• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies

    2022-06-29 09:22:10GangWu吳剛LuWang王璐KuoBao包括XianliLi李賢麗ShengWang王升andChunhongXu徐春紅
    Chinese Physics B 2022年6期
    關(guān)鍵詞:王璐吳剛

    Gang Wu(吳剛) Lu Wang(王璐) Kuo Bao(包括) Xianli Li(李賢麗)Sheng Wang(王升) and Chunhong Xu(徐春紅)

    1School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China

    2State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    3Institute of Unconventional Oil&Gas,Northeast Petroleum University,Daqing 163318,China

    Keywords: high pressure,electronic structures,first-principles calculations,alkaline-earth metal nitride

    In the search for novel functional materials, the multifaceted family of metal nitride compounds exhibiting diverse properties is widely studied as a model system.Binary nitrides with large bandgap,such as AlN and GaN,have long been employed as high-performance semiconductor materials.[1]By modulating the distances between atoms,pressure would have a significant impact on the character of the materials. In some cases, new phase with unique properties would form under high pressure condition.[2,3]Obviously, research on the high pressure behaviors of semiconductors is of great significance to clarify the regulatory mechanism of material properties.

    There have been several investigations into the high pressure structure of Mg3N2. Under pressure, R¨omer predicted that the ambientIa-3 structure would transform intoC2/mstructure andP3m1 structure in order.[4]This phase sequence was largely validated by Haoet al.,who discovered theC2/mphase by synchrotron x-ray differaction(XRD)from 20.6 GPa to 40 GPa, and anticipated the formation of theP3m1 structure at 67 GPa.[5]As can be seen, there is little disagreement about the high pressure structure of Mg3N2. Furthermore,the electronic and optical properties of Mg3N2have been aroused considerable attention because of its prospective application in phosphor-converted light emitting diodes (pc-LEDs), as a visible-light-activated luminescent material.[6,7]In particular,Mg3N2was suggested to be an promising alternative to AlN and Ga1Al1-nN in optoelectronics.[8]It is generally believed that Mg3N2has a direct bandgap structure.However,the computational data present largely different values of the bandgap,ranging from 1.10 eV to 2.25 eV.[9–11]

    In addition, the bandgap of Mg3N2was predicted to increase under pressure,different from the cognition that the energy band is usually widened under high pressure, accompanied by a reducing of gap value.[12]Unfortunately, only rare research on this phenomenon has been reported so far. The lack of systematic investigations hampers our understanding of the corresponding mechanism. Further investigations are needed to clarify the mechanism of pressure on the bandgap of magnesium nitride.

    Moreover, nitrogen-rich compounds with low bond order N–N bonds are generally considered to be potential high energy density materials(HEDM).[13,14]Alkaline earth metal nitrogen-rich compounds have made breakthrough progress as an HDEM candidate.[15,16]Several nitrides with unconventional chemical stoichiometry have been synthesized experimentally, such as Mg2N4with an N4unit and MgN4with a one-dimensional (1D) N chain.[17]But the theoretically predicted MgN10with an N5ring, which was supposed to possess a higher energy density, has not yet been obtained experimentally.[18]The interaction between Mg and N atoms plays a critical role in the evolution of nitrogen configurations and related structures at high pressures. However, the mechanism of interatomic interaction in the ambient phase is not clear, and further research into this interaction is needed to provide theoretical guidance for the subsequent synthesis of nitrogen-rich nitrides.

    In the present study, Raman spectra and ultra-violetvisible(UV-Vis)absorption spectra,were conducted to investigate the high pressure behavior of Mg3N2up to 50 GPa.The increasing bandgap of Mg3N2with elevated pressure was first observed experimentally. Theoretical calculations such as band structures, density of states (DOS), and differential charge density were combined to clarify the evolution of the bandgap and the interaction between atoms under high pressure.

    2. Experimental and computational methods

    The experiment employed A diamond anvil cell (DAC)with 300-μm culet faces to generate high pressures up to 50 GPa. A tungsten gasket pre-compressed to around 40 μm was placed between the two diamond anvils, and a laser was used to drill a hole with a diameter of 12 μm in the middle of the gasket that served as the sample chamber in the DAC.A moisture-sensitive lump of Mg3N2(Alfa Aesar, 99.5%) of approximate size 40 μm×50 μm was placed into the sample chamber in an argon-atmosphere glove box, whereupon silicone grease served as the pressure transmitting medium and was sealed in the DAC. The pressure in the sample chamber was determined by the frequency shift of the R1line of the Ruby ball.[19]

    The high pressure Raman experiment was performed using a JY-T64000 spectrometer with a nitrogen-cooled CCD detector and a 532-nm laser generated by a doubled solid-state diode Nd:yanadate laser (Coherent Company). The UV-Vis absorption spectra were measured by the optics of Ocean Optics QE65000 in conjunction with a deuterium–halogen light source with a wavelength range of 350 nm to 2000 nm.

    The density functional theory, as implemented in the CASTEP code, was used to perform first-principles computations.[20]To determine precise exchange and correlation energies for a particular structural arrangement, the generalized-gradient approximation (GGA) with Perdew–Burke–Ernzerh (PBE) functional was utilized.[21]Normconserving pseudo-potentials for N and Mg were used to explain the atomic electrical configuration. The 2s22p3and 2p63s2electrons were considered as the valence electrons for N and Mg,respectively. The geometry optimization and properties computation, including band structure, DOS, and differential charge density, were performed using a plane-wave cutoff energy of 1000 eV and ak-point spacing of 0.04 °A-1derived from a convergence test. All of the calculations adopted the same self-consistent energy convergence criteria of 1×10-5eV/atom.

    2.1. Results and discussion

    2.2. Raman experiments and calculations

    According to the group theory analysis, the irreducible representations of optical modes in theIa-3 structure can be written as:Γ=9A+9E+30T, in whichA,E, andTrepresent the nondegenerate, double degenerate, and triply degenerate vibration modes respectively. Four of theAmodes are Raman-active,and in the case ofEmodes andTmodes,it is 4 and 14,respectively.

    As shown in Fig. 1, Raman spectra of theIa-3 structure at 0 GPa was calculated with the CASTEP code to assign the relative vibration mode. Only some of the calculated peaks have relatively strong peak strengths(2Amodes,3Emodes,and 8Tmodes), whose vibration mode is marked below the corresponding peak. The strongest peak (ν5) is assigned to the symmetrical stretching vibration of Mg and N. By comparing the Raman spectra measured at 2.2 GPa,it is found that most of the calculated Raman peaks are observed experimentally, except for small differences in the relative intensity of some weak peaks, which indicates an excellent coincident is achieved between the calculated spectra and experimental results. In addition,the observed Raman spectra at 2.2 GPa are quite close to the previous results,[22]guaranteeing the purity of the Mg2N3sample.

    Due to the sensitivity of vibration frequency to atomic coordinates,Raman spectroscopy is an effective probe to detect the local and cooperative changes in structure under pressure.In this study,in-situRaman spectra have been conducted on Mg3N2up to 43.5 GPa. As shown in Fig. 2, all the peaks move towards high frequency approximately linearly,indicating a general decrease in the atomic distance under pressure.All of the Raman peaks soften and broaden obviously as pressure increases,and some weak peaks at 2.2 GPa(such asν8–ν10andν12)vanish completely at 5 GPa.

    A shoulder peak emerges near 413 cm-1(indicated by the arrow in Fig.2)without any other obvious change. According to the calculation results, this peak is assigned to a triply degenerated mode, which is overlapped by the most intenseν5mode. The strongest peak(ν5)persists till 25 GPa,after which no signal can be observed until 43.5 GPa. This might indicate a total phase transition to a new phase with a relatively weak Raman signal. It should be emphasized that the weakening ofν5peak starts from 17 GPa, which is very similar to the first order phase transition in Mg3N2at 20 GPa in previous high pressure diffraction research.[5]The Raman signal of theIa-3 structure reappears as pressure is released to 2.4 GPa.

    2.3. UV-Vis absorption experiments

    As shown in Fig. 3, the color of Mg3N2changes from deep yellow (3 GPa) to light yellow (47 GPa). In general,a more transparent sample corresponds to a larger bandgap.From the trend of the color changes under pressure, we can preliminarily infer that the bandgap of the sample increases.In the optical absorption experiments,more detailed information about the bandgap can be obtained. The absorption edge distributes from 460 nm to 530 nm at 3 GPa,which is related to the energy threshold of photons allowed to be absorbed.Accompanied by the color change of Mg3N2changes,the absorption edge shows a blueshift trend under pressure,indicating an increase in the minimum energy required in inter-band transition.

    According to the Tauc plot method, in the case of direct bandgap, a series plots of (αhν)2versusphoton energyhνwere obtained based on the absorption spectra under every pressure,known as the Tauc plot.[23,24]The estimated bandgap can be obtained from the intercept of a linear region extrapolation on the energy axis.The evolution of the bandgap is shown in Fig. 5(d). The bandgap value increases from 2.05 eV at 3 GPa to 2.88 eV at 51.9 GPa.There is a change in the increasing ratio of bandgap value to the pressure at nearly 25 GPa,which is very similar to the pressure at which vibration peaks of Mg3N2disappear thoroughly in our Raman measurement.This might be regarded as another manifestation of theIa-3 toC2/mphase transition reported in the previous study.

    Thus, the bandgap of Mg3N2widening under pressure is first observed in UV-Vis absorption experiments. Pressure clearly has a strong ability to tune the bandgap of Mg3N2,which would make Mg3N2more suitable for wide bandgap applications.

    2.4. Electronic structures calculations

    To further investigate the bandgap evolution, the electronic band structure and projected density of states (PDOS)forIa-3 andC2/mstructures were also calculated. As presented in Fig.4,both theIa-3 andC2/mstructures possess the direct type bandgap,which widens with elevated pressure.The gap value of theIa-3 structure varies from 1.27 eV(0 GPa)to 1.96 eV (20 GPa), and for theC2/mstructure from 1.95 eV(20 GPa)to 2.79 eV(50 GPa). These values are similar with the previous results calculated by VASP(1.6 eV forIa-3 phase at ambient condition and 2.3 eV forC2/mphase at 25 GPa).However, these values are rough estimates, as the standard exchange correlation functionals of DFT,such as generalized gradient approximation(GGA),underestimate the gap values.Thus,for the analysis of bandgap evolution trends,our calculation results could still provide relative accuracy qualitatively.

    The PDOS of theIa-3 and theC2/mstructures are also shown in Fig. 4. The valance band is dominated by Mg 2p orbitals,and the conduction band is mainly attributed to N 2p orbitals. The dissimilarities in the strong peak positions in the PDOS of Mg with N,indicate the mainly ionic interaction of Mg with its neighboring N,which is consistent with a differential in atomic electronegativity of up to 1.8. However, a very small chemical bond can also be seen,because of the partially overlapped PDOS of Mg and N.Therefore,the bonding in Mg3N2can be regarded as a mixture of mainly ionic and minorly covalent components.

    As pressure increases, the valence band expands toward the lower energy,and the conduction band widens toward the higher energy, which is mainly induced by the compression of the lattice and the consequent shortening of the bond under pressure. By comparing the PDOS of specified orbitals under different pressures(Fig.5),it is found that the PDOS of N 2p softens obviously, indicating the delocalization of electrons.However, the PDOS peak value of Mg 2p in the conduction band increases under pressure both in theIa-3 and theC2/mstructure, indicating an enhanced localization of electrons in Mg. This is equivalent to the weakening of the tendency of magnesium to lose electrons and form ionic bonds, in other words,the increasing electronegativity of Mg under high pressure. Combined with the change of nitrogen PDOS, the ionicity of Mg–N bonds decreases under pressure,instead of the enhanced covalent properties.

    Looking at the differential charge density in some selected planes is also an efficient way to understand the bond property of Mg3N2.The differential charge density is obtained by subtracting the spherically symmetric charge density of Mg and N in the free state from the charge density of Mg3N2.In theIa-3 structure, the plane across the central N and four neighboring Mg is selected to project the differential charge density. And in theC2/mstructure, the (1 0 0) plane is selected. As presented in Fig.6,positive values(colored in red)indicate gaining electrons, which are mainly distributed near N atom. This is in accordance with the ionic properties of the Mg–N bond. As pressure increases,the electrons obtained by the N atom tend to be distributed toward its neighboring Mg atom. This is in good agreement with the enhanced covalent bond found in our PDOS analysis.

    The increasing covalent component is considered to be responsible for the widening of the bandgap.[25–28]The evolution of the Mg3N2bandgap should take into account two effects: on one hand, the shortened atomic distances under pressure induce widening of both the valence band and the conduction band, which tend to reduce the bandgap. On the other hand,the shortened bond length increases the overlap of the electron cloud,accompanying with the enhanced covalent bond,which tends to widen the bandgap. The competition of these two effects results in the increasing bandgap of Mg3N2under pressure.

    3. Conclusion

    In summary, we have conducted a systemic study of the high pressure behaviors of Mg3N2up to 50 GPa. The pressure induced bandgap widening is observed experimentally for the first time. The bandgap increasing ratio changes at 25 GPa,which is in good agreement with both our Raman results and previous phase transition research. The calculated electronic structures present the increasing bandgap as well. The PDOS shows a localization of the Mg 2p electron, thereby inducing an enhanced covalent character in the Mg–N bond, which is responsible for the increasing bandgap. The present work will be helpful for understanding the atomic interaction in alkaline earth metal nitride and designing nitrogen-based semiconductors with unique properties.

    Acknowledgments

    Project supported by the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 202102) and Young Science Foundation of Northeast Petroleum University(Grant No.2018QNL-53).

    猜你喜歡
    王璐吳剛
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    ON CONTINUATION CRITERIA FOR THE FULLCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES*
    吳剛書(shū)法國(guó)畫(huà)作品選登
    交互式教學(xué)在英語(yǔ)專業(yè)閱讀課改中的應(yīng)用研究
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    直徑不超過(guò)2的無(wú)爪圖的2—因子
    挽衣不結(jié)心
    一張300元的生命罰單
    做人與處世(2012年9期)2012-06-24 12:15:39
    亚洲最大成人av| 插逼视频在线观看| 欧美xxxx黑人xx丫x性爽| 99九九线精品视频在线观看视频| 亚洲av中文av极速乱| 国产精品久久久久久亚洲av鲁大| 欧美区成人在线视频| 国产极品精品免费视频能看的| ponron亚洲| 亚洲,欧美,日韩| 一级黄色大片毛片| 中国美女看黄片| 97人妻精品一区二区三区麻豆| 欧美不卡视频在线免费观看| 久久精品国产鲁丝片午夜精品| 国产高清有码在线观看视频| 色在线成人网| 1000部很黄的大片| 精品一区二区三区人妻视频| 国产乱人视频| 大型黄色视频在线免费观看| 男女啪啪激烈高潮av片| 男女下面进入的视频免费午夜| 久久欧美精品欧美久久欧美| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 国产色爽女视频免费观看| 好男人在线观看高清免费视频| 91久久精品国产一区二区三区| 精品一区二区免费观看| 日本免费一区二区三区高清不卡| 久久久a久久爽久久v久久| 夜夜看夜夜爽夜夜摸| 欧美高清成人免费视频www| 国产乱人偷精品视频| 午夜福利成人在线免费观看| 91精品国产九色| av卡一久久| 日韩制服骚丝袜av| 国产亚洲精品久久久久久毛片| 国产在线男女| 天堂网av新在线| av专区在线播放| 亚洲国产高清在线一区二区三| 日本 av在线| 精品免费久久久久久久清纯| 久久99热6这里只有精品| 精品国内亚洲2022精品成人| 亚洲第一区二区三区不卡| 国产精品一区二区性色av| 久久精品91蜜桃| 变态另类成人亚洲欧美熟女| 99热精品在线国产| 亚洲图色成人| 欧美xxxx性猛交bbbb| 最后的刺客免费高清国语| 国产亚洲91精品色在线| 黑人高潮一二区| 亚洲精品日韩av片在线观看| 日韩av不卡免费在线播放| 国产高清视频在线播放一区| 九九在线视频观看精品| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 国产精品野战在线观看| 日本一本二区三区精品| 久久精品国产鲁丝片午夜精品| 色av中文字幕| 亚洲国产精品国产精品| 久久久久久久亚洲中文字幕| av在线老鸭窝| 国产高清有码在线观看视频| 国产精品乱码一区二三区的特点| 蜜桃亚洲精品一区二区三区| 久久99热6这里只有精品| 成人鲁丝片一二三区免费| 亚洲成a人片在线一区二区| 久久午夜福利片| 中文字幕熟女人妻在线| 国产片特级美女逼逼视频| 精品久久久久久久久久免费视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 色5月婷婷丁香| 神马国产精品三级电影在线观看| a级毛片a级免费在线| 国产麻豆成人av免费视频| 成人欧美大片| 99久久久亚洲精品蜜臀av| 亚洲18禁久久av| 免费观看的影片在线观看| 国产综合懂色| 久久久久久九九精品二区国产| 精品久久国产蜜桃| 成年免费大片在线观看| 国内精品一区二区在线观看| 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 欧美高清性xxxxhd video| 白带黄色成豆腐渣| 国产男靠女视频免费网站| 日本色播在线视频| 美女免费视频网站| 国内精品宾馆在线| 成人鲁丝片一二三区免费| 99热这里只有是精品在线观看| 99热这里只有是精品50| 国产黄片美女视频| 久久热精品热| 日本精品一区二区三区蜜桃| av视频在线观看入口| 可以在线观看的亚洲视频| 国产成人a区在线观看| .国产精品久久| 12—13女人毛片做爰片一| 天天躁夜夜躁狠狠久久av| 日日撸夜夜添| 国模一区二区三区四区视频| 51国产日韩欧美| 亚洲精品456在线播放app| 成年av动漫网址| 国产亚洲精品av在线| 国产免费男女视频| 国产av麻豆久久久久久久| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 男女边吃奶边做爰视频| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区| 亚洲成人中文字幕在线播放| 亚洲精品影视一区二区三区av| 亚洲不卡免费看| 亚洲色图av天堂| 国产不卡一卡二| 日本a在线网址| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 欧美成人a在线观看| 国产aⅴ精品一区二区三区波| h日本视频在线播放| 99久久精品热视频| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久免费视频| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 亚洲欧美精品自产自拍| or卡值多少钱| 中出人妻视频一区二区| 夜夜看夜夜爽夜夜摸| 女生性感内裤真人,穿戴方法视频| 非洲黑人性xxxx精品又粗又长| 欧美高清成人免费视频www| 91av网一区二区| videossex国产| 又黄又爽又刺激的免费视频.| 不卡一级毛片| 俄罗斯特黄特色一大片| 男人狂女人下面高潮的视频| 九九在线视频观看精品| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 欧美激情国产日韩精品一区| 久久久成人免费电影| 18禁在线无遮挡免费观看视频 | 亚洲精品日韩av片在线观看| videossex国产| 黄色欧美视频在线观看| 国产成人精品久久久久久| 日日撸夜夜添| a级毛片a级免费在线| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 色播亚洲综合网| 五月伊人婷婷丁香| 九九热线精品视视频播放| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 3wmmmm亚洲av在线观看| 国产片特级美女逼逼视频| 久久99热6这里只有精品| 亚洲色图av天堂| 十八禁网站免费在线| 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 成熟少妇高潮喷水视频| 亚洲成人久久性| 欧美一区二区亚洲| 男女那种视频在线观看| 精品久久久久久久久亚洲| 性色avwww在线观看| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 97热精品久久久久久| 国产色婷婷99| 在线观看一区二区三区| 国产中年淑女户外野战色| 亚洲性久久影院| 在线观看一区二区三区| 国产麻豆成人av免费视频| 大香蕉久久网| 我要看日韩黄色一级片| 精品一区二区三区av网在线观看| 午夜福利18| 俺也久久电影网| 国产精品不卡视频一区二区| 一a级毛片在线观看| 老司机影院成人| 日日摸夜夜添夜夜添av毛片| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 国产极品精品免费视频能看的| 欧美性猛交╳xxx乱大交人| 久久久久久久久久久丰满| 悠悠久久av| av在线播放精品| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 哪里可以看免费的av片| 国产乱人偷精品视频| 嫩草影视91久久| 欧美在线一区亚洲| 联通29元200g的流量卡| 搡老岳熟女国产| 久久久久九九精品影院| 免费看光身美女| 99久久中文字幕三级久久日本| 麻豆精品久久久久久蜜桃| .国产精品久久| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 99在线视频只有这里精品首页| 成人美女网站在线观看视频| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看 | av在线老鸭窝| 国内揄拍国产精品人妻在线| 看免费成人av毛片| 一级毛片aaaaaa免费看小| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 老师上课跳d突然被开到最大视频| 国产男靠女视频免费网站| 国内精品宾馆在线| 日本成人三级电影网站| av视频在线观看入口| 波多野结衣巨乳人妻| 亚洲av.av天堂| 久久久久性生活片| 成人毛片a级毛片在线播放| 日本免费a在线| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 我要看日韩黄色一级片| 99热精品在线国产| eeuss影院久久| 久99久视频精品免费| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 国产在视频线在精品| 亚洲乱码一区二区免费版| 久久国内精品自在自线图片| 国产精品一区二区三区四区免费观看 | 国产男人的电影天堂91| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 三级经典国产精品| 岛国在线免费视频观看| 特级一级黄色大片| 成人特级av手机在线观看| 久久久久久久久久久丰满| 午夜影院日韩av| 亚洲最大成人手机在线| 国产亚洲精品久久久久久毛片| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 久久久成人免费电影| 亚洲av熟女| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠久久av| 国产成年人精品一区二区| 给我免费播放毛片高清在线观看| 又黄又爽又刺激的免费视频.| 亚洲一区二区三区色噜噜| 亚州av有码| 天天躁日日操中文字幕| 久久久久精品国产欧美久久久| 国产三级在线视频| 欧美xxxx性猛交bbbb| 亚洲一区二区三区色噜噜| 18禁在线无遮挡免费观看视频 | 波多野结衣高清作品| 成人亚洲精品av一区二区| 午夜福利在线在线| 可以在线观看的亚洲视频| 日本黄色视频三级网站网址| 中国美女看黄片| 看免费成人av毛片| 最近中文字幕高清免费大全6| 中文字幕av在线有码专区| 波多野结衣高清作品| 精品人妻一区二区三区麻豆 | 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看 | 亚洲图色成人| 搡女人真爽免费视频火全软件 | 永久网站在线| 国产成人影院久久av| 国内精品一区二区在线观看| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看| 床上黄色一级片| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| 免费看日本二区| 嫩草影视91久久| 国产淫片久久久久久久久| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 看免费成人av毛片| 色播亚洲综合网| 免费看光身美女| 18禁在线播放成人免费| 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| av在线观看视频网站免费| 一进一出抽搐动态| 91久久精品电影网| 日本欧美国产在线视频| 我的老师免费观看完整版| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区 | 在线播放国产精品三级| 搡女人真爽免费视频火全软件 | 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 三级国产精品欧美在线观看| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 我要搜黄色片| 日本熟妇午夜| 久久6这里有精品| 国产成人freesex在线 | 午夜福利在线观看免费完整高清在 | 久久午夜福利片| 大香蕉久久网| 美女内射精品一级片tv| 在线a可以看的网站| 欧美激情在线99| 亚洲最大成人中文| 日韩av在线大香蕉| 黄色配什么色好看| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 国产成人freesex在线 | 亚洲成人久久性| 久久久色成人| 免费在线观看影片大全网站| 精品人妻熟女av久视频| 日日啪夜夜撸| 97超级碰碰碰精品色视频在线观看| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 欧美+亚洲+日韩+国产| 插阴视频在线观看视频| 小说图片视频综合网站| 日韩欧美精品免费久久| av福利片在线观看| 成人无遮挡网站| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人| 不卡视频在线观看欧美| 欧美在线一区亚洲| 在线观看66精品国产| 99久久无色码亚洲精品果冻| 99视频精品全部免费 在线| 久久天躁狠狠躁夜夜2o2o| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 国产黄片美女视频| 午夜免费激情av| 在线观看免费视频日本深夜| 男插女下体视频免费在线播放| av福利片在线观看| 久久国内精品自在自线图片| 91久久精品电影网| aaaaa片日本免费| 日本与韩国留学比较| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 老司机午夜福利在线观看视频| 五月伊人婷婷丁香| 国内久久婷婷六月综合欲色啪| 日日撸夜夜添| 男女那种视频在线观看| 亚洲熟妇熟女久久| 国产精品野战在线观看| 中国国产av一级| 久久亚洲国产成人精品v| 嫩草影院精品99| 免费av观看视频| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看 | 中文字幕av在线有码专区| 日韩强制内射视频| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 网址你懂的国产日韩在线| 亚洲五月天丁香| 熟女电影av网| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 99热这里只有是精品在线观看| 少妇人妻一区二区三区视频| 亚洲av电影不卡..在线观看| 亚洲综合色惰| 99热精品在线国产| 舔av片在线| 亚洲,欧美,日韩| 欧美zozozo另类| 国产精品1区2区在线观看.| 亚洲精品久久国产高清桃花| 国产成人精品久久久久久| 乱系列少妇在线播放| av天堂在线播放| 欧美成人精品欧美一级黄| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆 | 精品一区二区三区视频在线观看免费| av女优亚洲男人天堂| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 亚洲精品一区av在线观看| 国产精品久久久久久av不卡| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 亚洲欧美日韩无卡精品| 直男gayav资源| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 日韩欧美免费精品| 人人妻人人澡人人爽人人夜夜 | 97超碰精品成人国产| 深爱激情五月婷婷| 婷婷精品国产亚洲av| 毛片女人毛片| 亚洲精品在线观看二区| 亚洲美女搞黄在线观看 | 午夜免费男女啪啪视频观看 | 日本黄色视频三级网站网址| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 黑人高潮一二区| 免费一级毛片在线播放高清视频| 校园人妻丝袜中文字幕| 全区人妻精品视频| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 久久久久久大精品| 国产精品一区二区三区四区免费观看 | 搡老熟女国产l中国老女人| 69人妻影院| 中文亚洲av片在线观看爽| 熟女人妻精品中文字幕| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟人妻熟丝袜美| 十八禁网站免费在线| 日韩成人伦理影院| 丝袜美腿在线中文| 精品熟女少妇av免费看| 热99re8久久精品国产| 精品久久久久久久久亚洲| 久久人妻av系列| 久久精品综合一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲欧美清纯卡通| av天堂在线播放| 九九爱精品视频在线观看| 国产亚洲91精品色在线| 亚洲欧美日韩东京热| 午夜老司机福利剧场| 男女啪啪激烈高潮av片| 精品久久久久久成人av| 天堂√8在线中文| 成人永久免费在线观看视频| 午夜福利在线观看吧| 男女啪啪激烈高潮av片| 亚洲人成网站在线播| 十八禁网站免费在线| 国产伦一二天堂av在线观看| 18禁在线无遮挡免费观看视频 | 啦啦啦啦在线视频资源| 久久精品国产清高在天天线| 久久亚洲国产成人精品v| 美女内射精品一级片tv| 日韩av不卡免费在线播放| 亚洲av电影不卡..在线观看| 有码 亚洲区| 久久久久久久久久成人| 男人的好看免费观看在线视频| 又粗又爽又猛毛片免费看| 色av中文字幕| 国产欧美日韩精品亚洲av| 熟妇人妻久久中文字幕3abv| 亚洲精品国产av成人精品 | 亚洲国产精品久久男人天堂| 有码 亚洲区| 大香蕉久久网| 久99久视频精品免费| 日本 av在线| 日日摸夜夜添夜夜添小说| 校园人妻丝袜中文字幕| 亚洲中文字幕一区二区三区有码在线看| 99热这里只有是精品在线观看| 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验 | 亚洲一区高清亚洲精品| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 欧美日韩精品成人综合77777| 久久久精品大字幕| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久久电影| 欧美色欧美亚洲另类二区| 国产精品,欧美在线| 欧美日本视频| 毛片女人毛片| 黄片wwwwww| 一级毛片aaaaaa免费看小| 毛片一级片免费看久久久久| 日韩一本色道免费dvd| 欧美高清性xxxxhd video| a级毛片a级免费在线| 在线观看66精品国产| 桃色一区二区三区在线观看| 五月玫瑰六月丁香| 黄色配什么色好看| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 国产伦一二天堂av在线观看| 国产欧美日韩一区二区精品| 成人国产麻豆网| 91在线观看av| 日本一二三区视频观看| 国产午夜精品久久久久久一区二区三区 | 成年版毛片免费区| 国产成人aa在线观看| 亚洲av.av天堂| 久久精品国产亚洲av涩爱 | a级一级毛片免费在线观看| 久久午夜福利片| 村上凉子中文字幕在线| 青春草视频在线免费观看| 亚洲精品影视一区二区三区av| 国产男靠女视频免费网站| 国内精品久久久久精免费| 成人午夜高清在线视频| 此物有八面人人有两片| 中文字幕人妻熟人妻熟丝袜美| 我要搜黄色片| 欧美一区二区精品小视频在线| 久久精品国产鲁丝片午夜精品| 免费大片18禁| 国产爱豆传媒在线观看| 中文字幕人妻熟人妻熟丝袜美| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠久久av| 国产大屁股一区二区在线视频| 亚洲七黄色美女视频| 日韩精品青青久久久久久| 中文在线观看免费www的网站| 亚洲七黄色美女视频| 亚洲中文字幕一区二区三区有码在线看| 精品99又大又爽又粗少妇毛片| 黄色视频,在线免费观看| 精品熟女少妇av免费看| 国产单亲对白刺激| 日本精品一区二区三区蜜桃|