• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies

    2022-06-29 09:22:10GangWu吳剛LuWang王璐KuoBao包括XianliLi李賢麗ShengWang王升andChunhongXu徐春紅
    Chinese Physics B 2022年6期
    關(guān)鍵詞:王璐吳剛

    Gang Wu(吳剛) Lu Wang(王璐) Kuo Bao(包括) Xianli Li(李賢麗)Sheng Wang(王升) and Chunhong Xu(徐春紅)

    1School of Physics and Electronic Engineering,Northeast Petroleum University,Daqing 163318,China

    2State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    3Institute of Unconventional Oil&Gas,Northeast Petroleum University,Daqing 163318,China

    Keywords: high pressure,electronic structures,first-principles calculations,alkaline-earth metal nitride

    In the search for novel functional materials, the multifaceted family of metal nitride compounds exhibiting diverse properties is widely studied as a model system.Binary nitrides with large bandgap,such as AlN and GaN,have long been employed as high-performance semiconductor materials.[1]By modulating the distances between atoms,pressure would have a significant impact on the character of the materials. In some cases, new phase with unique properties would form under high pressure condition.[2,3]Obviously, research on the high pressure behaviors of semiconductors is of great significance to clarify the regulatory mechanism of material properties.

    There have been several investigations into the high pressure structure of Mg3N2. Under pressure, R¨omer predicted that the ambientIa-3 structure would transform intoC2/mstructure andP3m1 structure in order.[4]This phase sequence was largely validated by Haoet al.,who discovered theC2/mphase by synchrotron x-ray differaction(XRD)from 20.6 GPa to 40 GPa, and anticipated the formation of theP3m1 structure at 67 GPa.[5]As can be seen, there is little disagreement about the high pressure structure of Mg3N2. Furthermore,the electronic and optical properties of Mg3N2have been aroused considerable attention because of its prospective application in phosphor-converted light emitting diodes (pc-LEDs), as a visible-light-activated luminescent material.[6,7]In particular,Mg3N2was suggested to be an promising alternative to AlN and Ga1Al1-nN in optoelectronics.[8]It is generally believed that Mg3N2has a direct bandgap structure.However,the computational data present largely different values of the bandgap,ranging from 1.10 eV to 2.25 eV.[9–11]

    In addition, the bandgap of Mg3N2was predicted to increase under pressure,different from the cognition that the energy band is usually widened under high pressure, accompanied by a reducing of gap value.[12]Unfortunately, only rare research on this phenomenon has been reported so far. The lack of systematic investigations hampers our understanding of the corresponding mechanism. Further investigations are needed to clarify the mechanism of pressure on the bandgap of magnesium nitride.

    Moreover, nitrogen-rich compounds with low bond order N–N bonds are generally considered to be potential high energy density materials(HEDM).[13,14]Alkaline earth metal nitrogen-rich compounds have made breakthrough progress as an HDEM candidate.[15,16]Several nitrides with unconventional chemical stoichiometry have been synthesized experimentally, such as Mg2N4with an N4unit and MgN4with a one-dimensional (1D) N chain.[17]But the theoretically predicted MgN10with an N5ring, which was supposed to possess a higher energy density, has not yet been obtained experimentally.[18]The interaction between Mg and N atoms plays a critical role in the evolution of nitrogen configurations and related structures at high pressures. However, the mechanism of interatomic interaction in the ambient phase is not clear, and further research into this interaction is needed to provide theoretical guidance for the subsequent synthesis of nitrogen-rich nitrides.

    In the present study, Raman spectra and ultra-violetvisible(UV-Vis)absorption spectra,were conducted to investigate the high pressure behavior of Mg3N2up to 50 GPa.The increasing bandgap of Mg3N2with elevated pressure was first observed experimentally. Theoretical calculations such as band structures, density of states (DOS), and differential charge density were combined to clarify the evolution of the bandgap and the interaction between atoms under high pressure.

    2. Experimental and computational methods

    The experiment employed A diamond anvil cell (DAC)with 300-μm culet faces to generate high pressures up to 50 GPa. A tungsten gasket pre-compressed to around 40 μm was placed between the two diamond anvils, and a laser was used to drill a hole with a diameter of 12 μm in the middle of the gasket that served as the sample chamber in the DAC.A moisture-sensitive lump of Mg3N2(Alfa Aesar, 99.5%) of approximate size 40 μm×50 μm was placed into the sample chamber in an argon-atmosphere glove box, whereupon silicone grease served as the pressure transmitting medium and was sealed in the DAC. The pressure in the sample chamber was determined by the frequency shift of the R1line of the Ruby ball.[19]

    The high pressure Raman experiment was performed using a JY-T64000 spectrometer with a nitrogen-cooled CCD detector and a 532-nm laser generated by a doubled solid-state diode Nd:yanadate laser (Coherent Company). The UV-Vis absorption spectra were measured by the optics of Ocean Optics QE65000 in conjunction with a deuterium–halogen light source with a wavelength range of 350 nm to 2000 nm.

    The density functional theory, as implemented in the CASTEP code, was used to perform first-principles computations.[20]To determine precise exchange and correlation energies for a particular structural arrangement, the generalized-gradient approximation (GGA) with Perdew–Burke–Ernzerh (PBE) functional was utilized.[21]Normconserving pseudo-potentials for N and Mg were used to explain the atomic electrical configuration. The 2s22p3and 2p63s2electrons were considered as the valence electrons for N and Mg,respectively. The geometry optimization and properties computation, including band structure, DOS, and differential charge density, were performed using a plane-wave cutoff energy of 1000 eV and ak-point spacing of 0.04 °A-1derived from a convergence test. All of the calculations adopted the same self-consistent energy convergence criteria of 1×10-5eV/atom.

    2.1. Results and discussion

    2.2. Raman experiments and calculations

    According to the group theory analysis, the irreducible representations of optical modes in theIa-3 structure can be written as:Γ=9A+9E+30T, in whichA,E, andTrepresent the nondegenerate, double degenerate, and triply degenerate vibration modes respectively. Four of theAmodes are Raman-active,and in the case ofEmodes andTmodes,it is 4 and 14,respectively.

    As shown in Fig. 1, Raman spectra of theIa-3 structure at 0 GPa was calculated with the CASTEP code to assign the relative vibration mode. Only some of the calculated peaks have relatively strong peak strengths(2Amodes,3Emodes,and 8Tmodes), whose vibration mode is marked below the corresponding peak. The strongest peak (ν5) is assigned to the symmetrical stretching vibration of Mg and N. By comparing the Raman spectra measured at 2.2 GPa,it is found that most of the calculated Raman peaks are observed experimentally, except for small differences in the relative intensity of some weak peaks, which indicates an excellent coincident is achieved between the calculated spectra and experimental results. In addition,the observed Raman spectra at 2.2 GPa are quite close to the previous results,[22]guaranteeing the purity of the Mg2N3sample.

    Due to the sensitivity of vibration frequency to atomic coordinates,Raman spectroscopy is an effective probe to detect the local and cooperative changes in structure under pressure.In this study,in-situRaman spectra have been conducted on Mg3N2up to 43.5 GPa. As shown in Fig. 2, all the peaks move towards high frequency approximately linearly,indicating a general decrease in the atomic distance under pressure.All of the Raman peaks soften and broaden obviously as pressure increases,and some weak peaks at 2.2 GPa(such asν8–ν10andν12)vanish completely at 5 GPa.

    A shoulder peak emerges near 413 cm-1(indicated by the arrow in Fig.2)without any other obvious change. According to the calculation results, this peak is assigned to a triply degenerated mode, which is overlapped by the most intenseν5mode. The strongest peak(ν5)persists till 25 GPa,after which no signal can be observed until 43.5 GPa. This might indicate a total phase transition to a new phase with a relatively weak Raman signal. It should be emphasized that the weakening ofν5peak starts from 17 GPa, which is very similar to the first order phase transition in Mg3N2at 20 GPa in previous high pressure diffraction research.[5]The Raman signal of theIa-3 structure reappears as pressure is released to 2.4 GPa.

    2.3. UV-Vis absorption experiments

    As shown in Fig. 3, the color of Mg3N2changes from deep yellow (3 GPa) to light yellow (47 GPa). In general,a more transparent sample corresponds to a larger bandgap.From the trend of the color changes under pressure, we can preliminarily infer that the bandgap of the sample increases.In the optical absorption experiments,more detailed information about the bandgap can be obtained. The absorption edge distributes from 460 nm to 530 nm at 3 GPa,which is related to the energy threshold of photons allowed to be absorbed.Accompanied by the color change of Mg3N2changes,the absorption edge shows a blueshift trend under pressure,indicating an increase in the minimum energy required in inter-band transition.

    According to the Tauc plot method, in the case of direct bandgap, a series plots of (αhν)2versusphoton energyhνwere obtained based on the absorption spectra under every pressure,known as the Tauc plot.[23,24]The estimated bandgap can be obtained from the intercept of a linear region extrapolation on the energy axis.The evolution of the bandgap is shown in Fig. 5(d). The bandgap value increases from 2.05 eV at 3 GPa to 2.88 eV at 51.9 GPa.There is a change in the increasing ratio of bandgap value to the pressure at nearly 25 GPa,which is very similar to the pressure at which vibration peaks of Mg3N2disappear thoroughly in our Raman measurement.This might be regarded as another manifestation of theIa-3 toC2/mphase transition reported in the previous study.

    Thus, the bandgap of Mg3N2widening under pressure is first observed in UV-Vis absorption experiments. Pressure clearly has a strong ability to tune the bandgap of Mg3N2,which would make Mg3N2more suitable for wide bandgap applications.

    2.4. Electronic structures calculations

    To further investigate the bandgap evolution, the electronic band structure and projected density of states (PDOS)forIa-3 andC2/mstructures were also calculated. As presented in Fig.4,both theIa-3 andC2/mstructures possess the direct type bandgap,which widens with elevated pressure.The gap value of theIa-3 structure varies from 1.27 eV(0 GPa)to 1.96 eV (20 GPa), and for theC2/mstructure from 1.95 eV(20 GPa)to 2.79 eV(50 GPa). These values are similar with the previous results calculated by VASP(1.6 eV forIa-3 phase at ambient condition and 2.3 eV forC2/mphase at 25 GPa).However, these values are rough estimates, as the standard exchange correlation functionals of DFT,such as generalized gradient approximation(GGA),underestimate the gap values.Thus,for the analysis of bandgap evolution trends,our calculation results could still provide relative accuracy qualitatively.

    The PDOS of theIa-3 and theC2/mstructures are also shown in Fig. 4. The valance band is dominated by Mg 2p orbitals,and the conduction band is mainly attributed to N 2p orbitals. The dissimilarities in the strong peak positions in the PDOS of Mg with N,indicate the mainly ionic interaction of Mg with its neighboring N,which is consistent with a differential in atomic electronegativity of up to 1.8. However, a very small chemical bond can also be seen,because of the partially overlapped PDOS of Mg and N.Therefore,the bonding in Mg3N2can be regarded as a mixture of mainly ionic and minorly covalent components.

    As pressure increases, the valence band expands toward the lower energy,and the conduction band widens toward the higher energy, which is mainly induced by the compression of the lattice and the consequent shortening of the bond under pressure. By comparing the PDOS of specified orbitals under different pressures(Fig.5),it is found that the PDOS of N 2p softens obviously, indicating the delocalization of electrons.However, the PDOS peak value of Mg 2p in the conduction band increases under pressure both in theIa-3 and theC2/mstructure, indicating an enhanced localization of electrons in Mg. This is equivalent to the weakening of the tendency of magnesium to lose electrons and form ionic bonds, in other words,the increasing electronegativity of Mg under high pressure. Combined with the change of nitrogen PDOS, the ionicity of Mg–N bonds decreases under pressure,instead of the enhanced covalent properties.

    Looking at the differential charge density in some selected planes is also an efficient way to understand the bond property of Mg3N2.The differential charge density is obtained by subtracting the spherically symmetric charge density of Mg and N in the free state from the charge density of Mg3N2.In theIa-3 structure, the plane across the central N and four neighboring Mg is selected to project the differential charge density. And in theC2/mstructure, the (1 0 0) plane is selected. As presented in Fig.6,positive values(colored in red)indicate gaining electrons, which are mainly distributed near N atom. This is in accordance with the ionic properties of the Mg–N bond. As pressure increases,the electrons obtained by the N atom tend to be distributed toward its neighboring Mg atom. This is in good agreement with the enhanced covalent bond found in our PDOS analysis.

    The increasing covalent component is considered to be responsible for the widening of the bandgap.[25–28]The evolution of the Mg3N2bandgap should take into account two effects: on one hand, the shortened atomic distances under pressure induce widening of both the valence band and the conduction band, which tend to reduce the bandgap. On the other hand,the shortened bond length increases the overlap of the electron cloud,accompanying with the enhanced covalent bond,which tends to widen the bandgap. The competition of these two effects results in the increasing bandgap of Mg3N2under pressure.

    3. Conclusion

    In summary, we have conducted a systemic study of the high pressure behaviors of Mg3N2up to 50 GPa. The pressure induced bandgap widening is observed experimentally for the first time. The bandgap increasing ratio changes at 25 GPa,which is in good agreement with both our Raman results and previous phase transition research. The calculated electronic structures present the increasing bandgap as well. The PDOS shows a localization of the Mg 2p electron, thereby inducing an enhanced covalent character in the Mg–N bond, which is responsible for the increasing bandgap. The present work will be helpful for understanding the atomic interaction in alkaline earth metal nitride and designing nitrogen-based semiconductors with unique properties.

    Acknowledgments

    Project supported by the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 202102) and Young Science Foundation of Northeast Petroleum University(Grant No.2018QNL-53).

    猜你喜歡
    王璐吳剛
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    ON CONTINUATION CRITERIA FOR THE FULLCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES*
    吳剛書(shū)法國(guó)畫(huà)作品選登
    交互式教學(xué)在英語(yǔ)專業(yè)閱讀課改中的應(yīng)用研究
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    直徑不超過(guò)2的無(wú)爪圖的2—因子
    挽衣不結(jié)心
    一張300元的生命罰單
    做人與處世(2012年9期)2012-06-24 12:15:39
    黄色a级毛片大全视频| 国产精品1区2区在线观看. | 韩国精品一区二区三区| 国产伦理片在线播放av一区| 久久亚洲真实| 极品人妻少妇av视频| 欧美久久黑人一区二区| 亚洲三区欧美一区| 亚洲精品一二三| 欧美在线一区亚洲| 人妻久久中文字幕网| 91九色精品人成在线观看| 老汉色∧v一级毛片| 久久精品aⅴ一区二区三区四区| 香蕉丝袜av| 无人区码免费观看不卡 | 精品国产一区二区三区久久久樱花| 亚洲天堂av无毛| 欧美大码av| 午夜激情av网站| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡动漫免费视频| 国产99久久九九免费精品| 精品国内亚洲2022精品成人 | 大片免费播放器 马上看| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 久久久国产欧美日韩av| 性色av乱码一区二区三区2| 日本vs欧美在线观看视频| 美女福利国产在线| 免费看a级黄色片| 国产午夜精品久久久久久| 成人手机av| 国产高清国产精品国产三级| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 午夜福利在线观看吧| 久久久国产一区二区| 超碰成人久久| 国产主播在线观看一区二区| 欧美亚洲 丝袜 人妻 在线| 色尼玛亚洲综合影院| 亚洲午夜精品一区,二区,三区| 丝袜喷水一区| 男女免费视频国产| 国产激情久久老熟女| www日本在线高清视频| 无遮挡黄片免费观看| 亚洲性夜色夜夜综合| 国产麻豆69| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 免费高清在线观看日韩| 日韩中文字幕视频在线看片| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 精品午夜福利视频在线观看一区 | 人人妻人人澡人人爽人人夜夜| 日本一区二区免费在线视频| 精品高清国产在线一区| 狠狠精品人妻久久久久久综合| 日韩三级视频一区二区三区| 99精品久久久久人妻精品| 看免费av毛片| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 真人做人爱边吃奶动态| 一个人免费看片子| av超薄肉色丝袜交足视频| 亚洲欧洲日产国产| 精品国产亚洲在线| 日韩熟女老妇一区二区性免费视频| 别揉我奶头~嗯~啊~动态视频| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区 | 精品一区二区三区视频在线观看免费 | 一进一出抽搐动态| 99久久99久久久精品蜜桃| 乱人伦中国视频| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 亚洲熟女毛片儿| 亚洲成人国产一区在线观看| av福利片在线| 黑人操中国人逼视频| 国产一区有黄有色的免费视频| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 另类精品久久| 亚洲精品粉嫩美女一区| 国产亚洲精品久久久久5区| 欧美黑人欧美精品刺激| 国产精品久久久av美女十八| 老司机靠b影院| h视频一区二区三区| 一本一本久久a久久精品综合妖精| 久久中文字幕人妻熟女| 最近最新中文字幕大全免费视频| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 建设人人有责人人尽责人人享有的| 人妻一区二区av| 国产av又大| 一级毛片精品| 日本欧美视频一区| cao死你这个sao货| 最近最新中文字幕大全电影3 | 母亲3免费完整高清在线观看| svipshipincom国产片| 欧美精品亚洲一区二区| 捣出白浆h1v1| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频| 最新在线观看一区二区三区| 国产老妇伦熟女老妇高清| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 中文字幕最新亚洲高清| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频| 天堂俺去俺来也www色官网| 老汉色av国产亚洲站长工具| 成人黄色视频免费在线看| 黄色怎么调成土黄色| 久久精品亚洲熟妇少妇任你| 超色免费av| 精品亚洲成国产av| 美女视频免费永久观看网站| 欧美黑人精品巨大| 国产免费av片在线观看野外av| 亚洲精品粉嫩美女一区| 波多野结衣一区麻豆| 色视频在线一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲精品中文字幕在线视频| 亚洲精品一二三| 国产男女超爽视频在线观看| 日本一区二区免费在线视频| 我的亚洲天堂| 下体分泌物呈黄色| 午夜激情av网站| 欧美日韩黄片免| 午夜免费成人在线视频| 久久久精品免费免费高清| 在线天堂中文资源库| 久久av网站| 精品国产一区二区三区久久久樱花| tocl精华| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 他把我摸到了高潮在线观看 | 91麻豆av在线| 国产免费视频播放在线视频| 亚洲精品国产区一区二| 19禁男女啪啪无遮挡网站| 视频区图区小说| 女警被强在线播放| 亚洲国产av影院在线观看| 欧美日韩福利视频一区二区| 黄片播放在线免费| 中文字幕高清在线视频| 久久人人爽av亚洲精品天堂| 久久久精品国产亚洲av高清涩受| 日本av免费视频播放| 久久午夜亚洲精品久久| av网站在线播放免费| 多毛熟女@视频| 亚洲av成人一区二区三| 啦啦啦视频在线资源免费观看| 黑人操中国人逼视频| 国产日韩欧美亚洲二区| 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图av天堂| 精品少妇黑人巨大在线播放| 午夜激情久久久久久久| 成人国产一区最新在线观看| 久久精品亚洲av国产电影网| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 精品久久久久久电影网| 欧美日韩精品网址| 免费观看人在逋| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 免费观看人在逋| 国产在线精品亚洲第一网站| 亚洲精品久久成人aⅴ小说| 男女免费视频国产| av片东京热男人的天堂| 狂野欧美激情性xxxx| 在线观看人妻少妇| 深夜精品福利| 视频区欧美日本亚洲| 1024视频免费在线观看| 夫妻午夜视频| 精品国产乱子伦一区二区三区| 欧美性长视频在线观看| 日本欧美视频一区| 欧美精品一区二区大全| 在线观看舔阴道视频| av一本久久久久| 黄网站色视频无遮挡免费观看| 啦啦啦免费观看视频1| 国产精品二区激情视频| 国产日韩欧美在线精品| 极品教师在线免费播放| 无人区码免费观看不卡 | 不卡av一区二区三区| 嫩草影视91久久| 国产欧美日韩一区二区三| 大陆偷拍与自拍| 嫁个100分男人电影在线观看| 国产男女内射视频| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月 | 亚洲精品美女久久av网站| 啪啪无遮挡十八禁网站| 精品熟女少妇八av免费久了| 久久影院123| 日韩大片免费观看网站| 12—13女人毛片做爰片一| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 国产精品1区2区在线观看. | 精品一区二区三区视频在线观看免费 | 亚洲少妇的诱惑av| 亚洲男人天堂网一区| 亚洲天堂av无毛| 久久 成人 亚洲| 在线观看人妻少妇| 欧美激情高清一区二区三区| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 99国产综合亚洲精品| 国产精品免费大片| 在线观看免费视频日本深夜| 亚洲成av片中文字幕在线观看| 国产福利在线免费观看视频| 国产精品 欧美亚洲| 变态另类成人亚洲欧美熟女 | 99精品欧美一区二区三区四区| 91国产中文字幕| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 母亲3免费完整高清在线观看| 国产一区二区三区在线臀色熟女 | 一区二区三区国产精品乱码| 亚洲va日本ⅴa欧美va伊人久久| av在线播放免费不卡| 又大又爽又粗| 精品卡一卡二卡四卡免费| 丝瓜视频免费看黄片| 国产精品一区二区在线观看99| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 麻豆av在线久日| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 色视频在线一区二区三区| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 日韩视频在线欧美| 久久久久国产一级毛片高清牌| 纯流量卡能插随身wifi吗| 中亚洲国语对白在线视频| 夜夜骑夜夜射夜夜干| 性高湖久久久久久久久免费观看| 高潮久久久久久久久久久不卡| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡| 亚洲九九香蕉| 9191精品国产免费久久| 日韩熟女老妇一区二区性免费视频| 久久人人爽av亚洲精品天堂| 欧美黄色片欧美黄色片| 免费av中文字幕在线| 无遮挡黄片免费观看| 99久久国产精品久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 午夜激情av网站| 亚洲精品中文字幕一二三四区 | 国产精品 国内视频| 不卡av一区二区三区| 99精国产麻豆久久婷婷| 色播在线永久视频| 日韩三级视频一区二区三区| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 黄色a级毛片大全视频| 国产欧美日韩一区二区三| 久久久国产一区二区| 波多野结衣av一区二区av| 日本wwww免费看| 纯流量卡能插随身wifi吗| 制服诱惑二区| 999久久久精品免费观看国产| 午夜福利在线观看吧| 手机成人av网站| 天堂中文最新版在线下载| 久久精品国产综合久久久| 欧美日韩中文字幕国产精品一区二区三区 | 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 国产精品1区2区在线观看. | 国产成人一区二区三区免费视频网站| 超碰97精品在线观看| 日韩大码丰满熟妇| 水蜜桃什么品种好| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 色94色欧美一区二区| 久久 成人 亚洲| 日本黄色日本黄色录像| 丁香六月欧美| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 久久国产精品大桥未久av| 亚洲中文日韩欧美视频| 久久久水蜜桃国产精品网| 两个人看的免费小视频| www.999成人在线观看| av一本久久久久| 午夜福利一区二区在线看| 国产亚洲午夜精品一区二区久久| 国产免费av片在线观看野外av| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 人妻久久中文字幕网| 天天影视国产精品| 最新在线观看一区二区三区| 免费少妇av软件| 国产一区二区在线观看av| 99久久人妻综合| 99热国产这里只有精品6| 免费在线观看影片大全网站| 99久久国产精品久久久| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 欧美+亚洲+日韩+国产| 国产成人av教育| 成人国产一区最新在线观看| 99热网站在线观看| 日本欧美视频一区| 色尼玛亚洲综合影院| 考比视频在线观看| 欧美大码av| 1024香蕉在线观看| 亚洲精品久久午夜乱码| 国产欧美亚洲国产| netflix在线观看网站| videosex国产| 国产成+人综合+亚洲专区| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 高清毛片免费观看视频网站 | 国产成人av激情在线播放| 国产精品免费一区二区三区在线 | 亚洲免费av在线视频| www.自偷自拍.com| 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 高清视频免费观看一区二区| 国产1区2区3区精品| 90打野战视频偷拍视频| 欧美人与性动交α欧美软件| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 久久香蕉激情| 日本五十路高清| 性少妇av在线| 少妇精品久久久久久久| √禁漫天堂资源中文www| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 成年人午夜在线观看视频| 母亲3免费完整高清在线观看| 在线观看66精品国产| 超色免费av| 老司机靠b影院| 99久久国产精品久久久| 国产一区有黄有色的免费视频| 老司机福利观看| 两个人免费观看高清视频| 制服人妻中文乱码| 久久久水蜜桃国产精品网| 中文字幕高清在线视频| 国产免费福利视频在线观看| 国产精品一区二区精品视频观看| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 女人精品久久久久毛片| h视频一区二区三区| 91大片在线观看| 欧美黑人欧美精品刺激| 亚洲av片天天在线观看| 高清黄色对白视频在线免费看| 国产精品免费视频内射| 久久九九热精品免费| 女人被躁到高潮嗷嗷叫费观| 国产成人免费观看mmmm| 国产高清激情床上av| 国产高清videossex| a级片在线免费高清观看视频| 国产人伦9x9x在线观看| 大香蕉久久网| 一本综合久久免费| 亚洲精华国产精华精| 国产无遮挡羞羞视频在线观看| 久久午夜亚洲精品久久| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 人妻 亚洲 视频| 91老司机精品| 成在线人永久免费视频| 蜜桃在线观看..| 9色porny在线观看| 国产一区二区三区在线臀色熟女 | 亚洲av片天天在线观看| 99国产精品一区二区蜜桃av | 十八禁网站网址无遮挡| 一区二区三区乱码不卡18| 99国产精品一区二区蜜桃av | www.999成人在线观看| 午夜日韩欧美国产| 高清黄色对白视频在线免费看| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 国产亚洲精品第一综合不卡| 一级毛片电影观看| 国产午夜精品久久久久久| 国产在视频线精品| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 一本色道久久久久久精品综合| 考比视频在线观看| 久久国产亚洲av麻豆专区| 精品免费久久久久久久清纯 | 亚洲男人天堂网一区| 色综合婷婷激情| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 18禁黄网站禁片午夜丰满| 亚洲成人免费av在线播放| 色尼玛亚洲综合影院| 国产在线视频一区二区| av不卡在线播放| 1024视频免费在线观看| 成人国产一区最新在线观看| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 热re99久久国产66热| 亚洲欧美一区二区三区黑人| 热re99久久精品国产66热6| 热99re8久久精品国产| 国产又色又爽无遮挡免费看| 青青草视频在线视频观看| 精品国产一区二区三区久久久樱花| 午夜激情av网站| 99精品久久久久人妻精品| 亚洲欧美色中文字幕在线| 制服人妻中文乱码| 国产av精品麻豆| 麻豆成人av在线观看| 黄色片一级片一级黄色片| 在线观看人妻少妇| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 久久这里只有精品19| 午夜福利乱码中文字幕| 久久青草综合色| 99精国产麻豆久久婷婷| 黄色成人免费大全| 一区二区av电影网| 欧美变态另类bdsm刘玥| 一区二区三区国产精品乱码| 日韩人妻精品一区2区三区| 三上悠亚av全集在线观看| 少妇的丰满在线观看| 国产不卡av网站在线观看| 国产1区2区3区精品| 亚洲精品中文字幕一二三四区 | 汤姆久久久久久久影院中文字幕| 亚洲精品在线观看二区| 欧美精品av麻豆av| 极品教师在线免费播放| 黄网站色视频无遮挡免费观看| 日韩一卡2卡3卡4卡2021年| 午夜福利乱码中文字幕| 99国产精品99久久久久| 久久精品91无色码中文字幕| 国产在线一区二区三区精| 午夜久久久在线观看| 国产一区二区激情短视频| 曰老女人黄片| 人人妻人人澡人人看| 人妻 亚洲 视频| 精品高清国产在线一区| 麻豆av在线久日| 亚洲伊人色综图| 男女高潮啪啪啪动态图| 老司机影院毛片| 亚洲欧美精品综合一区二区三区| 国产麻豆69| 他把我摸到了高潮在线观看 | 久久精品91无色码中文字幕| 国产在线一区二区三区精| 正在播放国产对白刺激| 俄罗斯特黄特色一大片| 在线观看www视频免费| 少妇的丰满在线观看| 十八禁网站免费在线| 色婷婷久久久亚洲欧美| 免费观看a级毛片全部| 男女无遮挡免费网站观看| 免费一级毛片在线播放高清视频 | 亚洲全国av大片| 亚洲欧洲日产国产| 亚洲人成77777在线视频| 亚洲色图av天堂| 一区二区av电影网| 国产91精品成人一区二区三区 | 超色免费av| 国产精品麻豆人妻色哟哟久久| 欧美久久黑人一区二区| 亚洲国产精品一区二区三区在线| 老汉色∧v一级毛片| 2018国产大陆天天弄谢| 大香蕉久久网| 精品少妇一区二区三区视频日本电影| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产 | 美女福利国产在线| 最新的欧美精品一区二区| 久久精品国产a三级三级三级| 久久午夜综合久久蜜桃| 丝袜美腿诱惑在线| 动漫黄色视频在线观看| av网站在线播放免费| videosex国产| 成人特级黄色片久久久久久久 | 精品亚洲乱码少妇综合久久| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区91| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 俄罗斯特黄特色一大片| 老汉色∧v一级毛片| www.精华液| 日韩视频一区二区在线观看| 久久国产精品影院| 极品人妻少妇av视频| 久久久精品国产亚洲av高清涩受| 无遮挡黄片免费观看| 久久久精品94久久精品| 黄色视频不卡| 午夜福利影视在线免费观看| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 最黄视频免费看| 色在线成人网| 免费av中文字幕在线| 99国产精品免费福利视频| 男男h啪啪无遮挡| 51午夜福利影视在线观看| 亚洲欧美激情在线| 婷婷丁香在线五月| av有码第一页| 午夜两性在线视频| 老司机福利观看| 亚洲人成77777在线视频| 日韩中文字幕欧美一区二区| 久久精品国产99精品国产亚洲性色 | 青草久久国产| 一区福利在线观看| 色播在线永久视频| 亚洲熟女精品中文字幕| 久久久精品免费免费高清| 夜夜骑夜夜射夜夜干| 一进一出抽搐动态| 人妻一区二区av| 国产精品98久久久久久宅男小说|