong New Material Co., Ltd, Shanghai, China; purity≥99.999%;50= 5.04 μm). The weight ratio of initial powders was determined as Si: Si3N4: B4C: Y2O3=40 : (60–) :: 2 (=0, 5, 10, 15, 20). The samples were named SBC00, SBC05, SBC10, SBC15, and SBC20 according to the weight ratio of B4C, respectively. To obtain homogeneous mixtures, the ceramic powders were ball-milled for 3 h in ethyl alcohol with a ball/charge weight ratio of 2 : 1. After dried and sieved through a 150 μm (100 mesh) screen, each homo-geneous mixture was cold-pressed into a rectangular compact (40 mm×40 mm×10 mm) at 10 MPa. The obtained compact was immersed into a powder bed (homogeneous mixture of 40% Si and 60% Si3N4(in mass)) and ignited under 5 MPa N2atmosphere. Schematic diagram of the reactor and detailed preparation process was mentioned in previous work[17].

    The reaction temperature was obtained from the W-Re5/26thermocouple immersed into the powder bed. Rec-tangular bars with the dimensions of 3.0 mm×4.0 mm×36.0 mm were prepared to measure the bending strength and Young's modulus by three-point bending method (Instron-3443, Instron, USA). Fracture toughness was tested by single-edge notched beam method (SEBN) on pre-notched bars (3.0 mm×6.0 mm×30.0 mm). The microstructure of the sample was observed by scanning electron microscope (SU-1000, Hitachi, Japan) and transmission electron microscope (JEM-2100F, JEOL Company, Japan). The phase composition of the sample was performed by XRD (Diffractor meter D8, Bruker, Germany), and the content of each crystalline phase was calculated based on the XRD results. The open porosity of sintered sample was determined by the Archimedes method in the distilled water. The total porosity () was calculated from the measured bulk density (b), theoretical density (,calculated based on the phase content of each phase) using following equation:=1–b/.

    2 Results and disscusion

    The possible reactions during the fabrication process are shown in Eq. (1-2). Both the reactions are exothermic, but the adiabatic temperature of reaction (2) is reported to be lower than that of reaction (1)[18-19]. It meets the experimental results as shown in Table 1, the measured reaction temperature decreases from 1850 ℃ to 1765 ℃ with the increase of B4C content. Meanwhile, the reac-tion time increases with the B4C content increasing, it can be ascribed to the generation of SiC and BN which restrain the propagating of combustion wave as an inert phase.

    3Si(s)+2N2(g)=Si3N4(s) (1)

    Δθ= –725.615 kJ/mol

    Si(s)+2N2(g)+B4C(s)=SiC(s)+4BN(s) (2)

    Δθ= –914.459 kJ/mol

    Fig.1 displays the phase identification of the obtained composites. The detected crystalline phase of sample SBC00 without B4C is-Si3N4. With the increase of B4C content, the content of BN and SiC increase evidently. Besides, it is worth noting that peak broadening is observed for BN, which reveals that its crystallization is unsatisfactory in such a rapid combustion process. When B4C content is equal to or greater than 10% (in mass), residual Si is detected, which reveals that the nitridation of Si is suppressed by the newly formed BN and SiC. Meanwhile, residual-Si3N4is also detected for samples prepared with high B4C addition. The fabrication mechanism of Si3N4ceramics is primarily controlled by the dissolution of-Si3N4and precipitation of-Si3N4[20]. The decrea-sing reaction temperature as shown in Table 1 is unfavor-able to the phase transition from-Si3N4to-Si3N4, which results in the residual-Si3N4in materials. Besides, the formed BN and SiC disperse in the liquid phase and restrain the mass transport, which is also a significant factor leading to the residual-Si3N4.

    Table 1 Reaction parameters during combustion synthesis and physical properties of the sintered samples with different B4C contents

    Fig. 1 XRD patterns of the green mixture and sintered samples with varied B4C contents

    Fig. 2 shows the microstructure of green mixture of SBC20, and fracture-surface microstructure of the CS- fabricated specimens with varied B4C contents. It could be seen that the microstructure varies evidently after CS process. Before CS process, the green mixture is particu-late. After CS process, sample SBC00 without B4C is composed of interlocking-Si3N4grains with high aspect ratio. As B4C is added to the raw materials, the develop-ment ofSi3N4grains is evidently inhibited. Average aspect ratio of-Si3N4grains decreases significantly with the increase of B4C content, almost no elongated grains can be observed when B4C content is 20% (in mass). Further-more, hollow spherical microstructure is observed for the samples prepared with B4C addition. The hollow spheres have very thin wall and evident micropores on their sur-faces when B4C content is 5% (in mass). With the increase of B4C content, the thickness of the wall increases and closed hollow sphere is gradually formed. This hollow spherical microstructure is different from that of flaky BN-SiC composites prepared at 60–120 MPa N2gas[16], which illustrates that the microstructure of Si3N4-BN-SiC com-posites is evidently influenced by the N2gas pressure.

    Fig. 2 Microstructure of green mixture of SBC20 (a) and fracture- surface microstructures of the CS-fabricated specimens with B4C contents at (b) 0, (c) 5%, (d) 10%, (e) 15%, and (f) 20% (in mass)

    The properties of the sintered samples are shown in Table 1, the open porosity of sample SBC00 is 51.8%. With the increase of B4C content, the open porosity of the sample decreases apparently. When the B4C content is 20% (in mass), the open porosity of the obtained Si3N4-BN-SiC composites is 37.7%. The significant decrease in porosity can be attributed to the higher volume expansion (170%) of reaction (2) than that of nitridation of Si (21.2%)[16], more pores are filled by the generated SiC and BN grains. However, the calculated total porosity based on the XRD results is higher than open porosity, especially for samples prepared with higher B4C content. On one hand, closed pores are formed with increasing addition of B4C as discussed above. On the other hand, B4C might form glass phase with native SiO2film and Y2O3during the high-temperature CS process, the theoretical density calculated based on the XRD results is higher than the actual value of sample, thus leading to the increasing total porosity. This behavior could be proven from the calculated content of each phase by XRD. According to the law of conservation of mass of reaction (2), the content of the generated BN and SiC should be higher than the calculated content. It illustrates that B4C partially forms glass phase instead of BN and SiC after CS process, which could not be detected by XRD.

    To investigate the reaction mechanism of the CS process, transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), energy dis-per-sive spectroscope (EDS) analysis, and selected area electron diffraction (SAED) are conduct on sample SBC10 and the results are shown in Fig. 3. The results demo-nstrate that the hollow sphere is a mixture of polycry-stalline phase and amorphous phase. The crystalline phase should be BN and SiC combining the XRD analysis in Fig. 1. The amorphous phase consists of multiple elements including B, C, Si, N, and a little amount of O. On one hand, it has the characteristics of SiBCN ceramics[21]. It is well known that SiBCN ceramics have two compositionsof amorphous SiCN4-x(=1–4) and graphite-like BN(C)[22]. The above-mentioned broadening of BN peak derives from the formation of amorphous BN(C). On the other hand, the amorphous phase contains evident glass phase combining the SEM image. The formation of the hollow spherical microstructure may originate from the com-paratively low N2gas pressure and the formation of glass phase. At the initial stage of the combustion reaction, eutectic liquid phase, and small BN and SiC particles are formed and cover the surfaces of raw particles, but the small BN flakes could not grow up because of the low N2gas pressure and restriction of liquid phase. As the rea-ction proceeding, the newly formed products continue to cover the surfaces thus forming hollow spheres when raw particles are depleted. Ultimately, eutectic liquid phase forms glass phase during the rapid cooling of CS process.

    Fig. 3 (a) TEM image, (b) HRTEM image, (c) EDS analysis, and (d) SAED images of sample SBC10

    As listed in Table 1, the mechanical properties of the obtained Si3N4-BN-SiC composites fluctuate with diffe-rent contents of B4C addition. Compared to the mono-lithic Si3N4ceramics, the composites prepared with 5% (in mass) B4C has higher bending strength of 144 MPa and higher Young's modulus of 54.5 GPa. These improvements mainly result from the decrease of porosity of the sample according to the well-known negative relationship bet-ween bending strength and porosity of porous material[23]. Additionally, the generated BN and SiC grains may also benefit the mechanical properties of composites because of their pinning effects within the grain boundary. But the fracture toughness of composites doesnot show apparent increase. It could be ascribed to the introduc-tions of BN and SiC grains, resulting in more lattice defects in Si3N4grains. The elongated Si3N4grains become new crack sources, which is unfavorable to the fracture toughness of composites. With the further inc-rease of B4C content, the porosity of the obtained Si3N4- BN-SiC composites decreases continuously from 47.3% to 37.7%, but their mechanical properties, including bending strength, Young's modulus, and fracture tough-ness, degrade sharply. These behaviors indicate that the variation of microstructure is the predominated factor degrading the mechanical properties. On the one hand, the introduction of hollow spheres instead of elongated Si3N4grains presents lower mechanical properties than that of Si3N4ceramics with elongated morphology. On the other hand, the growth of Si3N4grain is restrained because of the introduction of B4C and the consequent generation of BN and SiC. Therefore, the degraded aver-age aspect ratio is also a significant factor decreasing the mechanical properties of the Si3N4-BN-SiC composites according to the theory of crack deflection[24].

    3 Conclusion

    In this research, Si3N4-BN-SiC composites with hollow spherical microstructure were successfully fabricated by combustion synthesis. The microstructural evolution of theintroduced BN/SiC and its impacts on the properties of the obtained Si3N4-BN-SiC composites were studied. As the B4C content increases, the reaction temperature decreases and the porosity of sintered sample decreases evidently. Besides, the nitridation of Si, phase transition from-Si3N4to-Si3N4, and growth of-Si3N4grains are suppressed with the introduction of B4C. Therefore, residual Si and-Si3N4are detected for samples prepared with high B4C content. The bending strength and Young's modulus of the obtained Si3N4-BN- SiC composites increase firstly and then decrease with the B4C content increasing because of the decreasing porosity and degradation of microstructure. Optimal mechanical properties with bending strength of 144 MPa, fracture toughness of 2.3 MPa·m1/2, and Young's modulusof 54.5 GPa are achieved when B4C content is 5% (in mass).

    [1] WANG W D, YAO D X, CHEN H B,ZrSi2-MgO as novel additives for high thermal conductivity of-Si3N4ceramics., 2020, 103(3): 2090–2100.

    [2] SUN S Y, XIE Z P, CHEN K X. Precisely controlled carbothermal synthesis of spherical-Si3N4granules., 2020, 46(8): 10879–10884.

    [3] HAMPSHIRE S. Silicon nitride ceramics–review of structure, processing and properties., 2007, 24(1): 43–50.

    [4] LI X Q, YAO D X, ZUO K H,Microstructure and gas permeation performance of porous silicon nitride ceramics with unidirectionally aligned channels., 2020, 103(11): 6565–6574.

    [5] KALEMTAS A, TOPATES G, OZCOBAN H,Mechanical characterization of highly porous β-Si3N4ceramics fabricatedpartial sintering & starch addition., 2013, 33(9): 1507–1515.

    [6] YANG J G, WU P, ZHANG Y P,Synthesis of Si3N4whiskers by rapid nitridation of silicon droplets., 2020, 17(1): 296–303.

    [7] MATSUNAGA C, ZHOU Y, KUSANO D,Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3and MgO as sintering additives., 2017, 14(6): 1157–1163.

    [8] ZHI Q, WANG B, ZHAO S,Synthesis and mechanical properties of highly porous ultrafine-grain Si3N4ceramicscarbothermal reduction-nitridation combined with liquid phasesintering., 2019, 45(17): 21359–21364.

    [9] ZHANG Y, YU X, GU H,Microstructure evolution and high-temperature mechanical properties of porous Si3N4ceramics prepared by SHS with a small amount of Y2O3addition., 2021, 47(4): 5656–5662.

    [10] CANO I G, BOROVINSKAYA I P, RODRIGUEZ M A,Effect of dilution and porosity on self-propagating high-temperature synthesis of silicon nitride., 2002, 85(9): 2209–2211.

    [11] LOJANOVá S, TATARKO P, CHLUP Z,Rare-earth element doped Si3N4/SiC micro/nano-composites—RT and HT mechanical properties., 2010, 30(9): 1931–1944.

    [12] LI X L, ZHANG L, YIN X,Mechanical and dielectric properties of porous Si3N4-SiC(BN) ceramic., 2010, 490(1/2): 40–43.

    [13] WANG S J, JIA D C, YANG Z H,Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4composite ceramics prepared by gel casting., 2013, 39(4): 4231–4237.

    [14] WANG S J, YANG Z H, DUAN X M,Fabrication and characterization ofporous Si3N4-Si2N2O-BN ceramic., 2014, 11(5): 832–838.

    [15] KUSUNOSE T, SEKINO T, CHOA Y H,Fabrication and microstructure of silicon nitride/boron nitride nanocomposites., 2002, 85(11): 2678–2688.

    [16] ZHENG Y T, LI H B, ZHOU T. Microstructure and mechanical properties of h-BN-SiC ceramic composites prepared by in situ combustion synthesis., 2012, 540(1): 102–106.

    [17] ZHANG Y, YAO D, ZUO K,Fabrication and mechanical properties of porous Si3N4ceramics preparedSHS., 2019, 45(12): 14867–14872.

    [18] LI H B, ZHENG Y T, HAN J C.-combustion synthesis of h-BN-SiC high-temperature ceramics., 2007, 353–358: 1501–1504.

    [19] ZHANG Y, YAO D, ZUO K,Effects of N2pressure and Si particle size on mechanical properties of porous Si3N4ceramics preparedSHS., 2020, 40(13): 4454–4461.

    [20] LAI K R, TIEN T Y. Kinetics of-Si3N4grain-growth in Si3N4ceramics sintered under high nitrogen pressure., 1993, 76(1): 91–96.

    [21] RIEDEL R, KIENZLE A, DRESSLER W,A silicoboron carbonitride ceramic stable to 2,000 ℃., 1996, 382(6594): 796–798.

    [22] THIYAGARAJAN G B, DEVASIA R. Simple and low-cost synthetic route for SiBCN ceramic powder from a boron-modified cyclotrisilazane., 2019, 102(1): 476–489.

    [23] YANG J F, ZHANG G J, OHJI T. Fabrication of low-shrinkage, porous silicon nitride ceramics by addition of a small amount of carbon., 2001, 84(7): 1639–1641.

    [24] FABER K T, EVANS A G. Crack deflection processes-Ⅰ. Theory., 1983, 31(4): 565–576.

    原位引入BN-SiC燃燒合成Si3N4-BN-SiC復(fù)合材料

    張葉1,2, 姚冬旭1, 左開慧1, 夏詠鋒1, 尹金偉1, 曾宇平1

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點實驗室, 上海 200050; 2. 中國科學(xué)院大學(xué), 材料科學(xué)與光電工程中心, 北京 100049)

    Si3N4-BN-SiC復(fù)合材料以其良好的力學(xué)性能和抗氧化性能而具有良好的工程應(yīng)用前景。本研究以Si、Si3N4稀釋劑、B4C和Y2O3為原料, 采用燃燒合成法成功制備了Si3N4-BN-SiC復(fù)合材料。通過Si、B4C和N2氣之間的反應(yīng), 在Si3N4陶瓷中原位引入BN和SiC, 制備的Si3N4-BN-SiC復(fù)合材料由長棒狀的-Si3N4和空心球形復(fù)合材料組成。實驗研究了空心球微結(jié)構(gòu)的形成機(jī)理, 結(jié)果表明, 生成的SiC、BN顆粒及玻璃相覆蓋在原料顆粒上, 當(dāng)原料顆粒反應(yīng)完全時, 形成空心球形微結(jié)構(gòu)。并進(jìn)一步研究了B4C含量對Si3N4-BN-SiC復(fù)合材料力學(xué)性能的影響。原位引入SiC和BN在一定程度上可以提高復(fù)合材料的力學(xué)性能。當(dāng)B4C添加量為質(zhì)量分?jǐn)?shù)0~20%時, 獲得了抗彎強(qiáng)度為28~144 MPa、斷裂韌性為0.6~2.3 MPa·m1/2, 楊氏模量為17.4~54.5 GPa, 孔隙率為37.7%~51.8%的Si3N4-BN-SiC復(fù)合材料。

    燃燒合成; Si3N4-BN-SiC復(fù)合材料; 原位引入; 相組成; 空心球; 形成機(jī)理

    TQ174

    A

    2021-07-05;

    2021-09-06;

    2021-09-27

    National Key R&D Program of China (2018YFF01013605); National Natural Science Foundation of China (51902327)

    ZHANG Ye (1994–), male, PhD candidate. E-mail: zhangyezn@student.sic.ac.cn

    張葉(1994–), 男, 博士研究生. E-mail: zhangyezn@student.sic.ac.cn

    ZENG Yuping, male, professor. E-mail: yuping-zeng@mail.sic.ac.cn

    曾宇平, 研究員. E-mail: yuping-zeng@mail.sic.ac.cn

    1000-324X(2022)05-0574-05

    10.15541/jim20210422

    猜你喜歡
    空心球微結(jié)構(gòu)原位
    具有0D/2D界面的InOOH/ZnIn2S4空心球S型異質(zhì)結(jié)用于增強(qiáng)光催化CO2轉(zhuǎn)化性能
    物歸原位
    幼兒100(2024年19期)2024-05-29 07:43:34
    基于空心球滑移條件下的雙梯度鉆井井筒溫壓場的研究
    Fe2TiO5/C空心球光催化劑的可見光光催化和重復(fù)利用性能研究
    未培養(yǎng)微生物原位培養(yǎng)技術(shù)研究進(jìn)展
    金屬微結(jié)構(gòu)電鑄裝置設(shè)計
    用于視角偏轉(zhuǎn)的光學(xué)膜表面微結(jié)構(gòu)設(shè)計
    粘結(jié)型La0.8Sr0.2MnO3/石墨復(fù)合材料的微結(jié)構(gòu)與電輸運(yùn)性質(zhì)
    空心球包覆處理制備氧化鋁多孔陶瓷
    原位強(qiáng)化的鋁基復(fù)合材料常見增強(qiáng)相及制備方法
    河南科技(2014年12期)2014-02-27 14:10:29
    草草在线视频免费看| 蜜桃亚洲精品一区二区三区| 欧美变态另类bdsm刘玥| 国产熟女欧美一区二区| 亚洲av国产av综合av卡| av一本久久久久| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 看十八女毛片水多多多| 国内揄拍国产精品人妻在线| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 国产精品人妻久久久久久| 色综合色国产| 女人久久www免费人成看片| 亚洲国产精品999| 天堂网av新在线| 青春草视频在线免费观看| 色5月婷婷丁香| 国产黄片美女视频| 三级国产精品欧美在线观看| 久久99精品国语久久久| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 久久精品国产鲁丝片午夜精品| 美女高潮的动态| 涩涩av久久男人的天堂| 成人一区二区视频在线观看| 国产精品99久久久久久久久| 精品酒店卫生间| 国产男女超爽视频在线观看| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 日韩伦理黄色片| 777米奇影视久久| 综合色av麻豆| 18禁在线播放成人免费| 中文天堂在线官网| 免费播放大片免费观看视频在线观看| 亚洲激情五月婷婷啪啪| 丰满人妻一区二区三区视频av| av在线天堂中文字幕| 欧美一区二区亚洲| 久久久久国产精品人妻一区二区| 亚洲人成网站在线播| 99热这里只有是精品50| 精品酒店卫生间| 我的老师免费观看完整版| 婷婷色综合大香蕉| 亚洲精品色激情综合| 久久人人爽av亚洲精品天堂 | 国内揄拍国产精品人妻在线| 又粗又硬又长又爽又黄的视频| 天美传媒精品一区二区| 亚洲国产最新在线播放| 日韩一区二区三区影片| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 欧美最新免费一区二区三区| 91午夜精品亚洲一区二区三区| 久久精品国产自在天天线| 国产av不卡久久| 一二三四中文在线观看免费高清| 午夜激情福利司机影院| 国产亚洲av片在线观看秒播厂| 欧美人与善性xxx| 全区人妻精品视频| 国产精品成人在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 特大巨黑吊av在线直播| 又爽又黄a免费视频| 97超碰精品成人国产| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 久久久成人免费电影| av一本久久久久| 中文乱码字字幕精品一区二区三区| 久热久热在线精品观看| 观看免费一级毛片| av在线app专区| 久久亚洲国产成人精品v| 精品熟女少妇av免费看| 久久精品久久久久久噜噜老黄| 欧美精品国产亚洲| 亚洲av一区综合| 丰满少妇做爰视频| 人妻系列 视频| 国产色婷婷99| 五月开心婷婷网| av播播在线观看一区| 各种免费的搞黄视频| 亚洲aⅴ乱码一区二区在线播放| 简卡轻食公司| 别揉我奶头 嗯啊视频| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 一区二区三区乱码不卡18| 国产一级毛片在线| 在线播放无遮挡| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂 | 欧美3d第一页| 精品久久久久久久人妻蜜臀av| 精品国产一区二区三区久久久樱花 | 国产日韩欧美在线精品| 亚洲最大成人中文| 色视频www国产| 最近最新中文字幕大全电影3| 国产成人精品福利久久| 寂寞人妻少妇视频99o| 波多野结衣巨乳人妻| 日韩 亚洲 欧美在线| 91精品国产九色| 99热这里只有是精品50| 亚洲欧美成人精品一区二区| 夜夜看夜夜爽夜夜摸| 欧美日韩精品成人综合77777| 久久久久久国产a免费观看| 国产在视频线精品| 成人二区视频| 另类亚洲欧美激情| 亚洲国产高清在线一区二区三| 日韩中字成人| 18禁在线播放成人免费| 在线免费十八禁| 国产亚洲av片在线观看秒播厂| 国产成人freesex在线| 亚洲真实伦在线观看| 精品久久久久久久久av| 婷婷色综合www| 久久久久久久国产电影| 亚洲性久久影院| 久久久亚洲精品成人影院| 亚州av有码| 王馨瑶露胸无遮挡在线观看| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 寂寞人妻少妇视频99o| 亚洲精品乱久久久久久| 18禁在线无遮挡免费观看视频| 国产精品伦人一区二区| 久久久久久久久久成人| 国内少妇人妻偷人精品xxx网站| 午夜激情久久久久久久| 18禁裸乳无遮挡免费网站照片| 丝瓜视频免费看黄片| 亚洲国产最新在线播放| 亚洲综合色惰| 成人特级av手机在线观看| 国产黄片视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 夜夜爽夜夜爽视频| 美女脱内裤让男人舔精品视频| 99热国产这里只有精品6| 久久综合国产亚洲精品| 最近的中文字幕免费完整| 国产高清三级在线| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 青青草视频在线视频观看| 国产美女午夜福利| 成人综合一区亚洲| 一级毛片黄色毛片免费观看视频| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 亚洲成人一二三区av| 人妻一区二区av| 欧美精品一区二区大全| 亚洲国产精品成人综合色| 丝袜喷水一区| av国产免费在线观看| 午夜福利视频1000在线观看| 搞女人的毛片| 99久久中文字幕三级久久日本| 欧美xxxx性猛交bbbb| 免费看光身美女| 中国三级夫妇交换| 亚洲国产成人一精品久久久| 免费观看在线日韩| 又粗又硬又长又爽又黄的视频| 亚洲欧洲国产日韩| 午夜福利在线观看免费完整高清在| 日韩欧美 国产精品| 国产av不卡久久| 在现免费观看毛片| 国产成人精品一,二区| 成人免费观看视频高清| 国产真实伦视频高清在线观看| 亚洲av福利一区| 国产免费一区二区三区四区乱码| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡 | 午夜精品国产一区二区电影 | 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 亚洲在久久综合| 国产 一区精品| 精品少妇久久久久久888优播| 免费看日本二区| 精品酒店卫生间| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 精品视频人人做人人爽| 少妇人妻久久综合中文| 少妇熟女欧美另类| 三级国产精品欧美在线观看| 精品久久久久久久末码| 亚洲,欧美,日韩| 五月玫瑰六月丁香| 免费黄网站久久成人精品| 99re6热这里在线精品视频| 最近手机中文字幕大全| 欧美成人午夜免费资源| 在线a可以看的网站| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 毛片女人毛片| 秋霞伦理黄片| 国产黄色免费在线视频| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 国产精品一区二区三区四区免费观看| 又大又黄又爽视频免费| 男插女下体视频免费在线播放| 精品久久久噜噜| 午夜日本视频在线| 欧美性猛交╳xxx乱大交人| 免费看av在线观看网站| 欧美性感艳星| 中国三级夫妇交换| 国产亚洲精品久久久com| 欧美成人午夜免费资源| 最近中文字幕2019免费版| 99热网站在线观看| 欧美成人a在线观看| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 久久久成人免费电影| 一本一本综合久久| 国产探花在线观看一区二区| 男的添女的下面高潮视频| 久久久久久国产a免费观看| 热re99久久精品国产66热6| 十八禁网站网址无遮挡 | 成人亚洲精品av一区二区| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 亚洲精品日本国产第一区| 人妻 亚洲 视频| 亚洲精品,欧美精品| 久久97久久精品| 又爽又黄a免费视频| 亚洲av日韩在线播放| 久久精品综合一区二区三区| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 精品久久国产蜜桃| 国产69精品久久久久777片| 最近中文字幕2019免费版| 久久久精品欧美日韩精品| 如何舔出高潮| 欧美xxⅹ黑人| 一级毛片我不卡| 成人高潮视频无遮挡免费网站| 亚洲欧洲日产国产| 国产探花在线观看一区二区| 亚洲精品色激情综合| 国产91av在线免费观看| 婷婷色综合大香蕉| 亚洲精品456在线播放app| 男女啪啪激烈高潮av片| 黄色怎么调成土黄色| 极品少妇高潮喷水抽搐| 成年女人看的毛片在线观看| 国产高清国产精品国产三级 | 精品人妻一区二区三区麻豆| 亚洲欧美一区二区三区黑人 | 极品少妇高潮喷水抽搐| 两个人的视频大全免费| 在线观看国产h片| 国产91av在线免费观看| 插逼视频在线观看| 高清av免费在线| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频| 国产av不卡久久| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 国产av不卡久久| 一级av片app| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区 | 一级毛片aaaaaa免费看小| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| 黄色欧美视频在线观看| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 亚洲精品乱码久久久久久按摩| 综合色丁香网| 中文在线观看免费www的网站| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 在线观看一区二区三区激情| 日日啪夜夜撸| 亚洲精品影视一区二区三区av| 免费少妇av软件| 只有这里有精品99| 一本久久精品| 亚洲精品一二三| 美女国产视频在线观看| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久 | 久久久久久九九精品二区国产| 久久精品国产亚洲av涩爱| 街头女战士在线观看网站| 中国国产av一级| 99久久人妻综合| 亚洲精品aⅴ在线观看| 欧美性感艳星| 老师上课跳d突然被开到最大视频| 欧美精品人与动牲交sv欧美| 日本爱情动作片www.在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 日韩电影二区| 国产 一区精品| 高清欧美精品videossex| 美女cb高潮喷水在线观看| 男人狂女人下面高潮的视频| 少妇高潮的动态图| 少妇人妻久久综合中文| 最近手机中文字幕大全| 夜夜爽夜夜爽视频| 日韩人妻高清精品专区| 久久人人爽av亚洲精品天堂 | 亚洲不卡免费看| 男人舔奶头视频| 日韩免费高清中文字幕av| 国产在线男女| 日韩制服骚丝袜av| 久久精品夜色国产| 女人久久www免费人成看片| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 国产精品麻豆人妻色哟哟久久| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 男女那种视频在线观看| 日韩欧美精品v在线| 在现免费观看毛片| 亚洲最大成人中文| 久久久久久国产a免费观看| 久久久久久久久久久丰满| 国产精品偷伦视频观看了| 国内精品宾馆在线| 久久久久国产网址| 久久久久久国产a免费观看| av黄色大香蕉| 国产精品福利在线免费观看| 日韩免费高清中文字幕av| 亚洲最大成人中文| 激情五月婷婷亚洲| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 午夜爱爱视频在线播放| 国产高清不卡午夜福利| 视频中文字幕在线观看| 国产色婷婷99| 视频区图区小说| 久久99热6这里只有精品| 身体一侧抽搐| 久久97久久精品| 亚洲精品国产av蜜桃| 插逼视频在线观看| av一本久久久久| 尤物成人国产欧美一区二区三区| 在线观看av片永久免费下载| 午夜福利视频精品| 国产又色又爽无遮挡免| 美女国产视频在线观看| 热re99久久精品国产66热6| 日本黄大片高清| 欧美激情在线99| 99久久精品一区二区三区| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 人妻一区二区av| 一边亲一边摸免费视频| 日日啪夜夜爽| 成人黄色视频免费在线看| 亚洲人与动物交配视频| 你懂的网址亚洲精品在线观看| av在线播放精品| 久久久欧美国产精品| 大片电影免费在线观看免费| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 少妇 在线观看| 在线a可以看的网站| 国产亚洲最大av| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频精品一区| 老司机影院成人| 国产高清不卡午夜福利| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 一区二区av电影网| 韩国av在线不卡| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av成人精品| 岛国毛片在线播放| 嫩草影院精品99| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 国产中年淑女户外野战色| 亚洲欧美一区二区三区黑人 | 99久久九九国产精品国产免费| 超碰av人人做人人爽久久| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| av免费观看日本| 日本黄色片子视频| 中文字幕av成人在线电影| 久久久色成人| 欧美三级亚洲精品| 能在线免费看毛片的网站| 色综合色国产| 嫩草影院新地址| 欧美+日韩+精品| 国产av不卡久久| av黄色大香蕉| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲内射少妇av| 新久久久久国产一级毛片| 五月伊人婷婷丁香| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 大码成人一级视频| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品古装| 国产黄色免费在线视频| 乱系列少妇在线播放| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 成人亚洲精品一区在线观看 | 亚洲国产欧美人成| 秋霞伦理黄片| 我的女老师完整版在线观看| 高清毛片免费看| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 亚洲国产色片| 午夜福利高清视频| 51国产日韩欧美| 男女边摸边吃奶| 丝袜脚勾引网站| 国产成人精品久久久久久| 性色avwww在线观看| 看十八女毛片水多多多| av国产精品久久久久影院| 欧美日本视频| 久久久久久久午夜电影| 成人欧美大片| 国产乱人视频| 插阴视频在线观看视频| 老司机影院毛片| 好男人视频免费观看在线| 成人亚洲精品一区在线观看 | 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| 午夜激情久久久久久久| 国产色婷婷99| 久久久国产一区二区| 男人添女人高潮全过程视频| 国产成年人精品一区二区| 日本一本二区三区精品| 国产精品女同一区二区软件| 国产有黄有色有爽视频| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 成年女人在线观看亚洲视频 | 精品熟女少妇av免费看| 美女高潮的动态| 日日撸夜夜添| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 成人亚洲精品av一区二区| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区| 久久久久九九精品影院| 国产亚洲5aaaaa淫片| 久久久久久久久久久丰满| 欧美另类一区| 精品酒店卫生间| 亚洲国产精品成人久久小说| 久久精品国产自在天天线| 男人添女人高潮全过程视频| 久久97久久精品| 1000部很黄的大片| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 免费看光身美女| 亚洲四区av| 欧美日韩视频精品一区| 国产色婷婷99| 欧美zozozo另类| 交换朋友夫妻互换小说| 中文字幕亚洲精品专区| 夫妻午夜视频| 免费av不卡在线播放| 亚洲精品第二区| 草草在线视频免费看| 亚洲人成网站在线观看播放| 97热精品久久久久久| 蜜臀久久99精品久久宅男| 精品人妻一区二区三区麻豆| 一级二级三级毛片免费看| 九九在线视频观看精品| 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 国产伦理片在线播放av一区| 久久国内精品自在自线图片| 免费观看a级毛片全部| 亚洲在线观看片| 一区二区三区四区激情视频| 午夜福利高清视频| 久久精品国产a三级三级三级| 久久ye,这里只有精品| 九九在线视频观看精品| 女人被狂操c到高潮| 777米奇影视久久| 国产欧美亚洲国产| 午夜爱爱视频在线播放| 久久99热这里只有精品18| 午夜免费男女啪啪视频观看| 亚洲va在线va天堂va国产| 亚洲欧美精品专区久久| 欧美一级a爱片免费观看看| 久久97久久精品| 天天躁夜夜躁狠狠久久av| 别揉我奶头 嗯啊视频| 我要看日韩黄色一级片| 在线天堂最新版资源| 成人鲁丝片一二三区免费| 中文精品一卡2卡3卡4更新| 国产一区二区三区综合在线观看 | 国产在线男女| 一区二区三区乱码不卡18| 国产真实伦视频高清在线观看| 男人添女人高潮全过程视频| 毛片一级片免费看久久久久| 欧美亚洲 丝袜 人妻 在线| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 在线观看av片永久免费下载| 97在线人人人人妻| 18禁在线播放成人免费| 麻豆久久精品国产亚洲av| 内地一区二区视频在线| 综合色av麻豆| 日本-黄色视频高清免费观看| 中文字幕制服av| 亚洲精品国产成人久久av| 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| 久久久精品94久久精品| 欧美日韩一区二区视频在线观看视频在线 | 看黄色毛片网站| 亚洲精品国产av成人精品| 美女主播在线视频| 国产午夜精品一二区理论片| 午夜老司机福利剧场| 哪个播放器可以免费观看大片| 人妻 亚洲 视频| 男插女下体视频免费在线播放| eeuss影院久久| 欧美高清成人免费视频www| 日本欧美国产在线视频| 在线观看一区二区三区| 日韩成人伦理影院| 亚洲国产色片| 亚洲av.av天堂| 九草在线视频观看| 久久精品国产亚洲网站| 啦啦啦在线观看免费高清www| 久久女婷五月综合色啪小说 | 天天躁夜夜躁狠狠久久av|