• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of the fast electron behavior in electron cyclotron current driven plasma on J-TEXT

    2022-07-13 00:36:42XiaoboZHANG張霄波WeiYAN嚴(yán)偉ZhongyongCHEN陳忠勇JiangangFANG方建港JunliZHANG張俊利YouLI李由XixuanCHEN陳曦璇YunongWEI魏禹農(nóng)RuihaiTONG佟瑞海ZhifangLIN林志芳YuZHONG鐘昱LingkeMOU牟玲可FengLI李峰WeikangZHANG張維康LuWANG王璐DonghuiXIA夏冬輝ZhongheJIANG江中和
    Plasma Science and Technology 2022年6期
    關(guān)鍵詞:王璐李峰永華

    Xiaobo ZHANG (張霄波),Wei YAN (嚴(yán)偉),?,Zhongyong CHEN (陳忠勇),?,Jiangang FANG (方建港),Junli ZHANG (張俊利),You LI (李由),Xixuan CHEN (陳曦璇),Yunong WEI (魏禹農(nóng)),Ruihai TONG (佟瑞海),Zhifang LIN(林志芳),Yu ZHONG(鐘昱),Lingke MOU(牟玲可),Feng LI(李峰),Weikang ZHANG(張維康),Lu WANG (王璐),Donghui XIA (夏冬輝),Zhonghe JIANG(江中和),Zhoujun YANG(楊州軍),Nengchao WANG(王能超),Zhipeng CHEN(陳志鵬),Yonghua DING(丁永華),Yunfeng LIANG(梁云峰),4,5,Yan PAN (潘垣) and the J-TEXT Team,6

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics,State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    2 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    3 School of Electrical Engineering & Automation,Jiangsu Normal University,Xuzhou 221116,People’s Republic of China

    4 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    5 Forschungszentrum Jülich GmbH,Institut für Energie- und Klimaforschung-Plasmaphysik,D-52425 Jülich,Germany

    Abstract In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.

    Keywords: fast electron,tokamak,electron cyclotron current drive,power deposition location

    1.Introduction

    The goal of the advanced tokamak[1]program is to produce and sustain a plasma with high confinement and high pressure over an extended period of time with well aligned current profile.Electron cyclotron current drive(ECCD)is a viable path towards this goal by driving non-inductive current and the electron cyclotron wave(ECW) can propagate from the launching structure towards the plasma without passing through evanescent layers [2-4].Fast electrons could be generated by ECW through wave-particle interaction when the resonant condition is fulfilled [5].The fast electron distribution is determined by the following factors: the position of resonant layer,the radial diffusion of fast electron and the acceleration by residual toroidal electric field [6].Since the very beginning of ECCD experiments in tokamaks,it has been recognized that fast electron bremsstrahlung(FEB)diagnostic[7]is the most efficient method for investigating ECCD experiments in plasma physics.The FEB diagnostic cannot only characterize the spectrum and spatial profile of fast electrons generated by ECW,but also measure the details of fast electron momentum dynamics and the power deposition location of the ECW.

    Powerful FEB diagnostics have been developed in many devices such as TCV [8],FTU [9] and HL-2A [10] to assess the ECCD performance.In FTU,the correlation between FEB intensity and loop voltage drop after ECW injection is verified[11] and the radial diffusion coefficient of fast electrons is estimated by the exponential decay of FEB intensity[12].The FEB diagnostic has been combined with ray-tracing and Fokker-Planck codes to investigate the role of fast electron radial transport in radio-frequency current drive in TCV [13].The comparison of various fast electron transport models suggests a dependency of the radial transport on the ECW power [14].

    In 2019,the 105 GHz ECRH/ECCD system [15] was formally put into operation on joint Texas experimental tokamak(J-TEXT) [16,17],which not only expanded the parameter range of J-TEXT plasma,but also put forward the demand for the research of ECRH plasma.A vertical FEB diagnostic system with CdZnTe detectors,dedicated to study the dynamics of fast electron in the energy range of 30-300 keV during ECCD experiments,has been developed on J-TEXT[18].The detectors are arranged radially to obtain the spatial profile of fast electrons.

    In this study,the fast electrons generated by ECCD are described in detail and the power deposition location of ECCD is measured by the FEB diagnostic using Abelinversion on J-TEXT.The ECW deposition location obtained by FEB diagnostic is consistent with the result calculated for both on-axis and off-axis cases.

    The remainder of this paper is organized as follows.The introduction of experimental setup is presented in section 2.The on-axis and off-axis ECCD experiments are discussed in section 3.The phenomenon after turning off ECCD is discussed in section 4.Lastly,the summary is presented in section 5.

    2.Experimental setup

    The J-TEXT tokamak is a medium-sized conventional iron core tokamak with operating parameters summarized as follows:major radius R=105 cm,minor radius 25-29 cm which can be modified by a movable titanium-carbide coated graphite limiter,maximum plasma current Ip=220 kA lasting for 600 ms,maximum toroidal magnetic field BT=2.3 T,and central line averaged electron density ne=(1-6) × 1019m-3.The locations of the diagnostics and auxiliary system which have been used in this experiment are shown in figure 1(a).The electron density and current profiles are measured by the three-wave far infrared ray laser polarimeter-interferometer system (POLARIS) [19].The electron temperature profile is measured by a 24-channel heterodyne electron cyclotron emission(ECE)radiometer,covering most of the plasma within the frequency range of 80-125 GHz[20].The hard x-ray radiation(HXR)in the energy range of 0.5-5 MeV resulting from the thick target bremsstrahlung when runaway electrons are lost from the plasma and impinge on the vessel walls is measured by two NaI detectors with collimators.

    The FEB diagnostic [18] consists of four CdZnTe detectors and five CdTe detectors in upper window of port 6.The best measurement range of FEB emissions is 30-300 keV,while in higher energy level (>300 keV) the detection efficiency will be lower than 15%.Nine viewing chords span the entire minor radius of the plasma with a radial resolution of 5 cm on the midplane as shown in figure 1(b).The CdZnTe detectors are placed with chord No.from #5 to #8,and the measured positions of minor radius on the midplane are 0 cm,+5 cm,+10 cm and+15 cm respectively.Five CdTe detectors are placed in other chords,and the detection efficiency is much lower than that of CdZnTe detector,which can only be used in the case of suprathermal discharge.Therefore,only the results of CdZnTe detectors are given in the following part.The data is processed by two methods: one is directly collected after envelope-demodulation,which provides the time evolution ofmaximum energy of fast electrons,and the other provides energy spectrum by using a multi-channel analyzer (MCA).The signal from the demodulator will be specially noted.

    The ECRH/ECCD system [15] uses a 105 GHz gyrotron with output power of 500 kW and pulse duration of 1 s to inject ECW with second harmonic of X-mode into plasma.The toroidal injection angle(φEC)and poloidal injection angle(θEC)is adjusted by a plane mirror,with the range of -20°-+20°.There is a polarizer installed at the elbow to change the microwave polarization parameters,which is convenient for the efficient coupling of microwave and plasma.

    ECRH/ECCD has the characteristic of localized power deposition.The precise knowledge of the power deposition profile is importance for the control of profile parameters,which aims at controlling magnetohydrodynamic (MHD)modes and plasma profile shaping by heating or current drive.On other tokamaks,the ray-tracing code is generally used to calculate the power deposition of ECW.But such code is not yet available on J-TEXT.ECW with frequency of 50-200 GHz can be absorbed by the plasma in the vicinity of either the fundamental or a higher harmonic electron cyclotron frequency[21].These resonant frequencies are characterized by

    where fris the resonant frequency,fceis the electron cyclotron frequency,and n is the number of the harmonic.The electron cyclotron frequency is determined by the magnetic field B,the electron charge e and the electron mass meas follows:

    In equation (2),the local magnetic field B is determined by the central toroidal magnetic field B0and the location.As the toroidal field decays with the major radius(R)as 1/R,the absorption region in the plasma is localized at a specific position of the major radius.In J-TEXT,fr~105 GHz,n ~2,so the ECW deposition location is roughly estimated according to the formula

    Here,R is the major radius of deposition location.Two shots with different B0are performed,as shown in table 1.The power deposition locations are 0 cm and +5 cm,which are categorized as on-axis and off-axis cases,respectively.

    3.Fast electron behavior during ECCD

    In TCV,ECCD is more effective for fast electron generation compared with the launch at φEC=0,i.e.perpendicular launch[8].Because ECW with perpendicular launch only increases primarily the perpendicular velocity of the resonant electrons,but if φEC≠0,ECW will increase the parallel momentum of the electrons.So,in this experiment,the θECof ECW is 0° and the φECof ECW is -20° (the minus sign ‘-’ indicates that the injection direction is opposite to the plasma current direction).

    3.1.On-axis ECCD

    When B0=1.875 T,the ECW absorption area is on-axis according to the calculation.A typical on-axis ECCD experiment with a number of fast electrons is shown in figure 2.In shot#1071241,plasma current is 150 kA,central electron density is kept at about 1×1019m-3.The ECW is injected during 250-350 ms.Figures 2(c) and (g) display a line integrated intensity signal from the central chord of FEB (IFEB),IFEBbegins to rise during the ECCD period and rapidly increases to a higher level after the turning off of ECCD,which will be discussed in section 4.Figure 2(e) displays the ECE signals at 102.5 GHz(yellow line) and 80.5 GHz (black line).The 102.5 GHz ECE measures the signal near the core (+2.56 cm) while 80.5 GHz ECE corresponding to a 2nd harmonic resonance layer outside the plasma (+31.96 cm).The 80.5 GHz ECE is dominated by relativistically downshifted emission by the high-energy tail of the electron distribution function and can thus be employed to diagnose the population of fast electrons [22].The trend of 80.5 GHz ECE signal is consistent with that of FEB signal during ECCD.It can be observed that the loop voltage decreases from 1.34 to 0.84 V after 150 kW ECCD injection (see figure 2(d))and the current driven by ECW can also be roughly estimated to be 56 kA [23].

    Figure 1.(a)The locations of the diagnostics and auxiliary system on J-TEXT,(b)optical design of FEB diagnostic on J-TEXT.The CdZnTe detectors are placed on the blue chords to measure the fast electrons generated during ECCD.The CdTe detectors are placed on the red chords to measure the fast electrons during superthermal discharge.

    Figure 2.Temporal evolution of typical on-axis ECCD experiment which generated a large number of fast electrons.From the top to bottom,the waveforms are: (a) the plasma current,(b) the central line averaged electron density,(c) FEB signal at the radial position of 0 cm(from demodulator),(d)the loop voltage,(e)ECE signals at the radial position of +2.56 cm and +31.96 cm (out of plasma),(f)ECCD power.About 150 kW ECW power is injected into plasma from 250 to 350 ms and (g) the enlarged FEB signal of dashed box.

    Figure 3.FEB spectrum of the central chord in shot#1071241:(a)the intensity of different energies with time,the black line represents the time of injecting ECCD,(b) the energy spectrum before and during ECCD.

    Figure 4.Time trace of counts from various energy ranges at FEB central chord.

    Figure 5.The upper figure shows the time trace of counts from energy range of 40-50 keV at various FEB chords in shot #1071241.The lower figure shows the decay of fast electron counts (40-50 keV) in the core just after the turning off of ECCD.τd is the radial diffusion time of fast electrons.D0 is the radial diffusion coefficient.

    Figure 6.Line-integrated FEB emission radial profile (a) and local FEB emissivity radial profile derived from Abel-inversion (b).

    During ECCD,IFEBis considerably higher than that before ECCD at all energies and the maximum energy of photons increases from 150 to 250 keV in the spectrum of FEB central chord as shown in figure 3.The fast electron tail in the electron velocity distribution is obvious in this figure.

    The increase of IFEBindicates that ECCD generates fast electrons,and the drop of loop voltage partly indicates that these fast electrons carry non-inductive plasma current [24].

    The response of IFEBto ECCD varies as a function of radial position and energy.In figure 4,the counts of 40-90 keV increase rapidly after turning on ECCD and decrease rapidly after turning off ECCD.This shows that the FEB signal has a strong correlation with ECCD.For a fixed FEB chord,the lower energy range has a higher growth rate and counts during ECCD.As an example,the counts of 40-50 keV increase fastest,and the counts are twice those of 80-90 keV.So,the range of 40-50 keV with the highest counts is selected to analyze the signals in different chords.Quasilinear diffusion of the electron distribution function in momentum space is the reasonable explanation for the different response of FEB at different energy ranges during ECCD [14].In addition,the building up in time from lower energy to higher energy may also be one of the reasons.

    For a fixed energy range of 40-50 keV,the FEB emissivity at the deposition position is significantly higher than that of the boundary area(figure 5).Moreover,the growth rate of central chord is higher than that of outer channel when ECCD is injected into plasma.With the turning off of ECCD,both of them begin to decrease,and the delay rate of central chord is higher than that of outer channel.This may be caused by the outwards radial diffusion of fast electron.By fitting the time trace using an exponential law,the radial diffusion coefficient D0can be estimated.From the exponent provided by the fit,1/τd,the diffusion coefficient can be deduced,D0~a2/5.8τd[12],yielding D0~3.07 m2s-1,where a is the minor radius of tokamak.The inferred value for D0agrees with the measurements in other tokamaks [25].

    The radial profile of IFEBcan be obtained by combining the detector signals of different positions (figure 6(a)).The integral signal cannot accurately reflect the emissivity of the radial position,so it is necessary to use an Able-inversion method to derive the localized emissivity [26].Figure 6(b) displays the inverted radial profile of IFEBwith a maximal at r=0 cm during ECCD,which indicates the experimental deposition position of ECW lies at around 0 cm.This observation is consistent with the calculation results displayed in table 1 for Bt=1.875 T.

    Figure 7.Time trace of counts from energy range of 40-50 keV at various FEB chords in shot#1071242.The bottom figure is the time evolution of counts from the detector at+5 cm after ECCD is turned off,τd is the fitted radial diffusion time of fast electrons.

    3.2.Off-axis ECCD

    If we want to control NTM through ECCD,the ECCD must be deposited at the location of the magnetic island,i.e.to apply off-axis current drive.Therefore,we also studied the off-axis ECCD on J-TEXT.

    There are two ways to change the deposition location of ECCD,one is to change the poloidal angle of ECW injection,and the other is to change the toroidal magnetic field.In this experiment,the poloidal angle of ECW injection is still fixed at 0° and the central toroidal magnetic field is changed to 1.96 T.The calculated deposition location is+5 cm of the minor radius,and the other parameters are with the same as the on-axis case.

    Figure 7 shows the time evolution of the IFEBat different radial positions in the off-axis ECCD case.It can be seen that the number of counts measured by the detector at +5 cm is the highest,which reflects the strongest radiation of FEB and hence indicates the deposition location.

    Figure 8.Line-integrated FEB emission radial profile (a) and local FEB emissivity radial profile derived from Abel-inversion (b).

    Figure 9.Temporal evolution of shot #1071242.From the top to bottom,the waveforms are:(a)the plasma current and ECCD power,(b) the central line averaged electron density,(c) FEB signal at the radial position of 0 cm (from demodulator),(d) the loop voltage,(e) ECE signals at the radial position +38 cm (80.5 GHz),out of plasma,(f) the HXR emission intensity.

    Figure 10.Time trace of FEB emission intensity in several energy ranges for shot #1071242.The shaded area indicates the time interval in which ECCD is applied.

    Figure 11.(a) Time evolution of energy spectrum at 0 cm chord,(b) time evolution of photon temperature Tph profile from FEB emission spectrum.

    At the end of ECCD,the signals of all chords increase evidently except the one at the deposition location.The increase of FEB signals will be further analyzed in section 4.Nevertheless,the prompt decrease of FEB counts at 5 cm in the range of 40-50 keV indicates that the diffusive loss dominants the behavior of these ECCD driven fast electrons in this case.The off-axis fast electron diffusion time and diffusion coefficient are calculated as τd~3.95 ms,D0~2.72 m2s-1,respectively.There is little difference compared with that for on-axis case.

    The deposition location obtained from the Abel-inverted profile is at minor radius+5 cm as shown in figure 8,which is also consistent with the calculation results from equation (3).The consistency of the deposition positions between the inferred from Abel-inverted profile and calculation results for both onaxis and off-axis cases indicates that the reliability of FEB diagnostic in judging the deposition position of ECW is verified.

    4.Fast electron behavior after turning off ECCD

    Sometimes,IFEBwill increase rapidly after the turning off of ECCD as shown in figure 7,which has been also observed after turning off LHCD in HT-7 [27].Figure 9 shows the signals of shot #1071242,IFEBincrease rapidly when 150 kW ECCD is turned off at 350 ms.As the enhancement of IFEB,HXR signal also begins to increase,indicating the generation of runaway electrons.The evolution of fast electrons in different energy ranges is shown in figure 10.The fast electrons in the energy range of 40-100 keV are generated during ECCD and the counts continue to increase for a while after ECCD is turned off.Meanwhile,the counts of fast electrons in the energy range of 200-300 keV also begin to increase.The appearance time of fast electrons in the energy range of 400-500 keV lags behind 200-300 keV about 380 ms.Then the counts of 400-500 keV fast electrons increase accompanied by the decreasing counts of 40-100 keV fast electrons.This may be due to the fact that the plasma current is controlled by feedback,so the loop voltage and toroidal electric field E||increase after switching off the ECCD.The E||increases from 0.13 to 0.20 V m-1(E‖~VL/2πR0) and accelerates those fast electrons driven by ECCD to higher energy,even to be runaway electrons.

    Figure 12.Correlation of the increase of IFEB,ne and ECCD power.

    It is well known that for given plasma conditions there is a threshold electric field for generation of runaway electrons.Below the critical fieldEth=ER≡(e3nelnΛ) /(4ec2)[28],no runaway electrons are produced.Then considering the modifications of the synchrotron radiation losses[29]and magnetic fluctuations [30] to the Eth,for the parameters of this experiment (B0=1.96 T,ne=1.2×1019,Zeff=3,=2×10-5),the threshold electric field is estimated as Eth~0.17 V m-1.This is comparable with the measured electric filed from experiments.After turning off ECCD,the E||is about 0.2 V m-1(>Eth~0.17 V m-1),so enables the generation of runaway electrons.The fast electron tail is extended from 150 to 300 keV as compared with ECCD period (250-350 ms) as shown in figure 11(a).By a standard least-squares fit,the photon temperature Tphis derived.The time slice of Tphat different chords is shown in figure 11(b).It can be seen that the Tphincreased significantly after 350 ms when ECCD is turned off.The photon temperature Tphindicates the ‘hardening’ of the x-ray spectrum,resulting from the interaction of fast electrons with residual loop voltage.The statistical results in figure 12 show that the increase of IFEBoccurs at low electron density(<1×1019m-3),and ECW power has little effect on it.This may imply that the decrease in the electron density plays a key role in this phenomenon.

    5.Summary

    A set of FEB diagnostic system consisted of CdZnTe detectors has been used in the J-TEXT tokamak to measure the hard x-ray which is generated by bremsstrahlung of fast electron bremsstrahlung in the energy range of 30-300 keV.The data of detectors are processed by MCA to obtain the energy spectrum of fast electrons.In the 150 kW ECCD experiments,the emissions of the FEB with energy of 30-250 keV are observed using the FEB diagnostic during ECCD phase,which suggests that the fast electrons with energy of 30-250 keV are generated during ECCD.

    The line integral profile of FEB emissivity is obtained and the local emissivity profile is derived using Abel-inversion,which can reflect the deposition location of ECCD.Compared with the deposition location calculated according to the principle of ECW absorption,it is verified that FEB diagnostic can provide quite accurate information about the deposition location of ECCD.The study of deposition location lays the foundation for further ECCD experiments such as tearing mode control,sawtooth instability control and current profile modification.

    Furthermore,the process of fast electron acceleration after turning off ECCD is also observed.This may be due to the increase of loop voltage and E||after the switch off of ECCD.The increased E||can then accelerate those fast electrons generated during ECCD phase to higher energy or even runaway.The statistical analysis shows that this phenomenon mostly occurs in the case of low electron density (<1×1019m-3).

    Acknowledgments

    This work is supported by the National Key R&D Program of China (Nos.2017YFE0302000,2018YFE0309103,2019YFE030-10004,2017YFE0300501,2018YFE0310300,2018YFE0309100),National Natural Science Foundation of China(Nos.11775089,51821005,11905077 and 11575068)and the China Postdoctoral Science Foundation (No.2019M652615).

    ORCID iDs

    猜你喜歡
    王璐李峰永華
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    How To Get Along With Your Friends Better
    高地上的千紙鶴
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    Club Recruitment
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    直徑不超過2的無爪圖的2—因子
    靜翕:李峰、張廣慧、陳勇勁作品展
    我們都是好人
    脾踩踏板有利于學(xué)習(xí)
    国产黄色免费在线视频| 天堂网av新在线| 久久久久久久久久久免费av| av播播在线观看一区| 国产成人精品婷婷| 国产精品嫩草影院av在线观看| 成人亚洲精品av一区二区| 97超碰精品成人国产| 成人毛片a级毛片在线播放| 成人国产av品久久久| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 搡女人真爽免费视频火全软件| 欧美国产精品一级二级三级 | 久久精品久久精品一区二区三区| 国产精品一二三区在线看| 在线观看一区二区三区激情| 成人午夜精彩视频在线观看| 精品酒店卫生间| 亚洲最大成人中文| 一个人观看的视频www高清免费观看| 51国产日韩欧美| 国产视频内射| 亚洲av成人精品一区久久| 91狼人影院| 国产探花极品一区二区| 国产精品一区二区性色av| 免费观看a级毛片全部| 精品午夜福利在线看| 日本av手机在线免费观看| 好男人在线观看高清免费视频| 亚洲精品第二区| 亚洲人成网站在线播| 真实男女啪啪啪动态图| 亚洲欧美成人精品一区二区| 人体艺术视频欧美日本| 男的添女的下面高潮视频| 久久国产乱子免费精品| 亚洲国产av新网站| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 欧美日韩国产mv在线观看视频 | 一级毛片我不卡| 99热全是精品| 国产日韩欧美亚洲二区| 亚洲人成网站在线观看播放| 国产白丝娇喘喷水9色精品| 日韩人妻高清精品专区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品三级大全| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 如何舔出高潮| 国产伦精品一区二区三区四那| 国产黄片美女视频| 国产乱人视频| 精品久久国产蜜桃| 国产69精品久久久久777片| 尾随美女入室| 亚洲精品久久久久久婷婷小说| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 国产成人一区二区在线| 免费播放大片免费观看视频在线观看| 一区二区三区乱码不卡18| 尤物成人国产欧美一区二区三区| 国产免费福利视频在线观看| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 久久精品国产a三级三级三级| 少妇高潮的动态图| 亚洲精品色激情综合| 禁无遮挡网站| 国产精品国产av在线观看| 在线观看av片永久免费下载| 一边亲一边摸免费视频| 51国产日韩欧美| 亚洲欧美成人精品一区二区| 婷婷色综合大香蕉| 美女cb高潮喷水在线观看| 国产高清三级在线| 亚洲第一区二区三区不卡| 亚洲精品色激情综合| 色婷婷久久久亚洲欧美| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 在线观看国产h片| 99热这里只有是精品在线观看| 尾随美女入室| 亚洲精品成人久久久久久| 一区二区三区四区激情视频| 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 一边亲一边摸免费视频| 美女高潮的动态| 亚洲欧美日韩东京热| 日韩伦理黄色片| 久久韩国三级中文字幕| 一级爰片在线观看| 日韩av在线免费看完整版不卡| 日韩强制内射视频| 欧美 日韩 精品 国产| 黄色一级大片看看| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 内地一区二区视频在线| 1000部很黄的大片| 在线观看国产h片| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 国产欧美另类精品又又久久亚洲欧美| 一级黄片播放器| 国产精品99久久久久久久久| 久久久久久伊人网av| 日韩亚洲欧美综合| 国产成人一区二区在线| 七月丁香在线播放| 99热6这里只有精品| 久久精品国产亚洲av涩爱| 26uuu在线亚洲综合色| 欧美日韩国产mv在线观看视频 | 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久 | 国产伦精品一区二区三区视频9| 成人无遮挡网站| 中文字幕久久专区| 国产精品偷伦视频观看了| 久久精品久久精品一区二区三区| 99热这里只有是精品50| 久久99蜜桃精品久久| av在线播放精品| 久久久久久久久久久丰满| 免费观看av网站的网址| 青青草视频在线视频观看| 欧美极品一区二区三区四区| 在线看a的网站| 91久久精品国产一区二区三区| 成年免费大片在线观看| 国产精品久久久久久久电影| 亚洲av电影在线观看一区二区三区 | 欧美xxⅹ黑人| 青青草视频在线视频观看| 99久久人妻综合| 国产成人精品久久久久久| 欧美另类一区| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 国产精品蜜桃在线观看| 九九在线视频观看精品| 欧美性感艳星| 亚洲天堂国产精品一区在线| 国产精品成人在线| av卡一久久| 亚洲在线观看片| 汤姆久久久久久久影院中文字幕| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 18禁裸乳无遮挡免费网站照片| 久热这里只有精品99| 国产午夜精品久久久久久一区二区三区| 777米奇影视久久| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 99热网站在线观看| 国产亚洲一区二区精品| 大陆偷拍与自拍| a级毛片免费高清观看在线播放| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 在线观看人妻少妇| 2021天堂中文幕一二区在线观| 嫩草影院新地址| 丝袜喷水一区| 欧美日韩精品成人综合77777| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 日韩伦理黄色片| 国产片特级美女逼逼视频| 欧美人与善性xxx| 成人国产av品久久久| 午夜日本视频在线| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕| 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 只有这里有精品99| 免费看a级黄色片| 成人毛片a级毛片在线播放| 午夜精品国产一区二区电影 | 毛片女人毛片| 亚洲精品一区蜜桃| 久久久久久久久久人人人人人人| 少妇人妻 视频| 国产高清有码在线观看视频| 亚洲精品中文字幕在线视频 | 在线观看三级黄色| 婷婷色综合www| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 好男人在线观看高清免费视频| 青春草视频在线免费观看| 99re6热这里在线精品视频| 视频区图区小说| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 亚洲成色77777| 日日啪夜夜撸| 国产高清国产精品国产三级 | 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 国产淫语在线视频| 我的老师免费观看完整版| 一边亲一边摸免费视频| 国产人妻一区二区三区在| 26uuu在线亚洲综合色| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 看免费成人av毛片| 亚洲成人精品中文字幕电影| 日本爱情动作片www.在线观看| 人妻系列 视频| 久久这里有精品视频免费| 精品熟女少妇av免费看| 黑人高潮一二区| av国产久精品久网站免费入址| 99久国产av精品国产电影| videos熟女内射| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 亚洲精品中文字幕在线视频 | 亚洲人成网站在线播| 国产永久视频网站| 免费观看的影片在线观看| 伦精品一区二区三区| 国产成年人精品一区二区| 在线亚洲精品国产二区图片欧美 | 国产欧美日韩一区二区三区在线 | 狠狠精品人妻久久久久久综合| 日韩欧美 国产精品| 卡戴珊不雅视频在线播放| 国产在线男女| 777米奇影视久久| 免费黄网站久久成人精品| 久久久午夜欧美精品| 毛片女人毛片| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 色5月婷婷丁香| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 边亲边吃奶的免费视频| 一本久久精品| 成人亚洲精品一区在线观看 | 男男h啪啪无遮挡| 免费看不卡的av| av又黄又爽大尺度在线免费看| 亚洲av不卡在线观看| 婷婷色麻豆天堂久久| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 亚洲精品国产成人久久av| 国产成人a区在线观看| 日韩伦理黄色片| 日韩一区二区三区影片| 麻豆久久精品国产亚洲av| 在线观看免费高清a一片| av在线亚洲专区| 一级片'在线观看视频| 97在线人人人人妻| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的 | 亚洲性久久影院| 国产亚洲午夜精品一区二区久久 | 久久久精品欧美日韩精品| 国产成人a区在线观看| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 国产黄频视频在线观看| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 欧美zozozo另类| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 欧美一级a爱片免费观看看| 免费av毛片视频| 国产精品久久久久久久久免| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 在线观看人妻少妇| 国产精品av视频在线免费观看| 久久精品久久久久久久性| 亚洲激情五月婷婷啪啪| 久久久色成人| 麻豆久久精品国产亚洲av| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 观看美女的网站| 久久久欧美国产精品| 国产亚洲91精品色在线| 亚洲在线观看片| 99久久中文字幕三级久久日本| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 | 最近的中文字幕免费完整| 国产成人精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 三级经典国产精品| 国产免费一区二区三区四区乱码| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 亚洲在久久综合| 一级二级三级毛片免费看| 另类亚洲欧美激情| 精品一区在线观看国产| 国产午夜精品一二区理论片| 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| 久久久久久久午夜电影| 免费av观看视频| 久久久精品94久久精品| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 免费人成在线观看视频色| 黑人高潮一二区| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 亚洲美女搞黄在线观看| 少妇人妻久久综合中文| 免费黄频网站在线观看国产| 美女国产视频在线观看| 免费黄网站久久成人精品| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 欧美bdsm另类| av线在线观看网站| 我的女老师完整版在线观看| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频 | 亚洲最大成人av| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 久热这里只有精品99| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| 又爽又黄a免费视频| 岛国毛片在线播放| 国产精品久久久久久精品电影| 91精品伊人久久大香线蕉| 国产色婷婷99| 亚洲自拍偷在线| 亚洲精品第二区| 人妻夜夜爽99麻豆av| 精品少妇久久久久久888优播| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 六月丁香七月| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 少妇裸体淫交视频免费看高清| 极品少妇高潮喷水抽搐| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 成人亚洲精品一区在线观看 | 在线观看av片永久免费下载| 成人无遮挡网站| 特级一级黄色大片| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 深夜a级毛片| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 69av精品久久久久久| 另类亚洲欧美激情| 国产精品人妻久久久影院| 久久久国产一区二区| av卡一久久| 国产又色又爽无遮挡免| 国产成人精品婷婷| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 国产一区二区三区av在线| 亚州av有码| 亚洲婷婷狠狠爱综合网| kizo精华| 噜噜噜噜噜久久久久久91| 午夜免费观看性视频| 大码成人一级视频| 别揉我奶头 嗯啊视频| 久久热精品热| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女高潮的动态| 亚洲av日韩在线播放| 卡戴珊不雅视频在线播放| 极品少妇高潮喷水抽搐| 免费观看在线日韩| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| 男女下面进入的视频免费午夜| 韩国av在线不卡| 1000部很黄的大片| av国产久精品久网站免费入址| 欧美激情国产日韩精品一区| 97在线视频观看| 国产精品麻豆人妻色哟哟久久| 精华霜和精华液先用哪个| 少妇 在线观看| 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人av| 联通29元200g的流量卡| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 成人毛片60女人毛片免费| 欧美日韩国产mv在线观看视频 | 三级经典国产精品| 日本一二三区视频观看| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 亚洲国产av新网站| 联通29元200g的流量卡| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 久久久久久国产a免费观看| 色5月婷婷丁香| 少妇猛男粗大的猛烈进出视频 | 久久精品国产亚洲网站| 26uuu在线亚洲综合色| 在线观看人妻少妇| 激情五月婷婷亚洲| 日韩国内少妇激情av| 国产免费一区二区三区四区乱码| 成人毛片a级毛片在线播放| 国产视频内射| 菩萨蛮人人尽说江南好唐韦庄| 黄色欧美视频在线观看| 久久99热6这里只有精品| av免费观看日本| 新久久久久国产一级毛片| 亚洲av福利一区| 赤兔流量卡办理| 免费观看性生交大片5| 精品国产一区二区三区久久久樱花 | 在线观看美女被高潮喷水网站| 国产精品.久久久| 禁无遮挡网站| 久久99精品国语久久久| 九九爱精品视频在线观看| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 卡戴珊不雅视频在线播放| 国产午夜福利久久久久久| 少妇 在线观看| 五月伊人婷婷丁香| 免费少妇av软件| 嫩草影院精品99| 国产白丝娇喘喷水9色精品| 久久久色成人| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 99久久九九国产精品国产免费| 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品影视一区二区三区av| 国产有黄有色有爽视频| 久久久久网色| 神马国产精品三级电影在线观看| 晚上一个人看的免费电影| www.色视频.com| av专区在线播放| 视频中文字幕在线观看| 老司机影院毛片| 亚洲国产色片| 欧美日韩视频精品一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱久久久久久| 国产又色又爽无遮挡免| 亚洲国产精品成人综合色| 亚洲电影在线观看av| 国产成人aa在线观看| 日韩中字成人| 免费少妇av软件| 久久影院123| 99久久九九国产精品国产免费| 久久国内精品自在自线图片| 国产乱人视频| 成年av动漫网址| 国产欧美另类精品又又久久亚洲欧美| 亚洲精华国产精华液的使用体验| 欧美zozozo另类| 亚洲国产高清在线一区二区三| 欧美xxxx性猛交bbbb| 国产 一区精品| 高清在线视频一区二区三区| 国产黄a三级三级三级人| 人人妻人人爽人人添夜夜欢视频 | 夜夜看夜夜爽夜夜摸| 国产精品99久久99久久久不卡 | 99九九线精品视频在线观看视频| 国产白丝娇喘喷水9色精品| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 爱豆传媒免费全集在线观看| 91精品一卡2卡3卡4卡| 性插视频无遮挡在线免费观看| 边亲边吃奶的免费视频| 欧美 日韩 精品 国产| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 欧美成人a在线观看| 中文字幕av成人在线电影| 中文字幕制服av| 国产成年人精品一区二区| 色5月婷婷丁香| 精品久久久精品久久久| 亚洲一区二区三区欧美精品 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 交换朋友夫妻互换小说| 晚上一个人看的免费电影| 大码成人一级视频| 波多野结衣巨乳人妻| 久久影院123| 亚洲性久久影院| 啦啦啦中文免费视频观看日本| 国产视频首页在线观看| 成年av动漫网址| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 免费看光身美女| 久久韩国三级中文字幕| 波野结衣二区三区在线| 精品人妻视频免费看| 一级毛片 在线播放| 国产一级毛片在线| 一区二区三区精品91| 国产v大片淫在线免费观看| 视频区图区小说| 涩涩av久久男人的天堂| av免费在线看不卡| 又爽又黄a免费视频| 国产精品一及| 国产一区有黄有色的免费视频| 国产av不卡久久| 久久这里有精品视频免费| 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| 在线观看美女被高潮喷水网站| 大香蕉久久网| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 色婷婷久久久亚洲欧美| 亚洲电影在线观看av| av女优亚洲男人天堂| 全区人妻精品视频| 王馨瑶露胸无遮挡在线观看| 亚洲人成网站在线观看播放| 久久久久精品久久久久真实原创| 麻豆成人午夜福利视频| 五月开心婷婷网| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 国产午夜精品久久久久久一区二区三区| 国产亚洲91精品色在线| 秋霞在线观看毛片| 高清午夜精品一区二区三区| 日韩成人av中文字幕在线观看| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av| 新久久久久国产一级毛片| 日韩三级伦理在线观看| 男人添女人高潮全过程视频| 国产精品爽爽va在线观看网站| 十八禁网站网址无遮挡 | 熟女av电影| 亚洲色图综合在线观看| 亚洲成人av在线免费| 老司机影院成人| 汤姆久久久久久久影院中文字幕| 一级av片app| 亚洲av.av天堂| 免费人成在线观看视频色| 国产精品精品国产色婷婷| 日韩国内少妇激情av| 一区二区三区乱码不卡18|