• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Epitaxial Metallic LaNiO3 Thin Film by Polymer Assisted Deposition

    2022-07-27 03:09:50YANGZhuGUOShaoboCAIHenghuiDONGXianlinWANGGenshui
    關(guān)鍵詞:變溫外延異質(zhì)

    YANG Zhu, GUO Shaobo, CAI Henghui, DONG Xianlin,3, WANG Genshui,3

    Preparation of Epitaxial Metallic LaNiO3Thin Film by Polymer Assisted Deposition

    YANG Zhu1,2, GUO Shaobo1, CAI Henghui1,2, DONG Xianlin1,2,3, WANG Genshui1,2,3

    (1. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China)

    LaNiO3(LNO), as a promising material in ferroelectric super lattices, super conductive heterostructures and catalysts has recently attracted great interest. Herein, a facile and low-cost polymer assisted deposition (PAD) method is established to prepare epitaxial LNO thin films on (001) orientated SrTiO3(STO) with excellent conductivity. Various structural and electrical characterizations of the film were investigated. The film has good crystallinity with a full-width at half-maximum value of 0.38° from the rocking curve for the (002) reflection. High resolution XRD-scans further confirmed the heteroepitaxial growth of LNO film on STO substrate. There are four peaks separated by 90°, showing that the LNO thin film is cubic-on-cubic grown on STO substrate.high temperature XRD measurement showed epitaxial growth of LNO thin film on STO substrate. Metal cations could be released orderly on the monocrystalline substrate and epitaxial crystallization occurs after decomposition of polymer. XPS results indicated that LaNiO3thin film fabricated by PAD was stoichiometric without oxygen vacancy. The atomic force microscopy analysis showed that the smooth surface with root-mean-square surface roughness was 0.67 nm. The resistivity as functions of temperature revealed that it has good conductivity from 10 K to 300 K. All results demonstrate that the LaNiO3thin films deposited by PAD have better comprehensive performance, indicating that PAD method has great potential for preparing epitaxial functional thin film materials.

    LaNiO3; conductive film; polymer assisted deposition; epitaxial

    LaNiO3(LNO) has attracted much attention in recent years not only due to its metallic property at all temperatures among rare earth nickelate, but also owing to its alternative to Pt to serve as bottom electrode of ferroelectric thin film capacitors[1-2]. LNO has the perovskite structure with a pseudo-cubic lattice para-meter of 0.384 nm[3]. It has been reported that the use of LNO bottom electrode can improve the performance of the ferroelectric thin film device such as fatigue characteristics and leakage current characteristics due to the mutual diffusion between Pt electrode and ferro-electric thin film[4-5]. At the same time, the orientation of LNO seed layer can induce the oriented growth of ferro-electric thin films[6]. And the epitaxial strain has been proved to enhance the remanent polarization and increase the Curie temperature in ferroelectric epitaxy[7-8].

    Synthesis of LNO thin films have been reported by a variety of techniques including physical vapor deposition (radio frequency magnetron sputtering (RF-MS)[9], pu-lsed laser deposition (PLD)[10], molecular beam epi-taxy (MBE)[11]) and chemical solution deposition (CSD)[12]. High-quality epitaxial films can be obtained by physical vapor deposition, but these processes are associated with expensive and complex equipment, vacuum environment, limited deposition area and high costs[13]. While in the traditional CSD process, metallic organic precursors with high activity are used as reaction sources to generate various oligomers through hydrolysis. These oligomers, which contain metal ions, with the proper viscosity, are easy to rotate and uniformly coating, and can be made into ceramic materials by combustion of organic matter at high temperatures[14]. Although this method needs simple equipment and low cost, it cannot meet the requirements of the epitaxial growth of thin films. Moreover, many functional compound materials cannot be deposited because many metal precursors react violently with water to form metal hydroxides and precipitate out of the solution even before coating the solution on the substrates. The degree of hydrolysis can be in question owing to the differences in chemical reactivity among the metals used in the solution[15]. Thus, it is necessary to find a synthetic method which can prepare epitaxial films like the physical method while having the advantages of the chemical method.

    Polymer assisted deposition is a new chemical solution method developed in 2004[16]. This technique has been widely used for the epitaxial growth of thin films in different fields such as oxides[17], nitrides[18], carbides[19],[20]. The key to the successful of epitaxial growth of thin films is the use of polyethyleneimine (PEI) with functional –NH2groups to bind metal that serves both to coordinate, stabilize cations and maintain an even distribution of the metal cations in solution[21-22]. PEI can not only encapsulate the metal to prevent chemical reaction, but also control the viscosity of the precursor by adjusting the molecular weight of PEI[23]. Therefore, the solution has adequate viscosity to coat on the substrate evenly. After the decomposition of PEI, metal cations can be released orderly on the monocrystalline substrate and epitaxial crystallization occurs[16]. Com-pared with the physical vapor deposition, PAD requires no vacuum, which has the advantages of simple operation, simple equipment and low cost. Compared with the Sol-Gel method, PAD avoids the hydrolysis and conden-sation reaction of precursors, so it is easier to obtain stable precursors with precise stoichiometric ratio. The PAD method offers several advantages over CSD method, such as epitaxial growth, no need of ageing and easy control of viscosity.

    This study presents a new attempt to prepare LNO epitaxial film by PAD. Various analyses on the structure and chemical composition of the conductive LNO thin film were carried out. It is proved that the crystallization occurs at crystallization temperature after the decom-position of PEI which results in the epitaxial growth of LNO thin film.

    1 Experimental

    Epitaxial LNO thin films were fabricated on (001) oriented SrTiO3(STO) single-crystal substrate by PAD. The precursor for the growth of LNO film was obtained by the following steps. Lanthanum acetate hydrate (La(NO3)3·6H2O, 99.99%, Aladdin Industrial Medicines Co.Ltd) and nickel nitrate hexahydrate (Ni(NO3)2·6H2O, 98%, China National Industrial Medicines Co.Ltd) as sources of metal were dissolved in deionized H2O. Both polyethyleneimine (PEI, 50% (in mass) in H2O, Aladdin Indu-strial Medicines Co.Ltd) and ethylenediaminetetra-acetic acid (EDTA, 99%, Aladdin Industrial Medicines Co.Ltd) were used to complex the metal cations. In detail, EDTA was 1 : 1 molar ratio with metal ion, and PEI was incor-porated into the solution in a 1:1 mass ratio with EDTA. After stirring for 24 h, a transparent blue solution with reasonable viscosity was achieved. The solution concen-tration was 0.15 mol/L. The precursor solution was spin-coated onto STO (001) substrate at 5000 r/min for 30 s to obtain LNO wet film. The wet film was heated at 700 ℃ for 30 min in air to form a dense film.

    Crystallinity of the film and the heteroepitaxial relationships between the film and the substrate were measured by high resolution X-ray diffractometer (HRXRD, D8 Discover, Bruker, Germany). Atomic force microscope (AFM, FM-Nanoview6800, FSM-Precision, China) was used to characterize surface roughness of the film. The thickness and lattice parameter of the film were characterized by the high-resolution transmission ele-ctron microscopy (HRTEM, JEM-2100F, JEOL, Japan). Chemical composition of films and oxidation state of elements were detected by X-ray photoelectron spectro-scope (XPS, ESCAlab-250, Thermo Fisher, England). The resistivity of the LNO film was performed from 10 K to 300 K using a four-probe technique by a physical property measurement system (PPMS, PPMS-9T, Quan-tum Design, USA).

    2 Results and discussion

    Fig. 1(a) presents the-2scan of LNO film on STO (001). It is obvious that only (001) peak of the film and substrate can be seen, indicating that the LNO film exhibits substrate orientation. The calculated lattice parameter obtained from the position of (002) reflection is 0.3838 nm, which is well consistent with the theo-re-tical value 0.384 nm[3]. Fig. 1(b) shows the rocking-curve of the (002) peak. A full width at half-maximum (FWHM) value is 0.38°, suggesting that the LNO film fabricated by PAD has good crystallization quality. Additionally, to further confirm the heteroepitaxial growth of LNO film on STO substrate, XRD-scans of reflections of LNO (202) and STO (202) (Fig. 1(c)) were carried out. It can be seen from the-scans that there are four peaks separated by 90°, showing that the LNO thin film is cubic-on-cubic grown on STO substrate. The heteroe-pitaxial relationships between the LNO film and the STO substrate can be described as (001)LNO||(001)STO and [101]LNO||[101]STO. As shown in Fig. 1(d), the RMS roughness of LNO film is 0.67 nm, indicating that the surface is smooth. Fig. 1(e) shows the cross-sectional HRTEM image of LNO film on STO substrate. And the thickness of the film can be measured as ~25 nm. The detailed epitaxial interface structure between the LNO thin film and the STO substrate through the HRTEM is exhibited in Fig. 1(f). The excellent epitaxial growth could be attributed to the relatively small lattice mis-match ~1.7% between the film (LNO=0.384 nm mea-sured through the (001) lattice plane spacing) and the substrate (STO=0.391 nm).

    Fig. 1 Charaterization of as-prepared LNO film

    (a) HRXRD patterns of the LNO films; (b) Rocking-curve of the (002) LNO reflection; (c)-scans from (202) reflection of LNO and (202) of STO; (d) 3D AFM micrograph of LNO film; (e) Bright-field cross-sectional TEM image of LNO film on STO substrate; (f) Cross-sectional HRTEM image of the interface between LNO and STO

    To show the epitaxial growth of LNO thin film on STO substrate, the wet film coated by LNO precursor was tested byhigh temperature XRD measure-ment. It can be seen from Fig. 2 that there is no obvious change in the XRD pattern in the low temperature zone. With the increase of the temperature up to 500 ℃, PEI gradually decomposes and at the end of the pyrolysis there are no other peaks observed except for the substrate. Until the beginning of the crystallization at 700 ℃, the (002) orientation peak of LNO film appears. In other words, crystallization of the film occurs after the decomposition temperature of the PEI polymer. The complete degradation of PEI is above 550 ℃ by Ther-mogravimetric Analysis[22]. That means that the high decom-position temperature of PEI prevents the formation of the film below this temperature which is basically consistent with the aboveXRD results. After the decom-position of PEI, metal cations can be released orderly on the monocrystalline substrate and epitaxial crystallization occurs.

    Fig. 2 In-situ XRD patterns of LNO film on STO substrate at different temperatures

    Fig. 3 shows the XPS survey spectrum and La3d, Ni2p and O1s spectra for the film fabricated by PAD. It can be seen from Fig. 3(a) that only the peak of La, Ni, O and C elements can be found in the survey spectrum. Except for the surface adsor-bed carbon, there is no detectable impurity elements. Fig. 3(b) gives the XPS spectrum of La with high resolution which presents the binding energy of La3d3/2between 854.3 and 850.1 eV and La3d5/2between 837.5 and 833.2 eV (standard value: La3d3/2~ 853.0 eV; La3d5/2~836.0 eV)[24-25]. Fig. 3(c) represents the narrow scan of Ni2p. The Ni2p3/2spin-orbit is located at 854.4 eV accompanied by a satellite peak locating at higher binding energy of 863.4 eV. The chemical valence state of Ni ion can be judged from Ni2p1/2bonding energy peak[26-27]. The Ni2p1/2usually has a single peak for Ni3+, while a double peak for Ni2+. Additionally, the existence of Ni2+degenerates the conductive pro-perties of LNO films. In Fig. 3(c), the Ni2p1/2spin-orbit with a single peak at 871.7 eV was observed. It can be inferred that the oxidation state of nickel ion in the LNO film prepared by PAD is +3, which is consistent well with the good conductive property described as follows. Fig. 3(d) shows the narrow scan of O1s. The only peak at binding energy of 528.9 eV is considered to be the lattice oxygen in LNO. This indicates that LNO thin film annealed in air do not have oxygen vacancies which means that LaNiO3fabricated by PAD is stoichiometric.

    Fig. 4 shows the resistivity from 10 to 300 K of the LNO film on STO substrate with a thickness of 25 nm. The LNO film measured by a standard four-probe me-thod presents metallic resistivitytemperature be-ha-vior which means that the resistivity increases by incre-asing temperature. The LNO thin film has a room tem-perature resistivity of 160 μΩ·cm. Table 1 summ-a-rizes the room-temperature resistivity of LNO thin films deposited by different methods on single crystal substrate. It should be noted that the LNO thin film deposited by PAD is epitaxial growth as compared with che-mical solution deposition, and has a low resistivity comparable to that fabricated by physical vapor depo-sition[28-30].

    Fig. 4 Temperature dependence of resistivity of 25 nm LNO film on STO substrate

    Table 1 Summary of the parameters of LNO films grown by different methods

    3 Conclusion

    In summary, we have successfully fabricated epitaxial LaNiO3thin film on SrTiO3substrate through polymer assisted deposition. XRD and HRTEM results reveal that the film has good crystallinity and epitaxial quality. Additionally, theXRD measurement has been carried out to elucidate the epitaxial growth process of LNO thin film. The resistivity result shows all metallic property with good conductive property from 10 to 300 K. The successful growth of the LNO thin film provides a new approach in preparing epitaxial functional thin film material by using low-cost PAD.

    [1] PONTES D S L, PONTES F M, CHIQUITO A J,. Investigation of the structural, optical and dielectric properties of highly (100)-oriented (Pb0.60Ca0.20Sr0.20)TiO3thin films on LaNiO3bottom electrode., 2014, 185: 123–128.

    [2] PONTES D S L, CAPELI R A, GARZIM M L,. Structural, microstructural, optical and electrical properties of (Pb,Ba,Sr)TiO3films growth on conductive LaNiO3-coated LaAO3(100) and Pt/Ti/SiO2/Si substrates., 2014, 121: 93–96.

    [3] ZHU J, ZHENG L, ZHANG Y,. Fabrication of epitaxial conductive LaNiO3films on different substrates by pulsed laser ablation., 2006, 100(2/3): 451–456.

    [4] CHEN M S, WU T B, WU J M. Effect of textured LaNiO3electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3thin films., 1996, 68(10): 1430–1432.

    [5] CHAE B G, YANG Y S, LEE S H,. Comparative analysis for the crystalline and ferroelectric properties of Pb(Zr,Ti)O3thin films deposited on metallic LaNiO3and Pt electrodes., 2002, 410(1/2): 107–113.

    [6] LI W L, ZHANG T D, XU D,. LaNiO3seed layer induced enhancement of piezoelectric properties in (100)-oriented (1–)BZT-BCT thin films., 2015, 35(7): 2041–2049.

    [7] WANG J, NEATON J B, ZHENG H,. Epitaxial BiFeO3multiferroic thin film heterostructures., 2003, 299(5613): 1719–1722.

    [8] LEE J H, MURUGAVEL P, RYU H,. Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3thin films., 2006, 18(23): 3125–3129.

    [9] SCHERWITZL R, GARIGLIO S, GABAY M,. Metal- insulator transition in ultrathin LaNiO3films., 2011, 106(24): 246403.

    [10] LIU P, NING X. Anisotropy of core-level spectra and the correlation with transport properties of epitaxial lanthanum nickel oxide thin films., 2020, 589: 412199.

    [11] CHEN P, XU S Y, ZHOU W Z,.reflection high-energy electron diffraction observation of epitaxial LaNiO3thin films., 1999, 85(5): 3000–3002.

    [12] MAMBRINI G P, LEITE E R, ESCOTE M T,. Structural, microstructural, and transport properties of highly oriented LaNiO3thin films deposited on SrTiO3(100) single crystal., 2007, 102(4): 043708.

    [13] CHO C R, PAYNE D A, CHO S L. Solution deposition and heteroepitaxial crystallization of LaNiO3electrodes for integrated ferroelectric devices., 1997, 71(20): 3013–3015.

    [14] FEI L, NAEEMI M, ZOU G,. Chemical solution deposition of epitaxial metal-oxide nanocomposite thin films., 2013, 13(1): 85–101.

    [15] GOH P C, YAO K, CHEN Z. Reaction mechanisms of ethyle-nediaminetetraacetic acid and diethanolamine in the precursor solution for producing (K, Na)NbO3thin films with outstanding piezoelectric properties., 2012, 116(29): 15550–15556.

    [16] JIA Q X, MCCLESKEY T M, BURRELL A K,. Polymer- assisted deposition of metal-oxide films., 2004, 3(8): 529–532.

    [17] LIN Y, LEE J S, WANG H,. Structural and dielectric properties of epitaxial Ba1–xSrTiO3films grown on LaAlO3substrates by polymer-assisted deposition., 2004, 85(21): 5007–5009.

    [18] LUO H M, WANG H Y, BI Z X,. Epitaxial ternary nitride thin films prepared by a chemical solution method., 2008, 130(46): 15224–15225.

    [19] ZOU G, LUO H, ZHANG Y,. A chemical solution approach for superconducting and hard epitaxial NbC film., 2010, 46(41): 7837–7839.

    [20] KUMAH D P, NGAI J H, KORNBLUM L. Epitaxial oxides on semiconductors: from fundamentals to new devices., 2019, 30(18): 1901597.

    [21] BURRELL A K, MARK MCCLESKEY T, JIA Q X. Polymer assisted deposition., 2008, 11(11): 1271–1277.

    [22] VILA-FUNGUEIRI?O J M, RIVAS-MURIAS B, RUBIO- ZUAZO J,. Polymer assisted deposition of epitaxial oxide thin films., 2018, 6(15): 3834–3844.

    [23] WANG H, FRONTERA C, HERRERO-MARTIN J,. Aqueous chemical solution deposition of functional double perovskite epitaxial thin films., 2020, 26(42): 9338–9347.

    [24] YANG E H, MOON D J. Synthesis of LaNiO3perovskite using an EDTA-cellulose method and comparison with the conventional pechini method: application to steam CO2reforming of methane., 2016, 6(114): 112885–112898.

    [25] WANG G, LING Y, LU X,. A mechanistic study into the catalytic effect of Ni(OH)2on hematite for photoelectrochemical water oxidation., 2013, 5(10): 4129–4133.

    [26] TSUBOUCHI K, OHKUBO I, KUMIGASHIRA H,. Epitaxial growth and surface metallic nature of LaNiO3thin films., 2008, 92(26): 262109.

    [27] HE B,WANG Z. Effect of substrate temperature on microstructure and electrical properties of LaNiO3films grown on SiO2/Si substrates by pulsed laser deposition under a high oxygen pressure., 2016, 122(10): 905.

    [28] SON J, MOETAKEF P, LEBEAU J M,. Low-dimensional mott material: transport in ultrathin epitaxial LaNiO3films., 2010, 96(6): 062114.

    [29] DOBIN A Y, NIKOLAEV K R, KRIVOROTOV I N,. Electronic and crystal structure of fully strained LaNiO3films., 2003, 68(11): 113408.

    [30] ZHU M, KOMISSINSKIY P, RADETINAC A,. Effect of composition and strain on the electrical properties of LaNiO3thin films., 2013, 103(14): 141902.

    [31] MIYAKE S, FUJIHARA S, KIMURA T. Characteristics of oriented LaNiO3thin films fabricated by the Sol-Gel method., 2001, 21(10/11): 1525–1528.

    高分子輔助沉積法制備LaNiO3外延導(dǎo)電薄膜

    楊柱1,2, 郭少波1, 蔡恒輝1,2, 董顯林1,2,3, 王根水1,2,3

    (1. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 無(wú)機(jī)功能材料與器件實(shí)驗(yàn)室, 上海 200050; 2. 中國(guó)科學(xué)院大學(xué) 材料科學(xué)與光電子工程中心, 北京 100049; 3. 中國(guó)科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 上海 200050)

    近年來(lái)LaNiO3(LNO)作為鐵電超晶格、超導(dǎo)異質(zhì)結(jié)和催化劑材料引起了廣泛關(guān)注。本研究采用簡(jiǎn)便、低成本的高分子輔助沉積法(Polymer Assisted Deposition, PAD), 在(001)取向的SrTiO3(STO)單晶襯底上制備了導(dǎo)電性能優(yōu)異的LNO外延薄膜, 并對(duì)其進(jìn)行各種結(jié)構(gòu)和電學(xué)表征。搖擺曲線半高寬為0.38°, 表明LNO薄膜結(jié)晶度良好。高分辨XRD的掃描進(jìn)一步證實(shí)LNO薄膜在STO襯底上異質(zhì)外延生長(zhǎng)。原位變溫XRD測(cè)試進(jìn)一步表征了LNO薄膜的外延生長(zhǎng)過(guò)程。結(jié)果表明, 聚合物分解之后金屬陽(yáng)離子在單晶基體上有序釋放并外延結(jié)晶。XPS結(jié)果表明, 采用PAD制備的LaNiO3薄膜不存在氧空位。薄膜表面光滑, 粗糙度為0.67 nm。在10~300 K溫度區(qū)間內(nèi)的變溫電阻率表明LNO薄膜具有良好的導(dǎo)電性能。上述結(jié)果表明:PAD制備的LaNiO3薄膜具有較好的綜合性能, PAD在制備外延功能薄膜材料方面具有很大的潛力。

    LaNiO3; 導(dǎo)電薄膜; 高分子輔助沉積法; 外延

    TQ174

    A

    2021-04-26;

    2021-05-23;

    2021-07-20

    National Natural Science Foundation of China (11774366); International Partnership Program of Chinese Academy of Sciences (GJHZ1821)

    YANG Zhu (1996–), male, Master candidate. E-mail: yangzhu@student.sic.ac.cn

    楊柱(1996–), 男, 碩士研究生. E-mail: yangzhu@student.sic.ac.cn

    WANG Genshui, professor. E-mail: genshuiwang@mail.sic.ac.cn;

    GUO Shaobo, senior engineer. E-mail: guoshaobo@ mail.sic.ac.cn

    王根水, 研究員. E-mail: genshuiwang@mail.sic.ac.cn; 郭少波, 高級(jí)工程師. E-mail: guoshaobo@mail.sic.ac.cn

    1000-324X(2022)05-0561-06

    10.15541/jim20210271

    猜你喜歡
    變溫外延異質(zhì)
    氯乙烯生產(chǎn)中變溫吸附脫水工藝的使用及改進(jìn)
    關(guān)于工資內(nèi)涵和外延界定的再認(rèn)識(shí)
    入坑
    意林(2016年13期)2016-08-18 22:38:36
    愛(ài)情的內(nèi)涵和外延(短篇小說(shuō))
    凍融處理對(duì)甘薯變溫壓差膨化干燥動(dòng)力學(xué)的影響
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    非共面四頻激光陀螺變溫零偏周期性波動(dòng)
    Mn摻雜ZnSe量子點(diǎn)變溫發(fā)光性質(zhì)研究
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見(jiàn)光光催化性能
    MoS2/ZnO異質(zhì)結(jié)的光電特性
    国产极品粉嫩免费观看在线| 一级,二级,三级黄色视频| 宅男免费午夜| 国产av精品麻豆| 满18在线观看网站| 黄片大片在线免费观看| 国产成人av教育| 亚洲欧美激情综合另类| 免费久久久久久久精品成人欧美视频| 国产亚洲欧美精品永久| 91国产中文字幕| 久久中文字幕人妻熟女| 久久亚洲真实| 国产区一区二久久| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区av网在线观看| 韩国av一区二区三区四区| 韩国av一区二区三区四区| 在线观看66精品国产| 国产精品98久久久久久宅男小说| 黑人巨大精品欧美一区二区mp4| 亚洲 国产 在线| 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 亚洲一区二区三区欧美精品| 国产精品亚洲av一区麻豆| 成人影院久久| 欧美精品啪啪一区二区三区| 好男人电影高清在线观看| 国产淫语在线视频| 女人久久www免费人成看片| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 十分钟在线观看高清视频www| 男女高潮啪啪啪动态图| 国产在视频线精品| 久久人人97超碰香蕉20202| 国产野战对白在线观看| 人人妻人人爽人人添夜夜欢视频| 美女高潮喷水抽搐中文字幕| 国产精品一区二区在线观看99| 一级片免费观看大全| 天天操日日干夜夜撸| 别揉我奶头~嗯~啊~动态视频| 老司机福利观看| 怎么达到女性高潮| 黄色成人免费大全| tube8黄色片| 久久精品aⅴ一区二区三区四区| 国产精品九九99| 亚洲一码二码三码区别大吗| 99久久国产精品久久久| 夜夜躁狠狠躁天天躁| 亚洲国产精品合色在线| av天堂在线播放| 国产精品免费一区二区三区在线 | 狠狠婷婷综合久久久久久88av| 久久亚洲真实| 可以免费在线观看a视频的电影网站| 国产片内射在线| 亚洲国产欧美网| 亚洲欧美激情在线| 午夜福利欧美成人| 搡老妇女老女人老熟妇| 一级黄片播放器| 亚洲人成网站高清观看| 在线a可以看的网站| 亚洲片人在线观看| 91在线精品国自产拍蜜月 | 又粗又爽又猛毛片免费看| 久久精品夜夜夜夜夜久久蜜豆| 久久亚洲精品不卡| 国产精品自产拍在线观看55亚洲| 1024手机看黄色片| 午夜精品一区二区三区免费看| www日本在线高清视频| 1000部很黄的大片| 日本五十路高清| 成年人黄色毛片网站| 国产精品久久久久久久久免 | 日韩欧美 国产精品| 免费在线观看影片大全网站| 美女黄网站色视频| 日本 欧美在线| 一进一出抽搐动态| 丰满人妻熟妇乱又伦精品不卡| 亚洲无线观看免费| 亚洲 国产 在线| 精品国产美女av久久久久小说| 叶爱在线成人免费视频播放| 国产亚洲精品久久久com| 亚洲av电影不卡..在线观看| 久久伊人香网站| 搡老熟女国产l中国老女人| 精品一区二区三区人妻视频| 女人高潮潮喷娇喘18禁视频| 欧美性猛交黑人性爽| av国产免费在线观看| 国产亚洲欧美在线一区二区| 桃红色精品国产亚洲av| 成人亚洲精品av一区二区| 午夜久久久久精精品| 九色国产91popny在线| 日日摸夜夜添夜夜添小说| 国产探花在线观看一区二区| 国产欧美日韩精品一区二区| 老汉色∧v一级毛片| 久久婷婷人人爽人人干人人爱| 黄色视频,在线免费观看| 午夜免费激情av| 狂野欧美激情性xxxx| tocl精华| 黄色丝袜av网址大全| 在线十欧美十亚洲十日本专区| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久,| av中文乱码字幕在线| 有码 亚洲区| 观看美女的网站| 黄片大片在线免费观看| 久久国产精品人妻蜜桃| 国产老妇女一区| 婷婷六月久久综合丁香| 免费人成视频x8x8入口观看| 特大巨黑吊av在线直播| 天天一区二区日本电影三级| 午夜福利在线在线| 亚洲熟妇熟女久久| 一级作爱视频免费观看| 99久久成人亚洲精品观看| 两性午夜刺激爽爽歪歪视频在线观看| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 免费观看人在逋| 中文字幕精品亚洲无线码一区| 日韩大尺度精品在线看网址| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| 精品一区二区三区视频在线 | 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 久久久久久久久久黄片| 欧美成狂野欧美在线观看| av黄色大香蕉| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区三区四区久久| 最近在线观看免费完整版| 在线免费观看不下载黄p国产 | 人妻丰满熟妇av一区二区三区| 欧美日韩黄片免| 精品乱码久久久久久99久播| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 制服人妻中文乱码| 国产亚洲精品一区二区www| 国产伦一二天堂av在线观看| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 俺也久久电影网| 久久久久久久久大av| 乱人视频在线观看| 国产免费男女视频| 国产免费一级a男人的天堂| 美女被艹到高潮喷水动态| 色综合欧美亚洲国产小说| 亚洲国产精品成人综合色| 亚洲片人在线观看| 国产精品久久久人人做人人爽| 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| www.999成人在线观看| 欧美最新免费一区二区三区 | 欧美色视频一区免费| 日韩av在线大香蕉| 极品教师在线免费播放| 国产不卡一卡二| 无遮挡黄片免费观看| 免费av不卡在线播放| 国产在线精品亚洲第一网站| 97超级碰碰碰精品色视频在线观看| 男人和女人高潮做爰伦理| 亚洲最大成人手机在线| 精品久久久久久久毛片微露脸| 国产欧美日韩精品亚洲av| 国产私拍福利视频在线观看| 日韩 欧美 亚洲 中文字幕| 欧美一区二区精品小视频在线| 在线a可以看的网站| 波多野结衣巨乳人妻| 中文在线观看免费www的网站| e午夜精品久久久久久久| 男人的好看免费观看在线视频| 搡老妇女老女人老熟妇| 淫秽高清视频在线观看| 他把我摸到了高潮在线观看| 91字幕亚洲| 欧美日韩黄片免| 夜夜夜夜夜久久久久| 女人十人毛片免费观看3o分钟| 女生性感内裤真人,穿戴方法视频| 88av欧美| 国产真人三级小视频在线观看| 亚洲欧美日韩无卡精品| 亚洲精品一区av在线观看| 成人永久免费在线观看视频| 国产伦精品一区二区三区四那| 老司机午夜福利在线观看视频| 欧美成人性av电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 他把我摸到了高潮在线观看| 少妇丰满av| 国产男靠女视频免费网站| av福利片在线观看| 午夜日韩欧美国产| 18+在线观看网站| 啦啦啦韩国在线观看视频| 国内精品久久久久精免费| 欧美日韩福利视频一区二区| 国产成人福利小说| 久久久成人免费电影| 久久国产乱子伦精品免费另类| 欧美+亚洲+日韩+国产| 午夜福利在线观看免费完整高清在 | 中文资源天堂在线| 99久国产av精品| 国产中年淑女户外野战色| 一边摸一边抽搐一进一小说| 乱人视频在线观看| 18禁在线播放成人免费| 嫩草影院精品99| 亚洲av成人av| 长腿黑丝高跟| 久久久久久人人人人人| 国产精品亚洲一级av第二区| 国产老妇女一区| 又爽又黄无遮挡网站| 在线观看日韩欧美| 俺也久久电影网| 极品教师在线免费播放| 国产一区二区亚洲精品在线观看| 人人妻,人人澡人人爽秒播| 国产一级毛片七仙女欲春2| 在线播放无遮挡| 麻豆一二三区av精品| 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 精品免费久久久久久久清纯| 丰满乱子伦码专区| 国产成年人精品一区二区| 久久精品国产清高在天天线| 国产精品亚洲美女久久久| 精品熟女少妇八av免费久了| 国产精品 国内视频| 国产精品久久久久久精品电影| 日韩欧美 国产精品| 三级国产精品欧美在线观看| 午夜两性在线视频| 女同久久另类99精品国产91| 精品福利观看| 在线a可以看的网站| 老司机在亚洲福利影院| 欧美乱色亚洲激情| 99热精品在线国产| 午夜日韩欧美国产| 国产亚洲精品av在线| 亚洲中文日韩欧美视频| 午夜精品一区二区三区免费看| 国内精品久久久久精免费| 人妻久久中文字幕网| 欧美3d第一页| av片东京热男人的天堂| 久99久视频精品免费| 在线观看午夜福利视频| 久久久久九九精品影院| 久久久国产成人免费| 精品一区二区三区视频在线 | 999久久久精品免费观看国产| 亚洲人成网站在线播放欧美日韩| 亚洲自拍偷在线| 中文亚洲av片在线观看爽| 午夜福利在线观看免费完整高清在 | 成人三级黄色视频| 国产精品久久视频播放| 观看免费一级毛片| 亚洲真实伦在线观看| 欧美一区二区亚洲| 内地一区二区视频在线| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 国产精品久久电影中文字幕| 亚洲 国产 在线| 深爱激情五月婷婷| 级片在线观看| 日韩人妻高清精品专区| 女生性感内裤真人,穿戴方法视频| 在线免费观看不下载黄p国产 | 天堂av国产一区二区熟女人妻| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 久久6这里有精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱码精品一区二区三区| 丰满的人妻完整版| 成人无遮挡网站| 可以在线观看毛片的网站| 成人三级黄色视频| 免费看美女性在线毛片视频| www.熟女人妻精品国产| 日本免费一区二区三区高清不卡| 69人妻影院| 很黄的视频免费| 亚洲一区二区三区不卡视频| 亚洲精品在线观看二区| 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 搡女人真爽免费视频火全软件 | 色老头精品视频在线观看| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女| 国模一区二区三区四区视频| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 免费大片18禁| 九色国产91popny在线| 欧美日本亚洲视频在线播放| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 亚洲精品影视一区二区三区av| av专区在线播放| 一区福利在线观看| 91久久精品国产一区二区成人 | 亚洲成人久久爱视频| 狂野欧美激情性xxxx| 亚洲 欧美 日韩 在线 免费| 国产精品爽爽va在线观看网站| 久久九九热精品免费| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 成年人黄色毛片网站| www日本在线高清视频| 麻豆国产97在线/欧美| 精品99又大又爽又粗少妇毛片 | 精品国产亚洲在线| 午夜免费观看网址| 少妇人妻精品综合一区二区 | 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 亚洲国产色片| 亚洲欧美日韩东京热| 亚洲av美国av| 欧美一区二区亚洲| 两个人看的免费小视频| av国产免费在线观看| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 黄片大片在线免费观看| 国产精品99久久久久久久久| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 欧美一级毛片孕妇| 国内精品美女久久久久久| 久久性视频一级片| 亚洲精品在线美女| 亚洲av美国av| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 日本在线视频免费播放| 草草在线视频免费看| 99久国产av精品| 国产三级在线视频| av片东京热男人的天堂| 国产成人a区在线观看| 婷婷精品国产亚洲av| 国产99白浆流出| 真人做人爱边吃奶动态| 日韩中文字幕欧美一区二区| 宅男免费午夜| 日韩欧美精品免费久久 | 日本成人三级电影网站| 国产野战对白在线观看| 国产免费av片在线观看野外av| 美女高潮喷水抽搐中文字幕| 我要搜黄色片| 欧美一级毛片孕妇| av专区在线播放| 一个人看视频在线观看www免费 | 国产精品一及| 中文字幕熟女人妻在线| 毛片女人毛片| 精品人妻一区二区三区麻豆 | 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月天丁香| 一级作爱视频免费观看| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 免费观看人在逋| 波多野结衣巨乳人妻| 美女黄网站色视频| 一级毛片女人18水好多| 免费电影在线观看免费观看| 国产综合懂色| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 很黄的视频免费| 国产野战对白在线观看| 在线看三级毛片| 亚洲乱码一区二区免费版| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 少妇的逼水好多| 成人特级av手机在线观看| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 亚洲在线观看片| 婷婷六月久久综合丁香| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 少妇的丰满在线观看| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产 | 在线播放国产精品三级| 久久99热这里只有精品18| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 久久久久亚洲av毛片大全| 桃红色精品国产亚洲av| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频| 欧美日韩黄片免| 日韩欧美精品免费久久 | 在线看三级毛片| 欧美日韩福利视频一区二区| 免费人成视频x8x8入口观看| 久久久国产成人精品二区| 欧美黄色淫秽网站| 99热精品在线国产| 99久久久亚洲精品蜜臀av| 俺也久久电影网| 99久久久亚洲精品蜜臀av| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 变态另类丝袜制服| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| 窝窝影院91人妻| 成人无遮挡网站| 99视频精品全部免费 在线| 国产黄色小视频在线观看| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 有码 亚洲区| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 99久久精品一区二区三区| 国产高清视频在线观看网站| 国产亚洲精品av在线| 精品乱码久久久久久99久播| www国产在线视频色| 黄色女人牲交| 精品国内亚洲2022精品成人| 国产三级黄色录像| 久久国产精品人妻蜜桃| 美女黄网站色视频| 国产亚洲精品综合一区在线观看| 成人午夜高清在线视频| 99久久九九国产精品国产免费| 亚洲国产精品成人综合色| 日韩国内少妇激情av| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 日韩欧美免费精品| 免费av不卡在线播放| 亚洲五月天丁香| 成人av一区二区三区在线看| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区 | 中文资源天堂在线| 一个人免费在线观看的高清视频| 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 日本黄大片高清| 日韩亚洲欧美综合| 国产男靠女视频免费网站| 国产成人欧美在线观看| 无遮挡黄片免费观看| 日韩欧美国产在线观看| www.色视频.com| 久久久精品大字幕| 久久精品影院6| 国产精品亚洲美女久久久| 男女之事视频高清在线观看| 亚洲中文字幕日韩| 成年人黄色毛片网站| 国产精品亚洲一级av第二区| 51国产日韩欧美| 男人舔奶头视频| 欧美极品一区二区三区四区| 久久这里只有精品中国| 一级毛片女人18水好多| 欧美一区二区国产精品久久精品| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 午夜福利在线观看免费完整高清在 | 国产一区二区在线观看日韩 | 欧美日韩精品网址| av视频在线观看入口| 国产99白浆流出| 日韩有码中文字幕| av欧美777| 在线播放国产精品三级| 日本 av在线| 国产 一区 欧美 日韩| 在线免费观看的www视频| 国产色婷婷99| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 日本黄大片高清| 麻豆成人午夜福利视频| 免费看a级黄色片| 老司机午夜福利在线观看视频| 人人妻人人澡欧美一区二区| 中文字幕人妻熟人妻熟丝袜美 | 精品人妻一区二区三区麻豆 | 丰满的人妻完整版| 国产精品永久免费网站| 床上黄色一级片| 亚洲av中文字字幕乱码综合| 一夜夜www| 婷婷精品国产亚洲av| 久99久视频精品免费| 久久久久亚洲av毛片大全| 国内精品久久久久久久电影| av欧美777| 国产在视频线在精品| 成人特级av手机在线观看| 国产伦一二天堂av在线观看| 美女cb高潮喷水在线观看| 一进一出抽搐gif免费好疼| 99久久精品国产亚洲精品| 在线视频色国产色| 91麻豆av在线| 亚洲熟妇熟女久久| netflix在线观看网站| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 天堂动漫精品| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 麻豆成人av在线观看| 国产成人影院久久av| 国产三级在线视频| 国产精品久久电影中文字幕| 国产成人福利小说| 日韩欧美在线乱码| 老鸭窝网址在线观看| 女同久久另类99精品国产91| 男插女下体视频免费在线播放| 日本与韩国留学比较| 美女高潮的动态| 香蕉av资源在线| 国产综合懂色| 一个人免费在线观看电影| 国语自产精品视频在线第100页| 三级毛片av免费| 久久久久亚洲av毛片大全| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 可以在线观看毛片的网站| 国产一区二区三区在线臀色熟女| 亚洲成人免费电影在线观看| 1024手机看黄色片| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 男女之事视频高清在线观看| netflix在线观看网站| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 蜜桃亚洲精品一区二区三区| 97碰自拍视频| 亚洲天堂国产精品一区在线| 免费av毛片视频| 亚洲成av人片在线播放无| 精品免费久久久久久久清纯| 一进一出抽搐gif免费好疼| 欧美黄色淫秽网站| 久久精品影院6| 成人永久免费在线观看视频| 亚洲av免费高清在线观看| 精品人妻1区二区| 午夜精品一区二区三区免费看| 久久久久久国产a免费观看| av天堂中文字幕网| 精品一区二区三区视频在线 | 精品熟女少妇八av免费久了| 久久亚洲精品不卡| 中文在线观看免费www的网站| 舔av片在线| 欧美最新免费一区二区三区 | 久久久色成人|