• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on the dimerization reaction of penicillin antibiotics

    2022-07-22 03:52:30QizhangWuXiaZhangJiaxinDuChangqinHu
    Journal of Pharmaceutical Analysis 2022年3期

    Qizhang Wu,Xia Zhang,Jiaxin Du,Changqin Hu,*

    National Institutes for Food and Drug Control,Beijing,102629,China

    ABSTRACT

    Penicillins are one type of the most important antibiotics used in the clinic.Control of drug impurity profiles is an important part of ensuring drug safety.This is particularly important in penicillins where polymerization can lead to polymers as elicitors of passive cutaneous anaphylaxis.The current understanding of penicillin polymerization is based on reactions with amino groups,but no comprehensive mechanistic understanding has been reported.Here,we used theoretical calculations and column switching-LC/MS techniques to study penicillin dimerization.Ampicillin and benzylpenicillin were selected as representative penicillins with or without amino groups in the side chain,respectively.We identified four pathways by which this may occur and the energy barrier graphs of each reaction process were given.For benzylpenicillin without an amino group in the 6-side chain,dimerization mode A is the dominant mode,where the 2-carboxyl group of one molecule reacts with the β-lactam of another molecule.However,ampicillin with an amino group in the 6-side chain favors dimerization mode C,where the amino group of one molecule attacks the β-lactam of another molecule.These findings can lead to a polymer control approach to maintaining penicillin antibiotics in an active formulation.

    Keywords:

    Penicillins

    Dimerization reaction

    Theoretical calculations

    LC/MS

    Peer review under responsibility of Xi'an Jiaotong University.

    1.Introduction

    Penicillin and its analogues are the earliest and still most widely-used antibiotics in humans,but penicillins can polymerize in aqueous solution,and their polymers have long been recognized to elicit passive cutaneous anaphylaxis[1-3].Current understanding of the structure and polymerization characteristics of the polymers is based on penicillins with amino groups in the side chain such as ampicillin and amoxicillin[4-7].The polymerization mechanism is hypothesized to be where the amino group of one molecule attacks the carbonyl of the β-lactam ring of the other[4,5];thus,the amino is considered to be the key group in the formation of polymers.

    The structures of dimer and trimer of ampicillin and amoxicillin have been reported in European Pharmacopoeia(EP 8.0)[8]and United States Pharmacopoeia(USP 37/NF32)[9],which also provide the reference standards of these polymers.EP 8.0 and USP 37/NF32 also contain some heterodimers whereby an amide bond,i.e.,the dimer between the amino group of 6-aminopenicillanic acid(6-APA)and the carboxyl group of oxacillin in the monograph of oxacillin sodium,and the dimer between the amino group of ampicillin and the carboxyl group of piperacillin in the monograph of piperacillin sodium(Fig.1).The linking sites of these polymers reported in pharmacopeias are related to either amino or carboxyl groups of the chemical molecules.

    However,the polymerization mechanisms and polymer structures of penicillins without amino groups like benzylpenicillin have not yet been reported.Raj et al.[10]discussed the degradation reaction of dicloxacillin and stated that formic acid attacks the βlactam ring to obtain N-acetyl dicloxacilloic acid.According to this opinion,dimerization can possibly occur if the carboxyl group in one penicillin molecule attacks the β-lactam ring of another molecule in the similar way.Thus,we expand on this concept in this paper and explore the possible dimerization of penicillins both with and without amino groups in the C-6 side chain.

    Ampicillin and benzylpenicillin were selected as representative penicillins with or without amino groups in the side chain,respectively,in this paper.Four possible dimerization pathways of penicillin antibiotics were proposed according to the summarization of previous reported research and evaluated in the work below:1)the reaction of a carboxyl group with the β-lactam ring,2)the reaction of a carboxyl group from an open ring product of the β-lactam ring with the β-lactam ring,3)the reaction of an amino group with the β-lactam ring,and 4)the reaction of an amino group with a carboxyl group(Fig.2).The last two pathways can only exist in penicillin antibiotics with amino groups in the C-6 side chain.

    Fig.1.The structures of penicillin polymers reported in pharmacopoeia.(A and B)Ampicillin and amoxicillin polymers.(C and D)Oxacillin polymers.(E)Piperacillin polymers.

    The possible mechanisms for the above different reactions were discussed through theoretical calculation in this paper.The theoretical study on reaction mechanism started in the 1980s,which simulates the chemical reaction using theoretical calculation[11].With the rapid development of computer science,quantum chemical calculation has become an important means to complement experimental technology.In this paper,the various reaction paths of dimerization were simulated via computational chemistry,and the reaction mechanism was verified to identify the dominant dimerization reaction.Density Functional Theory(DFT)on the level of B3LYP/6-311 G(d,p)calculations was used to study all the polymerization reaction mechanisms by Gaussian 09,and the reactants,the transition state and the product were optimized.In addition,the theoretical results were verified by liquid chromatograph-mass spectrometry(LC-MS)analysis via the detection of accelerated polymerization samples and actual samples.This research shows that the dimer impurities in real samples of penicillin antibiotics can be accurately and effectively controlled.

    2.Experimental

    2.1.Materials

    Benzylpenicillin and ampicillin reference standards(RS)were provided by the National Institute for Food and Drug Control(NIFDC)of the People's Republic of China.

    Benzylpenicillin sodium for injection(Pen)was from Lukang Pharmaceutical Co.,Ltd.,China(batch number 1011903008-1)and Reyoung Pharmaceutical Co.,Ltd.,China(batch number 19010501).Ampicillin sodium for injection(Amp)was provided by North China Pharmaceutical Group Co.,Ltd.,China(batch number 0701701),and Reyoung Pharmaceutical Co.,Ltd.,China(batch number 17082001).

    Acetonitrile and methanol were of HPLC grade,and all other reagents were of analytical grade and came from different commercial suppliers.

    2.2.Sample preparations

    2.2.1.Preparation of polymerized samples

    Stock solutions of polymerized samples were prepared by leaving 10 mL of 100 mg/mL water solution of Pen for 15 days and Amp for 10 days at room temperature,respectively.An aliquot of 1.0 mL of each was then taken and diluted to 50 mL prior to the HPLC analysis.

    2.2.2.Preparation of real samples

    Stock solutions of 20 mg/mL Pen and 10 mg/mL Amp were prepared by dissolving the respective substance in water.

    2.3.Assay of dimers by HPLC-UV

    The equipment used consisted of a Shimadzu LC-20AT high performance liquid chromatography system(HPLC)with a DAD detector,Labsolutions workstation,and Shiseido Capcell C18MGII column(4.6 mm×250 mm,5μm).The chromatographic system is the same as that used for the related substance method of benzylpenicillin in Chinese Pharmacopoeia(2015 Edition)[12].Mobile phase A included phosphate buffer(10.6 g potassium dihydrogen phosphate in 1 L of water,pH was adjusted to 3.4 with phosphoric acid)and methanol(72:14).Mobile phase B was acetonitrile.Detection used a spectrophotometer at 225 nm,and the column temperature was 34°C.The injection volume was 20 μL.A stepwise gradient was applied at flow rate of 1.0 mL/min starting at 86.5%A:13.5%B,keeping this over 17 min,changing to 64%A:36%B over 24 min and keeping at this over 12 min and finally changing back to 86.5%A:13.5%B in 1 min and keeping for additional 11 min.

    2.4.Column switching-LC/MS analysis of dimers

    Column switching analysis was performed according to the literature[13].Two systems were used.One LC-MS system consisted of a Shiseido Nanospace S1-2 HPLC(Shimadzu,Kyoto,Japan),ThermoFisher PDA detector(ThermoFisher Scientific,Waltham,MA,USA),and AB SCIEX 3200Q LC/MS/MS mass spectrometer(Applied Biosystems,Foster City,CA,USA).The chromatography software used was EZChrom Elite software(Shimadzu,Kyoto,Japan),and the mass spectrometry software was Analyst 1.4.2 software(Applied Biosystems,Foster City,CA,USA).The other system was a Dionex Ultimate 3000 HPLC with a Thermo Scientific Q Exactive Focus mass spectrometry(ThermoFisher Scientific,Waltham,MA,USA).The chromatography software employed was Chromelon Xpress(ThermoFisher Scientific,Waltham,MA,USA),and the mass spectrometry software was Thermo Xcalibur(ThermoFisher Scientific,Waltham,MA,USA).

    The one-dimensional chromatographic system is described in Section 2.3.The column of the two-dimensional chromatography system was a Shiseido Capcell C18column (MGII;4.6 mm×150 mm,5μm).Mobile phase A was 0.5%(V/V)aqueous formic acid,while mobile phase B was a 0.5%(V/V)acetonitrile solution of formic acid.The column was at room temperature.A stepwise gradient for the two-dimensional chromatographic system was applied at the flow rate of 0.5 mL/min starting at 100%A:0%B,keeping this over tR(retention time of individual impurity)+5.5 min,changing to 0%A:100%B over 15 min and keeping at this to 65 min.

    Fig.2.Different dimerization pathways of penicillin antibiotics with and without amino groups in the C-6 side chain.(A)Benzylpenicillin dimerization pathway A.(B)Benzylpenicillin dimerization pathway B.(C)Ampicillin dimerization pathway C.(D)Ampicillin dimerization pathway D.

    The mass spectrometry parameters for benzylpenicillin included a ionization voltage of 4000 V,gasification temperature of 400°C,declustering potential(DP)of 28 V,collision energy(CE)of 33 V,and collision energy spread(CES)of 0 V.For ampicillin,the parameters were the ionization voltage of 5000 V,gasification temperature of 500°C,DP of 22 V,CE of 33 V,and CES of 0 V.

    2.5.Theoretical simulation of dimerization reactions

    The molecular structures from PubMed(https://www.ncbi.nlm.nih.gov/guide/chemicals-bioassays/)were the starting point of optimization,and the transition states of each reaction were searched using TS and QST2 methods in Gaussian software(Gaussian 09,Gaussian Inc.).At the B3LYP/6-311 G(d,p)level,the molecular geometric parameters and vibration frequencies of the reactants,transition states,intermediates,and products were all optimized[14-16].Meanwhile,the intrinsic reaction coordination(IRC)[17]algorithm identified the connection between the stable point and the transition state.The calculated energies in this study included zero-point energy corrections and the temperature when the calculations performed was 298.15 K.We then drew the energy barrier graph and calculated the activation energy of the reaction.Due to the large number of atoms in the calculated object,the solvent effect was not evaluated in order to simplify the calculation.

    3.Results and discussion

    3.1.Possible structure of the penicillin dimer

    Penicillins can be divided into compounds without free amino groups in C-6 side chains(benzylpenicillin and sulbenicillin)and compounds with a free amino group in the C-6 side chain such as ampicillin and amoxicillin.According to the possible dimerization mechanism of penicillins(Fig.2),the former can only dimerize via the reaction of a carboxyl group with the β-lactam ring.The possible dimer of benzylpenicillin may have dimer A(Pen-A,the product formed by the reaction between the 2-carboxyl group of one molecule and the β-lactam ring of another molecule).It may also have dimer B(Pen-B,the product formed by the reaction between the carboxyl group from the opened β-lactam ring of one penicilloic acid molecule and the β-lactam ring of another penicillin molecule)(Fig.3).

    Compounds with a free amino group in the 6-side chain may also be dimerized by reactions between side-chain amino groups and the β-lactam ring or carboxyl group.In the case of ampicillin,its dimer structure(Fig.3)may include dimer C(Amp-C,the product formed by the reaction between the side-chain amino group of one molecule and the β-lactam ring of another molecule)and dimer D(Amp-D,the product formed by the reaction between the side-chain amino group of one molecule and 2-carboxyl group of another molecule),in addition to dimer A(Amp-A)and dimer B(Amp-B).

    3.2.Theoretical simulations of the dimerization reaction

    The transition state is the first-order saddle point on the potential energy surface[18].The eigenvalue of the second-order derivative matrix of the transition state structure energy has only one negative value.Thus,the transition state only has one imaginary frequency.IRC calculations verified that the transition state connects the reactants and products through the minimum energy path at mass weight coordinates.

    3.2.1.Benzylpenicillin dimerization

    The reaction mechanism of the formation of dimer Pen-A(Fig.3A)is assumed as follows.The nucleophilic oxygen atom on the 2-carboxyl group of benzylpenicillin first attacks the carbonyl carbon of the β-lactam ring of another molecule accompanied by hydrogen transfer to form an intermediate.The carbon-oxygen bond is then broken,and the N on the tetrahydrothiazole ring is bonded to the exposed carbonyl carbon forming a dimerized product(Fig.2A).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found by theoretical calculations.The dimerization reaction is endothermic.The energy barrier graph of the reaction process is shown in Fig.4A,suggesting that the second elementary reaction is the rate-limiting step.The energy barrier is 38.42 kcal/mol(setting the reactant energy as 0.00 kcal/mol).

    The reaction mechanism of the formation of dimer Pen-B(Fig.3B)is assumed as follows.First,the β-lactam ring in the benzylpenicillin molecule is ring-opened to form penicilloic acid.The newly formed carboxyl group then reacts with the β-lactam ring of another molecule to form dimer Pen-B(Fig.2B).The energy barrier graph of the reaction process is shown in Fig.4A.The energy barrier of the second elemental reaction is 46.43 kcal/mol,suggesting that dimer Pen-B is more difficult to form than dimer Pen-A.

    3.2.2.Ampicillin dimerization

    The formation mechanisms of dimer Amp-A(Fig.2C)and dimer Amp-B(Fig.2D)are the same as those of dimer Pen-A and dimer Pen-B;the energy change in the reaction process is shown in Fig.4B.The energy barriers of the rate-limiting steps are 37.58 kcal/mol and 66.77 kcal/mol,respectively.

    Fig.3.Possible structures of penicillin dimers:(A)Pen-A,(B)Pen-B,(C)Amp-A,(D)Amp-B,(E)Amp-C,and(F)Amp-D.

    Fig.4.Energy barrier graph of polymerization process.(A)Benzylpenicillin dimerization.(B)Ampicillin dimerization.

    The reaction mechanism of the formation of dimer Amp-C(Fig.3E)is assumed as follows.First,the amino group on the 6-side chain of ampicillin attacks the carbonyl carbon of the β-lactam ring of another molecule.The hydrogen on the amino group is transferred to the carbonyl oxygen to form an intermediate.The ring is then opened,and hydrogen is transferred to the nitrogen of the five-membered ring while the carbon-oxygen bond returns to a double bond(Fig.2C).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found via theoretical calculations.The dimerization process is an exothermic reaction,which is thermodynamically beneficial to the reaction.Fig.4B indicates that the first step is the rate-limiting step with an energy barrier of 51.54 kcal/mol.

    The reaction mechanism of the formation of dimer Amp-D is assumed as follows.First,the amino group on the 6-side chain of ampicillin attacks the 2-carboxyl carbon of another molecule accompanied by hydrogen transfer to form an intermediate;water removal leads to an amide bond(Fig.2D).The entire reaction can be divided into two elementary reactions,and the corresponding transition state can be found by theoretical calculation.The dimerization reaction is endothermic,and the second step is the ratelimiting step with an energy barrier of 53.92 kcal/mol(Fig.4B).Upon comparing the mechanism and energy barrier of the four dimerization,the formation of dimers Amp-A and Amp-C is more favorable.

    3.3.Verification of theoretical calculation results by LC-MS analysis

    3.3.1.Analysis of dimers in benzylpenicillin

    The relative molecular masses of dimer Pen-A and dimer Pen-B are 668 and 686(Fig.3),respectively.The β-lactam ring is unstable,and the relative molecular mass of the ring-opened dimer Pen-A is 686.Those kinds of dimers were identified by LC-MS in the polymerized sample respectively.

    HPLC analysis of the benzylpenicillin polymerized sample(Fig.5A)showed that the retention time of benzylpenicillin was about 29 min.In reversed-phase chromatography systems,the retention time of benzylpenicillin dimers should be longer than that of benzylpenicillin.Column switching analysis was performed individually for impurities with retention time longer than that of benzylpenicillin.The MS analysis revealed that the relative molecular mass of peak 10 was 668(Fig.6A),and the main mass spectrometry fragments(m/z)at 476,623,505,551,and 651 conformed to the fragmental pattern of dimer Pen-A(Fig.6B).Therefore,peak 10 represents dimer Pen-A.

    The relative molecular mass of peak 4 is 686(Fig.7A),and the main mass spectrometry fragments(m/z)at 392,510,335,309,217,668,and 410 confirm the fragment pattern of dimer Pen-B(Fig.7B).In particular,fragment 410 is only produced by removing the fivemembered ring and breaking the amide bond of the side chain of dimer Pen-B.Therefore,this sample may represent dimer Pen-B.

    The relative molecular masses of peaks 1-3 and 5-9 are also 686(Fig.8A),and their mass fragmental patterns are nearly identical(Fig.S1).The main mass fragments(m/z)at 309,353,335,217,and 160 also agree with the fragmental pattern of the ring-opened dimer Pen-A(Fig.8B).Therefore,these eight impurities are all probably ring-opened products of dimer Pen-A because the 5 and 6 chiral sites of the penicillin β-lactam ring are likely to epimerize after ring opening.

    Attention to other impurity peaks in benzylpenicillin polymerized sample.Peak?is the maximum impurity peak after benzylpenicillin peak with a relative molecular mass of 527.The relative molecular masses of peaks?and?are both 663.The relative molecular mass of peak④is 644.These are not judged to be dimer impurities.From what has been discussed above,the chromatographic peaks 10 and 4 represent dimer Pen-A and Pen-B,respectively.Peaks 1-3 and 5-9 in Fig.5 belong to the ring-opened dimer Pen-A.Analysis of dimerized benzylpenicillin reveals that a variety of ring-opened products of dimer Pen-A isomers exist in the sample.These products suggest that benzylpenicillin dimerization pathway A is more likely to occur than dimerization pathway B,which is consistent with theoretical calculations.This might be because the β-lactam ring first hydrolyzes to form penicilloic acid in dimerization mode B,and the hydrolyzed product is only a small part in the entire molecules.Meanwhile,as a nucleophilic attack site,the carboxyl group of penicilloic acid reacts more difficultly than the 2-side chain of benzylpenicillin.

    Fig.5.HPLC chromatograms of(A)benzylpenicillin polymerized sample and(B)benzylpenicillin real sample.

    Fig.6.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 10.(B)Mass fragment pattern of dimer Pen-A.

    Fig.7.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 4.(B)Mass fragmental pattern of dimer Pen-B.

    Fig.8.MS analysis results of benzylpenicillin dimers.(A)Mass spectrum of Peak 8.(B)Mass fragmental pattern of ring-opened dimer Pen-A.

    These results also revealed that dimer Pen-A is likely to hydrolyze and the peak 8 with the retention time of about 41 min may be the dominant ring-opened structure.HPLC analysis of the real sample of benzylpenicillin for injection is shown in Fig.5B.Although no significant dimer peaks were found in two batches of the real sample,a small impurity peak with the retention time of about 42 min could be found.The relative molecular mass of this peak is 686(Fig.S2A),which is assumed to be the ring-opened dimer Pen-A.The other impurity peak with the retention time of about 37 min is not the dimer as the relative molecular mass of this peak is 387.0768(Fig.S2B).The results verified that dimerization A is more likely to occur and the dimer is easily hydrolyzed in real situations.

    3.3.2.Analysis of dimers in ampicillin

    Fig.3 shows that the relative molecular masses of ampicillin dimers A-D are 698,716,698,and 680,respectively.The β-lactam ring is easily hydrolyzed to form penicilloic acid.The relative molecular mass of the ring-opened product of dimer Amp-A is 716.The relative molecular mass of the product formed by opening one βlactam ring of dimer Amp-D is 698,and the product formed by opening two β-lactam rings of dimer Amp-D is 716.Those kinds of dimers were identified by LC-MS in the polymerized sample respectively.

    HPLC analysis of the ampicillin polymerized sample is shown in Fig.9A;the retention time of ampicillin is about 3.8 min.Column switching analysis was carried out individually for impurities with retention time longer than that of ampicillin.MS analysis showed that the secondary MS fragment types for peaks 1,3,and 4 are almost the same(Fig.S3),and the relative molecular mass of peak 4 is 698(Fig.10A).Its main fragments(m/z)are 540,381,353 and 333,which is in accordance with the fragmental pattern of dimer Amp-C(Fig.10B).Four isomers will be generated theoretically after opening the ring of the dimer.Therefore,we speculate that all the three peaks are isomers of dimer Amp-C(Fig.3E),and that peak 4 with the retention time of about 43 min is the predominant isomer.

    Fig.9.HPLC chromatograms of(A)ampicillin polymerized sample and(B)ampicillin real sample.

    Fig.10.MS analysis results of ampicillin dimers.(A)Mass spectrum of Peak 4.(B)Mass fragmental pattern of dimer Amp-C.

    The relative molecular mass of peak 5 is 698 as well(Fig.S4A);the main fragments(m/z)are 364,334,540,353,and 201,which are different from dimer Amp-C.Only cleavage on the dimerization site of ampicillin dimer Amp-D is most likely to produce 334 and 353 fragments(Fig.S4B).In tandem with the other results,peak 5 is inferred to represent the hydrolysate of dimer Amp-D(Fig.3F)that is formed by opening one β-lactam ring.

    The relative molecular mass of peak 2 is 716(Fig.S5A),which is the same as those of dimer Amp-B and the ring-opened dimers Amp-A and Amp-C.Its main fragments(m/z)include 673,514,324,334 and 306.The dimer is likely to lose one five-membered ring and one carboxyl group at the same time and thus it is not the ringopened dimer Amp-A and dimer Amp-B.As dimers Amp-A and Amp-C are kinetically and thermodynamically dominant products according to the theoretical calculations,dimer Amp-C is the major dimerization product of ampicillin,and it is most probably a ringopened dimer Amp-C(Fig.3E).

    Attention is paid to other impurity peaks in ampicillin polymerized sample.The relative molecular mass of peak①is 1066.The relative molecular masses of peaks②and③are both 1048.The relative molecular mass of peak④is 1079.These are not judged to be dimer impurities.

    From what has been discussed above,the chromatographic peaks 1,3,and 4 in Fig.9A represent dimer Amp-C,while peak 5 is the ring-opened dimer Amp-D,and peak 2 is probably the ringopened dimer Amp-C.These analyses of the ampicillin polymerization samples revealed that dimerization C is more likely to occur in real situations and has a dominant isomer.The real samples of ampicillin were analyzed(Fig.9B),and the dimers of the two batches of the real samples are mainly dimer C dominant isomers(Peak 6,whose relative molecular mass is 698)(Fig.S5B).

    4.Conclusion

    Here,the possible dimerization mechanisms of penicillin dimers were analyzed theoretically and experimentally.We found that the carboxyl group participates in a dimerization reaction as a nucleophilic group.For penicillins without an amino group in the 6-side chain,dimerization mode A is the dominant mode,i.e.,the 2-carboxyl group of one molecule reacts with the β-lactam of another molecule.However,penicillins with an amino group in the 6-side chain favor dimerization mode C,where the amino group of one molecule attacks the β-lactam of another molecule.This understanding of the mechanism of penicillin dimerization facilitates analyses of polymer impurities in samples and may lead to the discovery of the dominant polymers.This is vital for targeted polymer quality control.

    CRediT author statement

    Qizhang Wu:Methodology,Investigation,Software,Writing-Original draft preparation;Xia Zhang:Methodology,Software,Validation,Writing-Reviewing and Editing;Jiaxin Du:Investigation;Changqin Hu:Conceptualization,Supervision,Funding acquisition.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(Grant No.:2017ZX09101001-007).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.06.005.

    日韩中文字幕视频在线看片| 亚洲,欧美,日韩| 国产女主播在线喷水免费视频网站| 人妻 亚洲 视频| 狠狠精品人妻久久久久久综合| 亚洲成国产人片在线观看| 久久精品亚洲av国产电影网| 一区二区三区精品91| 亚洲国产av影院在线观看| 国产麻豆69| 首页视频小说图片口味搜索 | 国产精品成人在线| 欧美日韩成人在线一区二区| 成年av动漫网址| 夫妻午夜视频| 精品一区二区三区四区五区乱码 | 亚洲欧美精品综合一区二区三区| 两个人看的免费小视频| av天堂久久9| 青青草视频在线视频观看| av国产精品久久久久影院| 丰满迷人的少妇在线观看| av在线播放精品| 精品少妇内射三级| 久久国产亚洲av麻豆专区| 亚洲精品国产av成人精品| 国产在视频线精品| 亚洲午夜精品一区,二区,三区| 久久精品国产综合久久久| 男女高潮啪啪啪动态图| 深夜精品福利| 国产在线一区二区三区精| 精品卡一卡二卡四卡免费| 亚洲精品久久午夜乱码| 日本一区二区免费在线视频| 国产精品免费视频内射| 亚洲欧美中文字幕日韩二区| 久久久久久久久免费视频了| 青青草视频在线视频观看| 国产麻豆69| 中文字幕精品免费在线观看视频| 在线观看免费高清a一片| www日本在线高清视频| 国产日韩欧美视频二区| 妹子高潮喷水视频| 亚洲精品国产av蜜桃| 波多野结衣av一区二区av| 80岁老熟妇乱子伦牲交| 午夜免费成人在线视频| 丝袜脚勾引网站| 久久精品久久久久久久性| 午夜精品国产一区二区电影| 欧美黑人精品巨大| 一二三四社区在线视频社区8| 亚洲av日韩精品久久久久久密 | 久久国产精品男人的天堂亚洲| 又紧又爽又黄一区二区| 黄色怎么调成土黄色| 久久精品亚洲熟妇少妇任你| 亚洲五月色婷婷综合| 亚洲av综合色区一区| 欧美日韩一级在线毛片| 国产日韩欧美在线精品| 国产精品欧美亚洲77777| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 国产免费福利视频在线观看| 又紧又爽又黄一区二区| 女警被强在线播放| 波多野结衣av一区二区av| 熟女少妇亚洲综合色aaa.| 宅男免费午夜| 精品卡一卡二卡四卡免费| 久久99一区二区三区| www日本在线高清视频| 欧美成狂野欧美在线观看| 亚洲精品一区蜜桃| 一级毛片电影观看| 久久鲁丝午夜福利片| 不卡av一区二区三区| 大香蕉久久成人网| 韩国精品一区二区三区| 日韩av免费高清视频| 50天的宝宝边吃奶边哭怎么回事| 大片免费播放器 马上看| 这个男人来自地球电影免费观看| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 19禁男女啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 汤姆久久久久久久影院中文字幕| 三上悠亚av全集在线观看| 狂野欧美激情性xxxx| 免费在线观看完整版高清| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美一区二区综合| 自线自在国产av| 久久久精品94久久精品| 免费高清在线观看日韩| 午夜免费成人在线视频| 国产精品久久久久久精品古装| 桃花免费在线播放| 免费看不卡的av| 亚洲国产欧美网| 亚洲黑人精品在线| 欧美日韩综合久久久久久| 久久精品亚洲熟妇少妇任你| 午夜av观看不卡| 国产精品久久久av美女十八| 国产精品一区二区免费欧美 | 在线观看一区二区三区激情| 黑人欧美特级aaaaaa片| 中文字幕另类日韩欧美亚洲嫩草| 韩国高清视频一区二区三区| 少妇的丰满在线观看| 亚洲av美国av| 热99国产精品久久久久久7| 麻豆国产av国片精品| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 男女边摸边吃奶| 精品人妻一区二区三区麻豆| 黑人猛操日本美女一级片| 大香蕉久久网| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 国产精品久久久人人做人人爽| 精品卡一卡二卡四卡免费| 汤姆久久久久久久影院中文字幕| 国产在线观看jvid| 国精品久久久久久国模美| 久久久亚洲精品成人影院| 人人妻,人人澡人人爽秒播 | 91精品国产国语对白视频| 亚洲精品自拍成人| 国产成人系列免费观看| 亚洲 欧美一区二区三区| 日韩一本色道免费dvd| 国产一区二区激情短视频 | 99精国产麻豆久久婷婷| 国产亚洲欧美在线一区二区| 亚洲av美国av| 久久天堂一区二区三区四区| 一区福利在线观看| 成人亚洲欧美一区二区av| 黄色 视频免费看| 久久久久精品国产欧美久久久 | 亚洲成人免费电影在线观看 | 久久久久久久国产电影| 9色porny在线观看| 日韩一本色道免费dvd| 男女无遮挡免费网站观看| 久久精品亚洲熟妇少妇任你| 最新在线观看一区二区三区 | 黄色 视频免费看| 亚洲精品在线美女| 精品福利观看| 久久精品亚洲熟妇少妇任你| 国产在视频线精品| 精品卡一卡二卡四卡免费| 婷婷色综合www| 精品国产一区二区久久| 午夜福利免费观看在线| 亚洲专区中文字幕在线| av在线播放精品| 1024视频免费在线观看| 久热这里只有精品99| 水蜜桃什么品种好| 多毛熟女@视频| 日韩av在线免费看完整版不卡| 亚洲第一av免费看| av不卡在线播放| 国产成人一区二区三区免费视频网站 | 五月天丁香电影| e午夜精品久久久久久久| 波野结衣二区三区在线| 狠狠精品人妻久久久久久综合| 午夜免费鲁丝| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| 午夜福利视频精品| 久久久久久人人人人人| 十八禁网站网址无遮挡| 国产精品一国产av| 高潮久久久久久久久久久不卡| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 99国产精品一区二区蜜桃av | av不卡在线播放| 一个人免费看片子| 五月开心婷婷网| 麻豆国产av国片精品| 国产一区二区激情短视频 | 无限看片的www在线观看| 国产成人欧美在线观看 | 97在线人人人人妻| 精品久久久精品久久久| 欧美黄色淫秽网站| cao死你这个sao货| 91麻豆精品激情在线观看国产 | 两个人免费观看高清视频| 一级黄色大片毛片| 丰满迷人的少妇在线观看| av福利片在线| 国产亚洲精品久久久久5区| 欧美变态另类bdsm刘玥| 丝袜在线中文字幕| 精品国产国语对白av| 国产激情久久老熟女| 亚洲五月婷婷丁香| 国产成人精品在线电影| 欧美在线黄色| 国产一级毛片在线| 午夜福利影视在线免费观看| 亚洲精品国产一区二区精华液| 欧美精品一区二区免费开放| 久久精品人人爽人人爽视色| 国产免费又黄又爽又色| 一区二区三区激情视频| 99久久99久久久精品蜜桃| 熟女少妇亚洲综合色aaa.| 制服诱惑二区| 国产成人精品在线电影| 亚洲中文字幕日韩| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲综合一区二区三区_| avwww免费| 国产爽快片一区二区三区| 欧美国产精品va在线观看不卡| 久久人人爽av亚洲精品天堂| 亚洲欧美成人综合另类久久久| 国产免费福利视频在线观看| 人妻一区二区av| 亚洲国产毛片av蜜桃av| 久久久精品区二区三区| 婷婷色综合www| 黄片播放在线免费| 国产一区二区在线观看av| 欧美精品一区二区大全| 久久精品国产亚洲av涩爱| 日本五十路高清| 97人妻天天添夜夜摸| 91精品伊人久久大香线蕉| 汤姆久久久久久久影院中文字幕| 免费高清在线观看日韩| 晚上一个人看的免费电影| 搡老乐熟女国产| 国产不卡av网站在线观看| av又黄又爽大尺度在线免费看| 男女下面插进去视频免费观看| 免费黄频网站在线观看国产| 精品一品国产午夜福利视频| 久久精品亚洲熟妇少妇任你| av国产久精品久网站免费入址| 男女国产视频网站| 国产野战对白在线观看| 男女边吃奶边做爰视频| 母亲3免费完整高清在线观看| 日韩电影二区| xxx大片免费视频| av天堂久久9| 午夜日韩欧美国产| 97精品久久久久久久久久精品| 国产精品久久久久久精品古装| 免费少妇av软件| 永久免费av网站大全| 看十八女毛片水多多多| 国产91精品成人一区二区三区 | 亚洲三区欧美一区| 亚洲国产最新在线播放| 国产成人啪精品午夜网站| 亚洲av男天堂| 国产精品国产三级专区第一集| 精品免费久久久久久久清纯 | 99久久精品国产亚洲精品| 国产又爽黄色视频| 水蜜桃什么品种好| 亚洲,一卡二卡三卡| 首页视频小说图片口味搜索 | 美女主播在线视频| 久久女婷五月综合色啪小说| 男人添女人高潮全过程视频| 久久人人爽人人片av| 免费一级毛片在线播放高清视频 | 免费高清在线观看日韩| 成年动漫av网址| 亚洲三区欧美一区| 首页视频小说图片口味搜索 | svipshipincom国产片| 亚洲美女黄色视频免费看| 黄频高清免费视频| 欧美日本中文国产一区发布| 久久精品国产a三级三级三级| 免费av中文字幕在线| 91国产中文字幕| 国产又爽黄色视频| 天天躁夜夜躁狠狠躁躁| 国产在视频线精品| 夫妻午夜视频| 欧美日韩一级在线毛片| 日韩av不卡免费在线播放| 免费女性裸体啪啪无遮挡网站| 男女床上黄色一级片免费看| 少妇精品久久久久久久| 老司机靠b影院| 男男h啪啪无遮挡| 国产高清国产精品国产三级| 亚洲人成电影免费在线| 人成视频在线观看免费观看| 啦啦啦 在线观看视频| 欧美黑人精品巨大| 欧美亚洲日本最大视频资源| 国产在视频线精品| 啦啦啦中文免费视频观看日本| 大码成人一级视频| 国产精品国产三级专区第一集| 性色av乱码一区二区三区2| 国产精品国产av在线观看| 狠狠精品人妻久久久久久综合| 中文乱码字字幕精品一区二区三区| 国产在视频线精品| 国产成人免费无遮挡视频| 久久久久精品国产欧美久久久 | 国产伦理片在线播放av一区| 精品人妻1区二区| 久久久精品区二区三区| a级毛片黄视频| 国产免费一区二区三区四区乱码| 精品第一国产精品| 日韩av免费高清视频| 后天国语完整版免费观看| 国产精品久久久久久人妻精品电影 | 9191精品国产免费久久| 午夜免费鲁丝| 国产视频首页在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久二区二区91| 国产男女超爽视频在线观看| kizo精华| 午夜福利乱码中文字幕| 亚洲av在线观看美女高潮| 欧美日韩亚洲高清精品| 亚洲中文日韩欧美视频| 91老司机精品| 国产精品一区二区精品视频观看| 国产亚洲一区二区精品| 亚洲av成人不卡在线观看播放网 | 2021少妇久久久久久久久久久| 国产视频一区二区在线看| 一本久久精品| 制服人妻中文乱码| 18禁裸乳无遮挡动漫免费视频| 99热网站在线观看| 亚洲国产av新网站| 免费人妻精品一区二区三区视频| 免费高清在线观看视频在线观看| 狠狠婷婷综合久久久久久88av| 国产在线免费精品| 老汉色av国产亚洲站长工具| 亚洲男人天堂网一区| 国产不卡av网站在线观看| 日韩电影二区| 波野结衣二区三区在线| 日本一区二区免费在线视频| 国产伦人伦偷精品视频| 男的添女的下面高潮视频| 最黄视频免费看| 亚洲国产av新网站| 国产精品三级大全| 欧美少妇被猛烈插入视频| 色视频在线一区二区三区| 亚洲免费av在线视频| 人人妻人人澡人人看| 9色porny在线观看| 国产一级毛片在线| 最近最新中文字幕大全免费视频 | 黄频高清免费视频| 波野结衣二区三区在线| 日本黄色日本黄色录像| 亚洲av电影在线进入| 天天操日日干夜夜撸| 波多野结衣一区麻豆| 国产熟女午夜一区二区三区| 成人国产av品久久久| 在线亚洲精品国产二区图片欧美| 97人妻天天添夜夜摸| 手机成人av网站| 少妇猛男粗大的猛烈进出视频| 丁香六月欧美| 好男人视频免费观看在线| 91精品国产国语对白视频| 丁香六月欧美| 丝袜美足系列| 中文字幕高清在线视频| 国产男人的电影天堂91| 国产亚洲欧美精品永久| 婷婷丁香在线五月| 少妇人妻久久综合中文| 老司机午夜十八禁免费视频| 麻豆av在线久日| 18在线观看网站| 欧美亚洲 丝袜 人妻 在线| 欧美精品人与动牲交sv欧美| 国产福利在线免费观看视频| 国产精品久久久人人做人人爽| 蜜桃在线观看..| 亚洲,欧美,日韩| 亚洲国产毛片av蜜桃av| 女人高潮潮喷娇喘18禁视频| 精品人妻1区二区| 少妇精品久久久久久久| h视频一区二区三区| 午夜免费观看性视频| 黄片小视频在线播放| 免费少妇av软件| 亚洲精品久久成人aⅴ小说| 在线观看免费视频网站a站| 赤兔流量卡办理| 亚洲国产毛片av蜜桃av| 搡老岳熟女国产| 国产精品久久久人人做人人爽| 国产成人一区二区在线| 亚洲国产精品999| 熟女av电影| 国产成人一区二区在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲专区中文字幕在线| 纯流量卡能插随身wifi吗| 亚洲精品一区蜜桃| 三上悠亚av全集在线观看| 欧美日韩亚洲高清精品| 久久精品国产a三级三级三级| av天堂在线播放| 欧美亚洲日本最大视频资源| 在线亚洲精品国产二区图片欧美| 美女国产高潮福利片在线看| 少妇猛男粗大的猛烈进出视频| 啦啦啦在线免费观看视频4| 国产免费一区二区三区四区乱码| 婷婷色综合www| 一级毛片我不卡| 免费在线观看日本一区| 亚洲国产精品一区三区| 可以免费在线观看a视频的电影网站| 色综合欧美亚洲国产小说| 咕卡用的链子| 精品亚洲乱码少妇综合久久| 欧美成狂野欧美在线观看| 男女免费视频国产| 首页视频小说图片口味搜索 | 青青草视频在线视频观看| 黄色视频在线播放观看不卡| 久久久国产精品麻豆| 19禁男女啪啪无遮挡网站| 黄色视频不卡| 性色av乱码一区二区三区2| 成人手机av| 最黄视频免费看| 国产精品欧美亚洲77777| 91麻豆av在线| 国产成人免费观看mmmm| 久久ye,这里只有精品| 一区二区三区乱码不卡18| 好男人视频免费观看在线| 久久人人爽人人片av| 男女午夜视频在线观看| 国产伦理片在线播放av一区| 一级毛片黄色毛片免费观看视频| 十八禁人妻一区二区| 精品久久久久久电影网| 久久ye,这里只有精品| 一级毛片女人18水好多 | 女人高潮潮喷娇喘18禁视频| 考比视频在线观看| 日韩制服丝袜自拍偷拍| 国产精品二区激情视频| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 欧美成人午夜精品| 熟女av电影| 中文欧美无线码| 国产人伦9x9x在线观看| 国产精品国产三级国产专区5o| 赤兔流量卡办理| 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 午夜两性在线视频| 深夜精品福利| 日本av免费视频播放| 免费在线观看日本一区| 午夜视频精品福利| 国产一区二区三区综合在线观看| 嫁个100分男人电影在线观看 | 亚洲欧美激情在线| 欧美老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 考比视频在线观看| 大香蕉久久成人网| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 美女高潮到喷水免费观看| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 国产野战对白在线观看| 大香蕉久久网| 在线av久久热| 欧美精品啪啪一区二区三区 | 精品国产一区二区久久| 亚洲av片天天在线观看| 国产日韩欧美在线精品| 永久免费av网站大全| 久久久精品国产亚洲av高清涩受| 国产精品免费大片| 97精品久久久久久久久久精品| 老熟女久久久| 国产高清不卡午夜福利| 亚洲国产欧美在线一区| 亚洲一区中文字幕在线| 亚洲精品一二三| 婷婷色综合大香蕉| 天天躁日日躁夜夜躁夜夜| 一个人免费看片子| 日韩一本色道免费dvd| 丰满迷人的少妇在线观看| 成年av动漫网址| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 国产精品免费大片| 欧美亚洲日本最大视频资源| 亚洲九九香蕉| 欧美另类一区| 国产成人欧美| 性色av乱码一区二区三区2| 成人影院久久| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品94久久精品| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 久久热在线av| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 男男h啪啪无遮挡| 日韩精品免费视频一区二区三区| 国产精品一国产av| 午夜91福利影院| 国产精品国产av在线观看| 少妇人妻 视频| av电影中文网址| 午夜福利,免费看| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 精品久久久久久久毛片微露脸 | 免费看不卡的av| 国产免费一区二区三区四区乱码| 亚洲精品国产区一区二| 男女免费视频国产| 高清不卡的av网站| 日韩电影二区| 亚洲欧美成人综合另类久久久| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 国产成人精品久久二区二区免费| av视频免费观看在线观看| 国产成人免费观看mmmm| www日本在线高清视频| 宅男免费午夜| 精品亚洲成a人片在线观看| 成年人黄色毛片网站| 亚洲国产精品成人久久小说| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 好男人电影高清在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 精品亚洲乱码少妇综合久久| 欧美在线一区亚洲| 99热网站在线观看| 亚洲国产欧美日韩在线播放| 久久女婷五月综合色啪小说| 亚洲情色 制服丝袜| 午夜影院在线不卡| 国产成人啪精品午夜网站| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 中文字幕亚洲精品专区| 免费看十八禁软件| 在现免费观看毛片| 亚洲七黄色美女视频| 午夜免费鲁丝| 午夜福利一区二区在线看| 亚洲av成人精品一二三区| 国产在线一区二区三区精| 电影成人av| 咕卡用的链子| 99国产精品免费福利视频| 日韩制服骚丝袜av| 亚洲中文字幕日韩| 国产男女超爽视频在线观看|