• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nitrogen-doped carbon@TiO2double-shelled hollow spheres as an electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva

    2022-07-22 03:53:18HuiYngGongxunCoYongjunHungYeLinFengyingZhengLuxiuLinFengjioLiuShunxingLi
    Journal of Pharmaceutical Analysis 2022年3期

    Hui Yng,Gongxun Co,Yongjun Hung,Ye Lin,Fengying Zheng,Luxiu Lin,b,c,Fengjio Liu,b,c,Shunxing Li,b,c,*

    aCollege of Chemistry,Chemical Engineering and Environment,Minnan Normal University,Zhangzhou,Fujian,363000,China

    bFujian Provincial Key Laboratory of Pollution Monitoring and Control,Minnan Normal University,Zhangzhou,Fujian,363000,China

    cFujian Key Laboratory of Separation and Analysis Science and Technology,Zhangzhou,Fujian,363000,China

    ABSTRACT

    As the most commonly used antipyretic and analgesic drug,paracetamol(PA)coexists with neurotransmitter dopamine(DA)in real biological samples.Their simultaneous determination is extremely important for human health,but they also interfere with each other.In order to improve the conductivity,adsorption affinity,sensitivity,and selectivity of TiO2-based electrochemical sensor,N-doped carbon@-TiO2double-shelled hollow sphere(H-C/N@TiO2)is designed and synthesized by simple alcoholic and hydrothermal method,using polystyrene sphere(PS)as a template.Meanwhile,TiO2hollow spheres(H-TiO2)or N-doped carbon hollow spheres(H-C/N)are also prepared by the same method.H-C/N@TiO2 has good conductivity,charge separation,and the highly enhanced and stable current responses for the detection of PA and DA.The detection limit and linear range are 50.0 nmol/L and 0.3-50μmol/L for PA,40.0 nmol/L and 0.3-50μmol/L for DA,respectively,which are better than those of carbon-based sensors.Moreover,this electrochemical sensor,with high selectivity,strong anti-interference,high reliability,and long time durability,can be used for the simultaneous detection of PA and DA in human blood serum and saliva.The high electrochemical performance of H-C/N@TiO2is attributed to the multifunctional combination of different layers,because of good conductivity,absorption and electrons transfer ability from in-situ N-doped carbon and electrocatalytic activity from TiO2.

    Keywords:

    Electrochemical sensor

    Simultaneous determination

    Paracetamol

    Dopamine

    Peer review under responsibility of Xi'an Jiaotong University.

    1.Introduction

    Paracetamol(PA,C8H9NO2),one of the most commonly used antipyretic and analgesic drugs,is known as acetaminophen[1].It can usually be used to treat pain,headache,fever,migraines,arthritis,postoperative pain,etc.[2-4],but its human resistance is 50 mg/L.The overdose of PA causes severe liver damage and high accumulation of toxic metabolites,which can be fatally hepatotoxic [5,6] and nephrotoxic [4,7].Dopamine (DA,C8H12O2N)plays an important role in human body,when the lack of DA leads to a variety of diseases including Parkinson's disease and schizophrenia[8-11].Moreover,the detection of them can be affected by their coexistence[12].It is extremely important for us to protect human health from some dangerous diseases by the simultaneous determination of PA and DA.Many analytical methods that have been developed to detect DA and PA include titrimetry,UV-vis spectrophotometry,capillary electrophoresis,high performance liquid chromatography, and chemiluminescence[13-19],but there are some disadvantages in these methods,including time-consuming,tedious sample pretreatment processes,and high cost.Due to the advantages of electrochemical techniques(e.g.,selectivity,sensitivity,low cost,simple instrumentation,facile miniaturization,and rapid response),it is essential for us to establish an electrochemical sensor for simultaneous,rapid,simple,accurate,and sensitive determination of PA and DA.

    As an increasingly popular photocatalyst,sensor,UV absorber,and energy storage,the properties of TiO2are low cost,non-toxicity,semi-conductivity,thermal and chemical stability,excellent biocompatibility and high uniformity[20-23].Its application as an electrochemical sensor is limited by its low conductivity,high recombination rate of photo-generated electrons and holes[24,25],and poor affinity with organic compounds(e.g.,PA and DA).To overcome these shortcomings,TiO2is combined with carbon nanotube or graphene carbon,but this combination still cannot meet our requirements.Heteroatom(e.g.,N,B,S)doping can improve the electrochemical performance of carbon.Synergistic effect of heteroatom can effectively compensate for the disadvantages of carbon materials because the lone electron pairs from heteroatoms can supply additional negative charges to carbon networks[26-29].In addition,the structures of TiO2-based nanomaterials have significant effects on their catalytic activities,and double-shelled hollow spheres bring more heterojunctions interfaces and multi-active sites[30,31].Hence,N-doped carbon@TiO2double-shelled hollow sphere(H-C/N@TiO2)is adopted as an electrochemical sensor for detection of PA and DA with the advantages as follows.First,the synthesis process is simple,less dangerous,less time consuming,and environmentally friendly.Second,it is essential for specific electrochemical reactions.Third,the synergistic effect of N-doped carbon and TiO2can be utilized,including electrocatalysis and edge-plane defect sites.The joint of N-doped carbon and TiO2,including TiO2nanoparticles@N-doped carbon[32],coreshell mesoporous N-doped carbon@TiO2[33],N-doped carbon sheets@TiO2nanoparticles[34],and N-doped carbon tuning yolk-like TiO2[35],have been developed for the degradation of organic pollutants[32],lithium-ion and sodium-ion batteries[33,35],glucose determination[34],and oxygen reduction and evolution[32-36].To date,H-C/N@TiO2as an electrochemical sensor for the detection of PA and DA has not been reported.

    Herein,a green and novel method for in situ H-C/N@TiO2is proposed by us.As a hard template,the surface functionalization of polystyrene microspheres(PSs)is adopted because sizecontrolled monodisperse(TiO2@PS)can be prepared.And then a layer of nitrogen-rich carbons,with abundant functional groups(including C-O,-OH,and N-H)and reduction ability,is wrapped onto TiO2@PS.After calcination,H-C/N@TiO2is obtained.Ultimately,H-C/N@TiO2is modified onto a glassy carbon electrode(GCE)as an electrochemical sensor,which can simultaneously,sensitively,and selectively detect PA and DA in human serum and saliva.

    2.Experimental

    All reagents and apparatus are shown in Supplementary data.

    2.1.Synthesis of TiO2hollow spheres

    According to the literature[37,38],PSs with an average diameter of about 250 nm were synthesized as support information(SI1).Ultra-pure water(0.15 mL),ethanol(72 mL),polyethylene pyrrolidone(K30,0.01 g),and PS(1 mL)were added into a round bottom flask(150 mL)for sonication of 10 min.N-tetrabutyl titanate(0.18 mL)was also added into the above solution,heated to 80°C,and refluxed for 4 h.The resultant microspheres(TiO2@PS)were rinsed three times with ethanol and dried at 60°C under vacuum for 6 h.Ultimately,they were heated to 550°C with a rate of 5°C/min and calcined for 3 h in a muffle furnace.PSs were removed and the products,TiO2hollow spheres(H-TiO2,550°C),were synthesized.

    2.2.Synthesis of H-C/N@TiO2double-shelled hollow spheres and H-TiO2,H-C/N hollow spheres

    After dispersing of hollow spheres(H-TiO2,550°C,60 mg)in Tris-HCl(100 mL,10 mmol/L,pH 8.5)solution,DA(50 mg)was added and stirred for 24 h at room temperature.The products(Polydopamine(PDA)@TiO2)were rinsed three times with ultrapure water and dried at 60°C under vacuum for 24 h.The PDA@TiO2hollow spheres were heated to 800°C with a rate of 5°C/min and calcined at 800°C for 2 h in a tubular atmosphere furnace(under N2protection).The products(H-C/N@TiO2)were synthesized.Moreover,H-C/N was prepared by the same method.

    2.3.Preparation of modified glass carbon electrodes(GCE)

    Scheme 1.Schematic diagrams of 3-dimensional nitrogen-doped carbon@TiO2double-shelled hollow sphere synthesis and electrochemical sensing.

    Fig.1.(A)Scanning electron microscopy(SEM)images of H-C/N@TiO2.(B-D)Transmission electron microscopy(TEM)images of H-C/N@TiO2.(E-J)High angle annular dark fieldscanning transmission electron microscopy(HAADF-STEM)mapping images of H-C/N@TiO2.

    The bare GCE was pretreated as follows,including polishing until to a mirror-finish successively with 1 μm,0.3 μm,and 0.05μm of alumina slurry,washed with anhydrous ethanol and water in an ultrasonic bath successively,and then dried by N2blowing.H-C/N@TiO2(orH-TiO2,orH-C/N,2mg)was dispersed in 200 μL of mixture solution(including 20 μL of chitosan solution and 180μL of water).Then,the above-prepared solution(1 mg/mL,5μL)was cast onto the surface of pretreated bare GCE and dried at room temperature.These electrodes were noted asH-C/N@TiO2/GCE,H-C/N/GCE,and H-TiO2/GCE,respectively.

    Fig.2.(A)X-ray diffraction(XRD)patterns of the as-synthesized H-C/N,H-TiO2,and H-C/N@TiO2.(B)Raman spectra of H-C/N@TiO2.(C)X-ray photoelectron spectroscopy(XPS)survey spectra of H-C/N@TiO2in the range of 200-800 eV.(D-F)X-ray photoelectron spectroscopy(XPS)of C 1s,N 1s,and Ti 2p from H-C/N@TiO2.

    2.4.Electrochemical measurements

    Electrochemical measurements with differential pulse voltammetry(DPV)were performed by an Electrochemical Workstation(CHI 660E,Chenhua Instrument Co.,Shanghai,China)with a threeelectrode system and conducted from 0.0 to 0.6 V at room temperature with a pulse amplitude of 100 mV/s in 0.1 mol/L of phosphate buffer solution(PBS).The modified GCE(H-C/N@TiO2/GCE,H-C/N/GCE,or H-TiO2/GCE),platinum wire,and Ag/AgCl/saturated KCl were used as the working,counter,and reference electrodes,respectively.

    3.Results and discussion

    3.1.Synthesis and characterization of H-C/N@TiO2

    In this study,the synthetic methods,including self-adsorption/reduction,simple template method,and carbonization,were used to construct 3D freestanding H-C/N@TiO2as shown in Scheme 1.During the self-polymerization for the preparation of TiO2@PS,the solution color was white and never changed.Then TiO2@PS was calcined.During the preparation of PDA@TiO2,the color of solution was changed from white to black.H-TiO2served as not only a hollow ball template but also an adsorption agent for PDA during the preparation of PDA@TiO2.

    Scanning electron microscopy(SEM)was used to characterize the morphologies of H-C/N@TiO2as shown in Fig.1A.It can be clearly seen that the products were hollow and exhibited high monodispersity and uniform size,revealing that PDA shell could be wrapped uniformly onto H-TiO2.The SEM images of H-TiO2and H-C/N are shown in Fig.S1.The transmission electron microscopy(TEM)images of these nanocomposites confirmed that the produces were hollow(Fig.1B),which were consistent with the results of SEM.H-C/N@TiO2with uniform thick and clearly layered shell is shown in Fig.1C.Besides,the high resolution transmission electron microscopy(HRTEM)image of H-C/N@TiO2showed that the lattice spacing of 0.351 nm corresponded to the(101)plane of TiO2(Fig.1D).To further indicate the distribution of elements,high angle annular dark fieldscanning transmission electron microscopy(HAADF-STEM)was used for the characterization of H-C/N@TiO2.The HAADF-STEM mapping images are shown in Figs.1E-J,indicating that C,N,Ti,and O were uniformly enriched on the surface of the hollow sphere.The red,orange-red,green,blue-green,and yellow colored areas in HAADF-STEM mapping images(Figs.1F-J)revealed that H-C/N@TiO2was the combination of C,N,Ti,and O,respectively.Moreover,it could also be seen that the distribution of Ti and C was a hierarchical structure from the elemental images of H-C/N@TiO2.X-ray diffraction(XRD)was used for the characterization of H-C/N@TiO2,H-C/N,and H-TiO2.As shown in Fig.2A,the diffraction peaks at 25.3°,37.7°,47.9°,53.8°,and 62.6°could correspond to(101),(004),(200),(105),and(204)reflection of anatase TiO2,respectively.While the peaks at 27.8°,35.9°,41.30°,44.10°,56.69°,and 64.09°could be specified as(110),(101),(111),(210),(220),and(310)from the reflection of rutile TiO2,respectively.The diffraction peaks at 26.1°and 43°corresponded to(102)and(100)reflection of graphite carbon.In addition,two characteristic peaks of graphitized carbon(about 1347 and 1583 cm-1)and the characteristic peaks of TiO2(about 144,200,397,516,and 639 cm-1)were also observed in the Raman spectrum of H-C/N@TiO2as shown in Fig.2B.These characterizations revealed that in situ H-C/N@TiO2could be constructed successfully.In addition,the chemical bonding and elemental composition of the H-C/N@TiO2composite were also further measured by X-ray photoelectron spectroscopy(XPS)in the range of 200-800 eV.The XPS spectra of H-C/N@TiO2(Fig.2C)indicated the coexistence of Ti,C,N,and O in nanomaterials.Four different constituent peaks(C=C,C-N,C-O-C,and C=O)were observed in the spectrum of C 1s(Fig.2D)at 283.6,284.3,286.4,and 288.1 eV,respectively.Highresolution XPS N 1s spectra(Fig.2E)of the as-prepared composites were determined as the types of nitrogen dopants.In the high-resolution XPS N 1s spectrum,three types of nitrogen(pyridinic,pyrrolic and graphitic N)were observed and the constituent peaks corresponded to 397.5,400.1 and 401.9 eV,respectively.The content of pyrrolic N was the highest among three types of nitrogen dopants in composites,indicating that there would be abundant adsorption sites for organic contaminants[39].As shown in Fig.2F,the constituent peaks of Ti 2p3/2 and Ti 2p1/2 corresponded to 458.2 and 464.2 eV in the high resolution XPS Ti 2p spectrum.As an electrode material,it would provide more absorption sites for analytical targets with N,offer a good conductivity by C,and high electrocatalysis performance by TiO2.The above-mentioned advantages as an electrochemical sensor were tested by the identification and detection of PA and DA in human serum and saliva.

    3.2.Electrochemical behavior of H-C/N@TiO2composites

    In the electrochemical experimental section,the electrochemical properties of different electrodes,including GCE,H-C/N/GCE,H-TiO2/GCE,and H-C/N@TiO2/GCE,were tested by cyclic voltammetry(CV),using 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA).As shown in Fig.3,the redox peaks of PA and DA for H-C/N@TiO2/GCE were the clearest in them and could be used for qualitative and quantitative analyses of DA and PA.Moreover,the DPV of the samples is also provided as Fig.S2.H-C/N@TiO2was obviously superior to the others because it not only had the good conductivity of C but also had the superior redox of TiO2.The order of Ret values as GCE>H-TiO2/GCE>H-C/N/GCE>H-C/N@TiO2/GCE can be gained from Fig.3.In addition,two pairs of significant redox peaks belonged to PA and DA,which further revealed the importance of the construct of double-shell in electroanalysis.

    3.3.Effect of scan rate and pH

    To demonstrate the transport characteristics of H-C/N@TiO2/GCE,the relationship of the redox peak currents of PA and DA with the scan rate was studied in the range of 20-400 mV/s,which is shown in Figs.4A and B.The linear regression equations for PA were Ipc(μA)=12.237+0.2170v(R2=0.9976),Ipa(μA)=-31.503-0.3399 v(R2=0.9954),and the DA linear regression equations were Ipc(μA)=11.336+0.3834 v(R2=0.9972),Ipa(μA)=-29.161-0.5874 v(R2=0.9968).According to these results,the electro-redox reaction of DA and PA was a typical adsorption-controlled process.The linear of the plots of log Ip versus log v in the scan rate with slopes of 0.783 for DA and 0.656 for PA,respectively,are shown in Fig.S3,and then the adsorption-controlled process of DA and PA could be confirmed further.

    Fig.3.Cyclic voltammetry of the different electrodes in 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA),at scan rate of 100 mV/s.

    Fig.4.(A)Cyclic voltammetry of GCE modified by H-C/N@TiO2at different scan rates in 0.1 mol/L of PBS(pH 6.0,containing 50μmol/L of PA and DA).(B)Curve of redox peak current vs.scan rate for PA and DA.

    The redox peak currents of PA and DA in the range of 0.8-0.0 V were influenced by the pH of the electrolyte(50μmol/L of PA and DA,in 0.1 mol/L of PBS),as shown in Fig.S4.It was beneficial to estimating the ratio of proton to electron in this reaction.As shown in Fig.5A,the redox peak current value was the maximum response when the pH value of PBS was 6.0.Therefore,pH of the solution was determined at 6.0 in the following experiments.The linear relationship between the peak potentials and pH of the solution with EPA=0.8770-0.0634 pH(R2=0.9815),EDA=0.6613-0.0629 pH(R2=0.9880)is shown in Fig.5B.According to the formula(dEp/dpH=2.303 mRT/nF,where m and n are the numbers of proton and electron,respectively),the slopes of the two regression equations,0.0634 and 0.0629 for PA and DA,approached the theoretical value[40,41],indicating that the electrochemical redox of PA and DA on the electrode of H-C/N@TiO2/GCE should be a two-electron and two-proton process.

    3.4.Qualitative and quantitative determination of PA and DA

    The DPV measurements for qualitative and quantitative analyses were better than those of CV technique in respect of sensitivity and resolution because a small voltage pulse superimposed on the linear voltage sweep was applied and the differential current at a short time after the pulse was sampled by DPV.Hence,DPV was used to assess the quantitative and qualitative analyses of PA and DA.As shown in Fig.6A and B,the redox peaks currents of PA or DA at H-C/N@TiO2/GCE increased gradually with the concentration increase and a good linear relationship was established.As the concentration of PA increased,two linearities were observed with two linear regression equations,i.e.,Ipa=-4.8417-3.2596c(R2=0.9910)for0.3-20μmol/L,Ipa=-48.1253-0.9894c(R2=0.9964)for 20-50μmol/L in Fig.6D.The linearity for DA was increased from 0.3 to 50μmol/L with linear regression equation of Ipa=-5.9062-2.0480c(R2=0.9934)in Fig.6E.According to the signal-to-noise ratio(S/N=3),the detection limit was estimated to be 50 and 40 nmol/L for PA and DA,respectively.Analytical performance(including linear range and limit of detection)of the other materials was compared and is shown in Table 1[12,42-49],which revealed that the detection limit of our work was the best.Hence,the superior performance of H-C/N@TiO2/GCE showed a promising platform for the simultaneous electrochemical determination of DA and PA.

    Table 1Analytical performance of electrodes for determination of PA and DA by differential pulse voltammetry(DPV).

    Fig.5.Electrochemical behavior of H-C/N@TiO2in 0.1 mol/L of PBS(containing 50μmol/L of PA and DA)with different pH values.Relationship between(A)peak current,(B)peak potential and pH.

    Fig.6.Differential pulse voltammetry(DPV)for(A)PA,(B)DA and(C)both mixture in 0.1 mol/L of PBS(pH 6.0)with H-C/N@TiO2/GCE,at scan rate of 100 mV/s.Calibration plots of oxidation current vs.(D)PA,(E)DA,and(F)both mixture concentrations.DPV curves increment:0.004 V,amplitude:0.05 V,pulse width:0.05 s,sampling width:0.0167 s,pulse period:0.5 s,quiet time:2 s.

    In addition,the simultaneous analysis of DA and PA was further carried out by DPV.As shown in Figs.6C and F,when the concentrations of DA and PA increased from 0.3 to 20μmol/L at H-C/N@TiO2/GCE,the redox peak currents also increased proportionally with two linear regression equations of Ipa=-4.7308-2.3984cPA(R2=0.9805),Ipa=-3.0063-2.285cDA(R2=0.9835),and the linear correlation coefficients were 0.9805 and 0.9835 for PA and DA,respectively.These results indicated that H-C/N@TiO2/GCE could be applied to identify and determinate DA and PA simultaneously as an electrochemical sensor.

    In order to assess the selectivity of H-C/N@TiO2/GCE,the electrolyte coexisted with ions and organic substances(including sodium chloride,potassium chloride,sodium acetate,and glucose,10 μmol/L)in PBS(0.1 mol/L,pH 6.0,with 1 μmol/L of PA and DA)and was then simultaneously determined by DPV.The results showed current variation was less than 5% after adding interfering substances,indicating that this nanomaterial as an electrochemical sensor had a strong anti-interference ability for analysis of PA and DA.In addition,PA and DA were determined every 3 days and its redox activity could be kept for nearly 15 days.The stability of the H-C/N@TiO2/GCE was evaluated by repeating five measurements in the same solution containing 1μmol/L of DA and PA.A relative standard deviation(RSD)of 1.78% was obtained for five successive measurements,which indicated that the sensor was not subjected to surface fouling by the oxidation products.So,experimental results revealed that the selectivity and repeatability of H-C/N@TiO2/GCE were good for the simultaneous analysis of PA and DA.

    To evaluate the feasibility of the sensor(H-C/N@TiO2/GCE),the selective analysis of DA and PA was highly necessary in human serum and saliva.Human blood was collected from the City Hospital in Zhangzhou,Fujian,China,centrifuged,and stored at 4°C in a refrigerator.Saliva samples were prepared according to thereferences[50,51].They were diluted to 50 fold by 0.1 mol/L of PBS.Then the concentrations of DA and PA were determined by H-C/N@TiO2/GCE.The results are shown in Table 2.The recoveries of DA and PA were 98.6%-102.4% and 101.4%-103.7%,respectively.These results proved that the influence of sample matrix on the determination of PA and DA could be overlooked.Hence,the sensor H-C/N@TiO2/GCE could be used to identify and detect DA and PA simultaneously in human serum or saliva.

    Table 2Detection of PA and DA in real sample(human serum or saliva)using H-C/N@TiO2/GCE.

    4.Conclusions

    In this work,a high-performance electrochemical sensor for the identification and detection of PA and DA,in-situ H-C/N@TiO2was constructed,with a high conductivity,superior electrocatalytic performance,and reliable qualitative and quantitative capabilities.More importantly,the performance of electrocatalytic activity was excellent and the preparation of electrode materials was environmental friendly,with in-situ doping reaction and hard template method.Both excellent sensing linear range and sensitive detection limit for PA(0.3-50 μmol/L and 50 nmol/L)and DA(0.3-50 μmol/L and 40 nmol/L)could be offered by our sensor.A high-efficacy and economical analytical platform was proposed by us,used for ultrasensitive and highly selective detection of PA and DA from human serum or saliva.These satisfactory results were due to the synergistic effect of different components of TiO2and N-doped carbon with abundant functional groups(including C-O,-OH,and N-H)and reduction ability,the advantages of double-shelled hollow spheres.

    CRediT author statement

    Hui Yang:Conceptualization,Methodology,Investigation,Writing-Original draft preparation,Formal analysis,Data curation;Gongxun Cao:Investigation,Data curation;Yongjun Huang:Data curation;Ye Lin:Investigation;Fengying Zheng:Funding acquisition,Supervision;Luxiu Lin:Data curation;Fengjiao Liu:Data curation;Shunxing Li:Methodology,Funding acquisition,Writing-Reviewing and Editing,Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grant Nos.:22074058 and 21675077),the Project of Industry-University-Research Cooperation of Fujian Province(Grant No.:2019Y4010),and the Education-Science Research Project for Young and Middle-aged Teachers of Fujian(Grant No.:JAT200317).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.08.005.

    一二三四在线观看免费中文在| 亚洲七黄色美女视频| 每晚都被弄得嗷嗷叫到高潮| 黑人操中国人逼视频| 美女扒开内裤让男人捅视频| 久久九九热精品免费| 女人高潮潮喷娇喘18禁视频| 中文字幕制服av| 老司机影院成人| 在线观看舔阴道视频| 国产男人的电影天堂91| 久久久国产成人免费| 美女脱内裤让男人舔精品视频| 欧美黄色片欧美黄色片| 亚洲精品国产av蜜桃| 看免费av毛片| 欧美中文综合在线视频| 国产av又大| 国产免费福利视频在线观看| 国产成人精品在线电影| 欧美在线黄色| 国产精品影院久久| 亚洲专区国产一区二区| 亚洲va日本ⅴa欧美va伊人久久 | 老司机午夜福利在线观看视频 | www.熟女人妻精品国产| 1024视频免费在线观看| 国产精品自产拍在线观看55亚洲 | 午夜福利在线免费观看网站| 国产一区二区三区在线臀色熟女 | 国产精品熟女久久久久浪| 天天操日日干夜夜撸| 国产亚洲精品久久久久5区| 乱人伦中国视频| 欧美精品亚洲一区二区| 久久 成人 亚洲| 美女高潮到喷水免费观看| 自线自在国产av| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 在线十欧美十亚洲十日本专区| 美女扒开内裤让男人捅视频| 亚洲精品久久久久久婷婷小说| 久久久水蜜桃国产精品网| 日韩 欧美 亚洲 中文字幕| 嫩草影视91久久| 精品福利观看| 中文字幕高清在线视频| 国产高清videossex| 十分钟在线观看高清视频www| 欧美日韩视频精品一区| 男女免费视频国产| 最近最新中文字幕大全免费视频| 久久亚洲国产成人精品v| 免费少妇av软件| 国产亚洲一区二区精品| 丝袜脚勾引网站| 国产免费视频播放在线视频| 中文字幕色久视频| 亚洲美女黄色视频免费看| 中文欧美无线码| 亚洲欧美精品自产自拍| 女性生殖器流出的白浆| 亚洲国产精品999| 天天影视国产精品| 欧美+亚洲+日韩+国产| 国产日韩欧美视频二区| 国产成人精品久久二区二区免费| 大片电影免费在线观看免费| 男女免费视频国产| 国产男女超爽视频在线观看| 亚洲精品美女久久av网站| 欧美午夜高清在线| 热99久久久久精品小说推荐| 亚洲国产看品久久| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲人成电影免费在线| 男女免费视频国产| 蜜桃国产av成人99| 婷婷色av中文字幕| 天堂8中文在线网| 成人国语在线视频| 汤姆久久久久久久影院中文字幕| 丝袜美腿诱惑在线| 久久久久精品人妻al黑| 在线永久观看黄色视频| 久热这里只有精品99| 日本欧美视频一区| 黑人巨大精品欧美一区二区蜜桃| 少妇精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 狠狠精品人妻久久久久久综合| 久久久久久久大尺度免费视频| 久久久久网色| 精品少妇久久久久久888优播| 最新在线观看一区二区三区| 国产色视频综合| 亚洲精品中文字幕一二三四区 | 建设人人有责人人尽责人人享有的| 老熟妇乱子伦视频在线观看 | 日韩制服丝袜自拍偷拍| 不卡一级毛片| 欧美亚洲日本最大视频资源| 亚洲午夜精品一区,二区,三区| 国产在视频线精品| 欧美另类一区| 制服人妻中文乱码| 亚洲精品国产色婷婷电影| 夫妻午夜视频| 久久综合国产亚洲精品| 国产日韩一区二区三区精品不卡| 多毛熟女@视频| 中国国产av一级| 黄片播放在线免费| 成人影院久久| 日本猛色少妇xxxxx猛交久久| 国产亚洲午夜精品一区二区久久| 国产精品亚洲av一区麻豆| 欧美黄色淫秽网站| 十分钟在线观看高清视频www| 极品人妻少妇av视频| 精品一区二区三区四区五区乱码| 亚洲天堂av无毛| 亚洲熟女精品中文字幕| 久久九九热精品免费| 亚洲国产欧美一区二区综合| 男女之事视频高清在线观看| 99国产综合亚洲精品| 亚洲国产精品一区二区三区在线| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 国产av精品麻豆| 午夜福利在线免费观看网站| 91成年电影在线观看| 国产精品一区二区在线观看99| 深夜精品福利| 国产免费现黄频在线看| 人人妻人人澡人人爽人人夜夜| 少妇裸体淫交视频免费看高清 | 午夜福利,免费看| 国产亚洲精品第一综合不卡| 波多野结衣av一区二区av| 人人妻,人人澡人人爽秒播| 精品人妻1区二区| 午夜视频精品福利| 蜜桃国产av成人99| 日本五十路高清| 国产又爽黄色视频| 精品国产一区二区三区四区第35| 国产在线一区二区三区精| 波多野结衣av一区二区av| 国产亚洲av片在线观看秒播厂| 午夜福利乱码中文字幕| 欧美黑人精品巨大| 亚洲国产精品999| 成人免费观看视频高清| 国产一区二区激情短视频 | 免费观看a级毛片全部| 日本av免费视频播放| 亚洲人成电影免费在线| 久久精品亚洲av国产电影网| 别揉我奶头~嗯~啊~动态视频 | 在线 av 中文字幕| 热99国产精品久久久久久7| 又紧又爽又黄一区二区| 不卡av一区二区三区| 老司机在亚洲福利影院| 在线 av 中文字幕| 亚洲专区中文字幕在线| 久热这里只有精品99| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 69精品国产乱码久久久| 国产精品 欧美亚洲| 天天躁日日躁夜夜躁夜夜| 欧美亚洲日本最大视频资源| 日韩欧美一区二区三区在线观看 | 在线av久久热| 少妇猛男粗大的猛烈进出视频| 女人被躁到高潮嗷嗷叫费观| 欧美日本中文国产一区发布| 丝袜人妻中文字幕| 三级毛片av免费| 久久人人爽av亚洲精品天堂| 老司机影院成人| 日本五十路高清| 亚洲国产日韩一区二区| 亚洲天堂av无毛| 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 岛国在线观看网站| 美女国产高潮福利片在线看| 老司机亚洲免费影院| 亚洲va日本ⅴa欧美va伊人久久 | a级毛片黄视频| 国产成人欧美| 涩涩av久久男人的天堂| 99精品欧美一区二区三区四区| 免费观看人在逋| 亚洲精品日韩在线中文字幕| 夜夜夜夜夜久久久久| 亚洲avbb在线观看| 啦啦啦中文免费视频观看日本| 9191精品国产免费久久| 久热爱精品视频在线9| 麻豆乱淫一区二区| 十八禁高潮呻吟视频| 蜜桃在线观看..| 午夜福利免费观看在线| 性色av乱码一区二区三区2| 汤姆久久久久久久影院中文字幕| 日韩有码中文字幕| 日韩中文字幕视频在线看片| 亚洲情色 制服丝袜| 在线观看舔阴道视频| 亚洲熟女毛片儿| 极品少妇高潮喷水抽搐| 久久精品aⅴ一区二区三区四区| 精品人妻熟女毛片av久久网站| 国产免费现黄频在线看| 国产精品.久久久| 久久精品成人免费网站| 亚洲人成电影免费在线| 国产亚洲欧美精品永久| 精品一区在线观看国产| 一本大道久久a久久精品| 国产精品国产三级国产专区5o| 国产亚洲精品第一综合不卡| 1024香蕉在线观看| 99精国产麻豆久久婷婷| 最新的欧美精品一区二区| 两人在一起打扑克的视频| 久久热在线av| 国产成+人综合+亚洲专区| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 在线永久观看黄色视频| 亚洲成av片中文字幕在线观看| 精品免费久久久久久久清纯 | 操美女的视频在线观看| svipshipincom国产片| 丁香六月欧美| 黄色视频在线播放观看不卡| 18禁观看日本| 久久狼人影院| 亚洲人成77777在线视频| 最新的欧美精品一区二区| 在线av久久热| 午夜免费鲁丝| 久久精品亚洲熟妇少妇任你| 丰满饥渴人妻一区二区三| 91成人精品电影| 一区福利在线观看| 十八禁网站网址无遮挡| 99国产综合亚洲精品| 免费人妻精品一区二区三区视频| 国产成人av教育| 久久午夜综合久久蜜桃| 高清欧美精品videossex| 超碰97精品在线观看| 久久久精品免费免费高清| videosex国产| 啪啪无遮挡十八禁网站| 99热国产这里只有精品6| www.精华液| 国产日韩一区二区三区精品不卡| 色播在线永久视频| 动漫黄色视频在线观看| av视频免费观看在线观看| 免费看十八禁软件| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡 | 日韩三级视频一区二区三区| 国产成人精品久久二区二区91| 最新的欧美精品一区二区| 成人国产av品久久久| 在线永久观看黄色视频| 大陆偷拍与自拍| av福利片在线| 久久午夜综合久久蜜桃| 又黄又粗又硬又大视频| 国产亚洲精品第一综合不卡| 99re6热这里在线精品视频| 亚洲激情五月婷婷啪啪| 久久久久视频综合| 91精品伊人久久大香线蕉| 欧美日韩精品网址| 在线观看一区二区三区激情| 亚洲专区字幕在线| 12—13女人毛片做爰片一| 蜜桃在线观看..| av超薄肉色丝袜交足视频| 久久热在线av| 亚洲五月色婷婷综合| 妹子高潮喷水视频| 丝袜喷水一区| av欧美777| 女性生殖器流出的白浆| 这个男人来自地球电影免费观看| 男人操女人黄网站| 亚洲精品国产色婷婷电影| 岛国在线观看网站| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 青草久久国产| 国产一区二区 视频在线| 侵犯人妻中文字幕一二三四区| 日韩制服丝袜自拍偷拍| 亚洲av美国av| 18在线观看网站| 欧美少妇被猛烈插入视频| 一边摸一边抽搐一进一出视频| 国产亚洲精品第一综合不卡| 国产一区二区激情短视频 | 色婷婷久久久亚洲欧美| 丝袜喷水一区| 日韩欧美免费精品| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 少妇被粗大的猛进出69影院| 老汉色av国产亚洲站长工具| 亚洲精华国产精华精| 国产成人欧美在线观看 | 精品少妇一区二区三区视频日本电影| 久久亚洲精品不卡| 高清黄色对白视频在线免费看| 99香蕉大伊视频| 淫妇啪啪啪对白视频 | 亚洲全国av大片| 午夜影院在线不卡| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面 | 婷婷丁香在线五月| 97人妻天天添夜夜摸| 中文字幕人妻丝袜一区二区| 菩萨蛮人人尽说江南好唐韦庄| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 麻豆国产av国片精品| 又黄又粗又硬又大视频| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 91精品国产国语对白视频| 新久久久久国产一级毛片| 免费看十八禁软件| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 超色免费av| 亚洲精品av麻豆狂野| 国产精品久久久av美女十八| 电影成人av| www.精华液| 9热在线视频观看99| 亚洲第一av免费看| 狠狠婷婷综合久久久久久88av| 青草久久国产| 欧美国产精品一级二级三级| www日本在线高清视频| 免费黄频网站在线观看国产| 亚洲人成77777在线视频| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 中文字幕色久视频| 女性被躁到高潮视频| 国产xxxxx性猛交| 性色av乱码一区二区三区2| 亚洲国产欧美在线一区| 久久久久网色| 久热这里只有精品99| 99国产综合亚洲精品| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| 女警被强在线播放| 99久久综合免费| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 婷婷丁香在线五月| 午夜激情av网站| 久久精品aⅴ一区二区三区四区| 亚洲精品中文字幕一二三四区 | 国产伦理片在线播放av一区| 每晚都被弄得嗷嗷叫到高潮| 精品乱码久久久久久99久播| 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| a 毛片基地| 欧美97在线视频| 99国产精品一区二区蜜桃av | 男人操女人黄网站| 搡老乐熟女国产| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 一区二区三区四区激情视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品.久久久| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 另类精品久久| 黄色视频不卡| 美女主播在线视频| 日日爽夜夜爽网站| av线在线观看网站| 精品国产乱码久久久久久男人| 亚洲精品乱久久久久久| 一区二区三区四区激情视频| 老汉色∧v一级毛片| 美女高潮喷水抽搐中文字幕| 国产色视频综合| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 纵有疾风起免费观看全集完整版| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 国产在线观看jvid| 在线看a的网站| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 91精品三级在线观看| 成人手机av| 一区二区三区四区激情视频| 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区久久久樱花| 国产高清videossex| 狂野欧美激情性bbbbbb| 午夜福利一区二区在线看| 十八禁人妻一区二区| 国精品久久久久久国模美| 男女午夜视频在线观看| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 国产日韩欧美视频二区| 美女高潮喷水抽搐中文字幕| 国产精品偷伦视频观看了| 亚洲精品av麻豆狂野| tube8黄色片| 麻豆av在线久日| 伦理电影免费视频| 人妻人人澡人人爽人人| 中文字幕高清在线视频| 青草久久国产| 国产一区二区三区在线臀色熟女 | 夜夜骑夜夜射夜夜干| 9色porny在线观看| 天天影视国产精品| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区 | 三级毛片av免费| 亚洲精品中文字幕在线视频| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| a级毛片在线看网站| av不卡在线播放| 色94色欧美一区二区| 亚洲国产精品一区三区| 久热这里只有精品99| 色婷婷av一区二区三区视频| 国产一级毛片在线| 日韩大码丰满熟妇| 欧美日韩精品网址| 日本a在线网址| 大片免费播放器 马上看| 亚洲精品美女久久av网站| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 性少妇av在线| 国产欧美日韩一区二区三区在线| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 久久影院123| 国产又色又爽无遮挡免| 欧美一级毛片孕妇| 乱人伦中国视频| 最黄视频免费看| 日韩中文字幕欧美一区二区| 交换朋友夫妻互换小说| 岛国在线观看网站| 免费观看人在逋| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 激情视频va一区二区三区| 亚洲精华国产精华精| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美在线一区二区| 亚洲国产精品一区三区| 一区福利在线观看| 中文精品一卡2卡3卡4更新| 日本五十路高清| 三级毛片av免费| 好男人电影高清在线观看| 美女主播在线视频| 老汉色∧v一级毛片| 国产精品偷伦视频观看了| 99热全是精品| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 国产成人精品无人区| 一本久久精品| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产三级黄色录像| 国产99久久九九免费精品| 午夜福利,免费看| 黄片播放在线免费| 91麻豆精品激情在线观看国产 | 国精品久久久久久国模美| 欧美日本中文国产一区发布| 淫妇啪啪啪对白视频 | tocl精华| 国产高清视频在线播放一区 | 亚洲精品第二区| 亚洲精品自拍成人| 黑人巨大精品欧美一区二区mp4| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 日韩免费高清中文字幕av| 国内毛片毛片毛片毛片毛片| 午夜福利影视在线免费观看| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 国产av精品麻豆| 午夜福利影视在线免费观看| 国产精品自产拍在线观看55亚洲 | 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 手机成人av网站| 久久久久久久久久久久大奶| a 毛片基地| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 一级黄色大片毛片| 十八禁人妻一区二区| 丰满饥渴人妻一区二区三| 男人操女人黄网站| 久久久久久久大尺度免费视频| 18禁黄网站禁片午夜丰满| 成年av动漫网址| 性少妇av在线| 亚洲成人免费av在线播放| e午夜精品久久久久久久| 男女午夜视频在线观看| 日韩中文字幕视频在线看片| 国产真人三级小视频在线观看| 夫妻午夜视频| 亚洲av美国av| 啦啦啦在线免费观看视频4| 人人妻人人澡人人爽人人夜夜| 一区二区三区乱码不卡18| 性色av乱码一区二区三区2| 亚洲一区中文字幕在线| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 美女主播在线视频| 人人妻,人人澡人人爽秒播| 成年女人毛片免费观看观看9 | 丝袜人妻中文字幕| 不卡一级毛片| 午夜老司机福利片| 精品人妻1区二区| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av香蕉五月 | 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 亚洲黑人精品在线| 97人妻天天添夜夜摸| 欧美xxⅹ黑人| 亚洲精品一卡2卡三卡4卡5卡 | 久久人人爽av亚洲精品天堂| 深夜精品福利| 精品国内亚洲2022精品成人 | 在线观看免费午夜福利视频| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 99久久人妻综合| 中文字幕色久视频| 在线永久观看黄色视频| 精品第一国产精品| 黄色视频不卡| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 亚洲av国产av综合av卡| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码|