• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The application of a helicon plasma source in reactive sputter deposition of tungsten nitride thin films

    2022-07-13 00:37:34YanYANG楊燕PeiyuJI季佩宇MaoyangLI李茂洋YaoweiYU余耀偉JianjunHUANG黃建軍BinYU于斌XuemeiWU吳雪梅andTianyuanHUANG黃天源
    Plasma Science and Technology 2022年6期
    關(guān)鍵詞:楊燕建軍

    Yan YANG (楊燕),Peiyu JI (季佩宇),Maoyang LI (李茂洋),Yaowei YU(余耀偉),Jianjun HUANG(黃建軍),Bin YU(于斌),Xuemei WU(吳雪梅) and Tianyuan HUANG (黃天源)

    1 College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    4 School of Optoelectronic Science and Engineering,Soochow University,Suzhou 215123,People’s Republic of China

    5 School of Physical Science and Technology,Soochow University,Suzhou 215123,People’s Republic of China

    6 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract A reactive helicon wave plasma(HWP)sputtering method is used for the deposition of tungsten nitride(WNx)thin films.N2 is introduced downstream in the diffusion chamber.The impacts of N2 on the Ar-HWP parameters,such as ion energy distribution functions (IEDFs),electron energy probability functions (EEPFs),electron temperature (Te) and density (ne),are investigated.With the addition of N2,a decrease in electron density is observed due to the dissociative recombination of electrons withThe similar IEDF curves of Ar+ andindicate that the majority ofstems from the charge transfer in the collision between Ar+and N2.Moreover,due to the collisions between electrons and N2 ions,EEPFs show a relatively lower Te with a depletion in the high-energy tail.With increasing negative bias from 50 to 200 V,a phase transition from hexagonal WN to fcc-WN0.5 is observed,together with an increase in the deposition rate and roughness.

    Keywords: helicon wave plasma,reactive sputtering,tungsten nitride,plasma diagnosis

    1.Introduction

    Among the various gaseous state coating techniques,costeffective reactive sputtering methods are suitable for the deposition of wide-area thin films with high rates and tunable compositions [1].Reactive sputtering has significant industrial and commercial relevance,as a variety of compound coatings can be synthesized using a metal target with the addition of reactive gas (e.g.N2,O2and CH4).For example,transition metal nitride thin films,such as TiNx,CrNxand WNx,with excellent hardness,can be used as wear-resistant protective coatings on cutting tools [2-4],and transparent conducting oxide (TCO) thin films,such as InOxand ZnOx,with high light transmission rates and low resistivity,can be applied in flat panel displays,solar cells and light emitting diodes [5,6].However,for commonly used reactive magnetron sputtering,several serious problems exist; for example,the low target utilization due to the deep and narrow erosion trench[7],and the‘poisoning’effect ascribed to the formation of the compound layer[8,9].Moreover,the re-sputtering and the surface damage resulting from the high-energy sputtering particles are also urgent problems that need to be solved[10].

    To overcome these inadequacies,a surface-damage-free reactive sputtering deposition technique is proposed based on the source.A helicon wave is a circularly polarized whistler wave propagating along magnetic field lines [11].A helicon wave plasma (HWP) source can excite a plasma beam with high density (>1018m-3) and low electron temperature (<10 eV) under extremely high vacuum (~10-2Pa in the deposition chamber) [12].Also,as the antenna is wrapped around the source tube,the pollution due to the erosion of the antenna material can be avoided.Moreover,as a ‘remote source’,the flux and energy of the ion beam toward the target can be controlled independently by tuning the radio frequency power and the bias voltage.Moreover,the beam uniformity can be modified by tuning the magnetic field geometry [13].With these merits,the HWP reactive sputtering technique has been used for the synthesis of TCO (e.g.TiOxand ZnOx)coatings [14,15],dielectric SiOx/ZrOxdistributed Bragg reflectors [16] and WNxhard coatings [17].In HWP sputter deposition,the properties,crystallization and morphology can be well tailored by tuning the discharge parameters.In general,the film thickness depends on the ion flux and energy,the stoichiometry ratio x depends on the partial pressure of the reactive gas and the crystallinity mainly depends on the substrate temperature.Nevertheless,most of these research studies remain quasi-empirical and statistical.The mechanism of reactive HWP sputtering has not been fully understood:for instance,the ionization and dissociation processes of seeded reactive gases,which provide the raw particles for the cluster nucleation,and the effects of seeded reactive gases on the plasma beam parameters,which are crucial for target sputtering,such as ion energy and flux.

    In this work,a steady-state Ar-HWP beam is excited in the High Magnetic field Helicon eXperiment (HMHX)device.To understand the interaction processes between N2and Ar-HWP,the ion and free electron properties,such as the ion energy distribution function (IEDF),electron energy probability function (EEPF),electron density and temperature,are investigated before and after N2seeding.WNxfilms are successfully prepared on 304 stainless steel substrates with various target bias voltages,which will be further applied as deuterium diffusion barriers due to their low sputtering yield and deuterium (D) retention [18].The crystalline phase,composition and morphology of the films have been characterized.In section 2,the experimental procedure is presented.In section 3,the results are discussed in detail and the conclusions are given in section 4.

    2.Experimental procedure

    Figure 1.A schematic of the experimental setup for WNx deposition.

    The HMHX device used for the synthesis of WNxfilms has been described in detail elsewhere [17,19].As shown in figure 1,HWP is excited in a remote aluminum oxide tube by a right helical antenna at a frequency of 13.56 MHz.Then,it is spread along the magnetic field toward the W target(50 mm×50 mm×10 mm,99.97%) in the diffusion chamber,where pure N2(99.999%) is seeded through the annular-flow nozzle.The flow rate of the Ar (99.999%)flowing into the source tube is fixed at 50 sccm and the flow rate of N2seeding downstream is fixed at 30 sccm.Before operation,the typical base pressure was evacuated to 5×10-5Pa.An adjustable negative bias Vtis applied on the target for the acceleration of cations.Stainless steel substrates(4 mm×4 mm×1 mm) are mounted on the floating alumina ceramic substrate holder in front of the target.The axial distance between substrates and the target surface is fixed at 1.5 cm.Before being mounted,the substrates are sequentially cleaned in an ultrasonic bath using acetone,ethyl alcohol and deionized water.WNxfilm deposition is carried out at radio frequency power of 1 kW with a permanent axial magnetic field of 1300 G for 30 min at room temperature.

    For plasma diagnoses,the Hiden (ESPION) Langmuir probe is mounted at 2 cm in front of the target surface to determine the EEPFs,electron density (ne) and temperature(Te).A Hiden electrostatic quadrupole plasma(EQP)detector(Series 1000) is used to observe the composition and the energy of ions incident on the target surface.During measurements,the target is removed and the orifice of the EQP detector is placed precisely at the target location.For film characterizations,θ-2θ X-ray diffraction (XRD) scans are performed using a Bruker D8 ADVANCE diffractometer with a Cu Kα line at 0.15418 nm as a source,which provides the crystalline structure information.The surface topography together with the chemical elemental composition is analyzed using a Dimension Icon atomic force microscope (AFM) in tapping mode and scanning electron microscopy (SEM,Hitachi SU-8010) equipped with a Bruker XFlash 6130 energy dispersive X-ray spectroscopy (EDS) system.

    3.Results and discussion

    3.1.Plasma diagnostics

    The typical ion mass spectra measured by the EQP detector in‘+ ion’ mode near the target during Ar-HWP discharge with and without N2seeding are plotted in figure 2.For pure Ar-HWP discharge,the major ions are atomic Ar ions(Ar+)with the peak at amu 40.As N2is injected,as well as Ar+ions,atomic N ions (N+) and N molecular ions,can also be observed,with peaks at amu 14 and 28,respectively.

    Figure 2.Typical ion mass spectra from the near target region measured by an EQP detector with N2 seeding; the insert shows the spectra for pure Ar HWP.

    As shown in figure 3(a),without N2injection,the IEDFs of Ar+present a typically bimodal distribution.The mean ion energy for the first peak is 10.9 eV,which can be attributed to the local plasma potential.Furthermore,an ion beam can be identified by the second peak,with higher mean ion energy at about 31.5 eV.The beam energy can be obtained from the energy difference between these two peaks,which is about 20.6 eV [20].The ion beam stems from the electrostatic acceleration through the current-free double-layer (CFDL)structure.The CFDL structure downstream in the HWP beam is caused by the expanding magnetic field and vessel geometry near the throat of the diffusion chamber [21].

    In figure 3(b),it is found that,as N2is injected,the IEDF curve of thecoincides well with that of the Ar+.Thus,we can speculate that the majority of theions are formed not by electron impact ionization but by the charge-transfer processes in collisions between Ar+and N2(Ar++N2=Ar+since their ionization energies are close(15.8 eV for Ar+and 15.6 eV for N2)[22].In addition,with the absence of N+,a fraction of themay originate from the charge transf er between N+and N2(N++N2=N+The IEDF curve of the N+also presents a bimodal structure.Thus,most of the N+ions may originate from the dissociative charge transfer of Ar+with N2(Ar++N2=N++N+Ar),while a small number of N+ions may also be produced by the reaction ofwith N2+N2=N++N+N2).According to the research by Shahin[23],for a glow discharge in a mixture of Ar/N2,as the average ion energy increases,theyield does not change much,while the N+yield increases rapidly.Thereby,a remarkable rise in the intensity can be expected in the high-energy tail of the N+IEDFs.

    In figure 4(a),the electron density nemeasured by the Langmuir probe as a function of the radial position is plotted for both pure Ar and with N2seeding.The distribution shows a typical ‘center-peaked’structure with a peak value at about 2.7 ×1019m-3.The high-efficiency center heating mechanism for the HWP is uncertain.A commonly accepted theory ascribes it to the bulk mode conversion from a helicon wave to a Trivelpiece-Gould (TG) wave,which is suitable for thepower deposition due to the shorter wavelength [24].As N2is added,a significant fall in the electron density can be observed with the center density at5.5 ×1018m-3.To explain this phenomenon,the fundamental electron/Ninvolved interaction processes and relevant rate constants are listed below in table 1.The rate constants of processes(1)-(6)are quoted from [25].They are closely related to the electron temperature Te,which can be drawn from the EEPF in figure 4(b).Here,the temperature for the bulk electrons is used at 3.3 eV.For process(6),the rate constant is also related to the mean ionic energy ofIt can be drawn from the IEDF in figure 3(b) at about 14.6 eV.Thereby,the rate constant k for process (6) can be calculated,which is 5.9×10-7cm3s-1.It is obvious that among these interaction processes,the consumption of the electrons only occurs in process (6).Also,the rate constant for process (6) is much higher than those for other processes.Thereby,the decline of the electron density should be attributed to the dissociative recombination of electrons with(e+→N+N).

    Table 1.Important interaction processes involving electrons in Ar-HWP discharge with N2 seeding.Here,the rate constant k is quoted from [25].

    EEPFs measured at 2 cm in front of the target and r=0 cm are shown in figure 4(b) for both pure Ar HWP and with N2seeding.In the pure Ar discharge,the EEPF presents a typical Maxwellian distribution with a temperature at 4.5 eV.As N2is added,a lower bulk electron temperature at 3.3 eV can be observed.Moreover,the EEPF presents a depletion of the high-energy tail (1.6 eV) compared to the Maxwellian distribution fitting to the low-energy region (3.3 eV).The turning point where the depletion starts is about 20 eV.It matches well with the peak of the total scattering cross sections for the e-N2collisions,which is also located near 20 eV [26].In this case,with N2seeding,the fall in the bulk electron temperature and the depletion of the high-energy electrons can be attributed to the energy loss during e-N2collisions.

    The vibration temperature (Tv) of N2is also important for gas discharge because vibration excitation with adiabatic properties can trap and store energy,which is crucial for chemical reactions in plasma.Characteristic optical emission spectra for Ar helicon plasma with seeding N2at FN2=30 sccm are shown in figure 5,where the typical spectrum of a N2second positive system (SPS) is clearly discernible.The Tvof N2can be calculated by fitting the N2SPS (C3Πu→B3Πg) spectra peaks (N2SPS(0,2)at 380.5 nm and N2SPS(1,3)at 375.5 nm)with the measured spectra using a widely used simulation method,which has been described in previous works [27,28].

    Figure 3.IEDFs of the major ions (Ar+,N+ and) near the target for HWP operating with (a) pure Ar and (b) with N2 seeding.

    Figure 4.(a)Radial distribution of the electron density ne,and(b)EEPFs(r=0 cm)for pure Ar and with N2 seeding.The Langmuir probe is located at 2 cm in front of the target.

    As shown in the illustration of figure 5,a decrease in vibrational temperature from 4970 to 4490 K can be observed with the increasing N2flow rate from 5 to 30 sccm.The vibration temperature Tvis related to the density and temperature of the excitation particles in the plasma[29].With the increase in the N percentage in the discharge,the populations of electrons and Ar metastable states both decrease,and the probabilities of electron impact and Penning excitation also decrease correspondingly.This is why the vibrational temperature of N2decreases with the addition of N to Ar plasma.

    3.2.Deposition of WNx films

    In this section,WNxfilms grown on the 304 stainless steel substrates at room temperature with various negative bias voltages(50-200 V)are investigated.In table 2,the [N]/[W]stoichiometry ratio measured by EDS,the growth rate evaluated by the film thickness and the root mean square (RMS)roughness obtained from the AFM are listed.Moreover,the crystallinity of the films can be determined from the ratio of the area of the crystalline peaks and the area of all the peaks(amorphous and crystalline) from the XRD spectra [30].

    The target collected current (I)and the W sputtering rate(δ) estimated by the target weight loss are shown in figure 6.For the target with a negative bias voltage,as the electron is retarded,the majority of the current belongs to the ion current Iionand the ion-induced secondary electron current Isec.Thereby,the rising current with increasing bias voltage may result from both the expanding target sheath and the increasing Isec.Unlike the current,δ shows a sharp increase with the bias voltage,because a higher bias voltage can effectively improve the sputtering yield of Ar+→W [31]and N+/→W [32].This variation trend matches well with the deposition rate in table 2.

    Figure 5.Characteristic spectra of Ar-helicon plasma with seeding N2 at 30 sccm.The illustration shows the vibrational temperature Tv as a function of the seeding N2 flow rate.

    Figure 6.The target current I and sputtering rate δ as functions of the negative biases.

    In figure 7,typical XRD results for WNxfilms grown on the 304 stainless steel substrates with negative bias ranging from 50 to 200 V are plotted.The spectrum for the substrate is also presented.For the low bias voltage at 50 V,the[N]/[W]stoichiometry ratio is about 1.08 and a weak peak at 2θ=35.68° can be detected,which can be ascribed to the(100) plane of the hexagonal WN phase (JCPDS 25-1256).The low crystallinity at 7.8% with a relatively weak hexagonal WN signal and a strong substrate signal indicates that,due to the low sputtering rate,the growth of the WN crystallites is inhibited under a relatively low growth rate at 1.3 nm min-1.For the higher bias voltage at 100 V,with the increase in the deposition rate to 9.3 nm min-1,the WN(100)peak becomes stronger with a higher crystallinity at 52.4%,together with the appearance of the hexagonal WN(110)peak at 2θ of 63.04° (JCPDS 25-1256).When we further increase the bias voltage to 150 V,with a lower x=0.87,the WN(100) and (110) diffraction peaks become sharper with a substantial rise in the intensity,indicating a high crystallinity(81.0%).Also,a face-centered cubic β-WN0.5phase can be detected by the deconvolution procedure of the broad peak near 73.32°.This peak located at 2θ=74.06° is associated with the β-WN0.5(311) reflection (JCPDS 25-1257).As the bias voltage increases to 200 V,the [N]/[W] stoichiometry ratio x drops to 0.63 and the film presents a typical NaCl-type β-WN0.5phase with identifiable peaks at 2θ=36.04°,42.14°,60.84° and 72.58°,which correspond to the (111),(200),(220) and (311) reflections,respectively.However,compared with the standard values,a left shift of the characteristic peaks can be observed,which could be attributed to the expansion of the lattices with the excess interstitial N atoms [33].This phase evolution from hexagonal WN to β-WN0.5can be ascribed to the increased density ratio of W to N in the reactive background plasma cloud with a higher W sputtering rate.Moreover,the appearance of the amorphous peaks to some extent causes a decrease in the crystallinity from 81.0% to 73.8%.

    Figure 7.XRD spectra of WNx films deposited with various negative biases.The black line corresponds to the 304 stainless steel substrates without coatings.

    Figure 8.SEM photographs of WNx films deposited on 304 stainless steel substrates with different negative biases at (a) 50 V,(b) 100 V,(c) 150 V and (d) 200 V.

    Table 2.The [N]/[W] stoichiometry ratio,growth rate,RMS roughness and crystallinity of the WNx films deposited with various negative bias voltages from 50 to 200 V.

    The SEM micrographs (50000× magnification) of the WNxfilms deposited on the 304 stainless steel substrates with various negative biases from 50 to 200 V are shown in figure 8.At 50 V,due to the low sputtered W flux,a relatively loose structure with sparsely distributed bumps is formed.When the negative bias increases to 100 V,the graph shows that the deposited thin film consists of scale-like irregular shaped grains with an average size around 75±10 nm.When we further increase the bias voltage to 150 V,a finer grain structure can be observed as the hexagonal WN is mixed with a small amount of β-WN0.5[34].For higher bias at 200 V,the morphology patterns become denser with a larger average size of the conglomerated coarse grain.With the increment of the W density in the plasma,WNxcrystallites will be more agglomerated in the process of deposition.In this case,the RMS roughness of the WNxfilms also increases with increasing bias voltage.

    4.Summary and conclusion

    In this work,sputter deposition of WNxfilms has been performed using helicon-excited Ar plasma with N2seeding.The ionization and dissociation mechanisms of seeded N2together with the role it plays in film synthesis are carefully investigated using plasma diagnoses and film characterizations.

    With the injection of N2,the ion mass spectrum confirms the existence of bothand N+.Most of theand N+ions are generated by the charge-transfer collision (Ar++N2=Ar+) and the dissociative charge-transfer (Ar++N2=N++N+Ar) processes,respectively.Moreover,a significant decrease in the electron density can also be detected with N2seeding,which can be attributed to the dissociative recombination of electrons with(e+→N+N).In addition,the EEPFs show a depletion of the high-energy electrons due to the e-N2collisions.WNxthin films have been successfully deposited on the stainless steel substrates at room temperature.With increasing negative biases from 50 to 200 V,a phase evolution of hexagonal WN to fcc-WN0.5can be observed due to the increasing W sputtering rate.Also,with the increment of the W content in the plasma,the structure becomes denser with a significant increase in the average grain size.

    This work gives us an in-depth understanding of the interactions between Ar HWP and injected N2.It can help us trace the sources of N atoms and atomic ions(N+)which are essential for the nucleation of WNx.On the other hand,based on the HWP source,this work presents an innovative reactive sputtering deposition method for the synthesis of WNxthin films with a high growth rate (up to 25.8 nm min-1) and controllable elemental compositions.However,this work is still in the early stages; further efforts are needed to improve the crystallinity,uniformity and adhesion of the WNxfilms deposited on the stainless steel substrates.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11975163,12175160) and Shenzhen Clean Energy Research Institute.

    猜你喜歡
    楊燕建軍
    Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
    慶祝建軍95周年
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    無論等多久
    Success
    未來英才(2017年19期)2017-10-25 05:50:43
    Discussion on the Application of Multi—media In English Teaching
    下藥“阻”妻散了家
    Remote positioning system based on GPS/GPRS*
    超級(jí)賽亞人
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 久久精品国产自在天天线| 久久人人爽人人爽人人片va| 亚洲av免费高清在线观看| 久久精品夜色国产| 欧美97在线视频| 黄色配什么色好看| 久久99蜜桃精品久久| 2018国产大陆天天弄谢| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 全区人妻精品视频| 精品国产一区二区久久| 久久热在线av| 国产日韩欧美视频二区| av视频免费观看在线观看| 午夜福利网站1000一区二区三区| 又粗又硬又长又爽又黄的视频| 美国免费a级毛片| 久久久久久人妻| 精品少妇黑人巨大在线播放| 日本av免费视频播放| 中国国产av一级| 亚洲人与动物交配视频| 久久婷婷青草| 欧美xxⅹ黑人| 777米奇影视久久| 精品久久久精品久久久| 涩涩av久久男人的天堂| 黄色一级大片看看| 亚洲av综合色区一区| 成人综合一区亚洲| 边亲边吃奶的免费视频| 夫妻午夜视频| 国产 精品1| 亚洲三级黄色毛片| 国产女主播在线喷水免费视频网站| 日本vs欧美在线观看视频| 卡戴珊不雅视频在线播放| 国产乱来视频区| 另类亚洲欧美激情| 国产永久视频网站| 男女高潮啪啪啪动态图| a级毛色黄片| 蜜桃在线观看..| 精品福利永久在线观看| 日韩av免费高清视频| 亚洲四区av| av在线app专区| 90打野战视频偷拍视频| 99热国产这里只有精品6| 黄色怎么调成土黄色| 国产成人aa在线观看| 精品亚洲成a人片在线观看| videosex国产| 99香蕉大伊视频| 精品少妇久久久久久888优播| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 91午夜精品亚洲一区二区三区| 777米奇影视久久| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 日本免费在线观看一区| 免费久久久久久久精品成人欧美视频 | 久久99热这里只频精品6学生| 性色av一级| 午夜福利,免费看| 2022亚洲国产成人精品| 久久久久人妻精品一区果冻| 久久精品夜色国产| 亚洲国产精品999| 日韩一本色道免费dvd| 高清av免费在线| www日本在线高清视频| 国产高清三级在线| 成年美女黄网站色视频大全免费| 最近最新中文字幕免费大全7| 精品少妇内射三级| 久久久久久久国产电影| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 22中文网久久字幕| 国产视频首页在线观看| 免费看av在线观看网站| 大香蕉久久网| 日韩制服骚丝袜av| 久久精品国产综合久久久 | 日韩伦理黄色片| 国产成人精品婷婷| 欧美人与性动交α欧美软件 | 观看av在线不卡| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 色94色欧美一区二区| 免费播放大片免费观看视频在线观看| 咕卡用的链子| 亚洲国产看品久久| 午夜日本视频在线| 在线观看美女被高潮喷水网站| 国产成人欧美| 亚洲成色77777| 久久久久久伊人网av| 丰满少妇做爰视频| 国产免费又黄又爽又色| 国产黄色免费在线视频| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看日韩| 啦啦啦视频在线资源免费观看| 黑人巨大精品欧美一区二区蜜桃 | 在线免费观看不下载黄p国产| 成人午夜精彩视频在线观看| 亚洲精品日韩在线中文字幕| 亚洲情色 制服丝袜| 黄色 视频免费看| 少妇高潮的动态图| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 97超碰精品成人国产| 免费人妻精品一区二区三区视频| 黄色毛片三级朝国网站| av在线app专区| 亚洲av日韩在线播放| 又粗又硬又长又爽又黄的视频| 侵犯人妻中文字幕一二三四区| 午夜免费男女啪啪视频观看| 观看av在线不卡| 午夜91福利影院| 日本欧美视频一区| 男女啪啪激烈高潮av片| 美女xxoo啪啪120秒动态图| 久久久久久久国产电影| 国产女主播在线喷水免费视频网站| 精品一区在线观看国产| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 欧美另类一区| 成人二区视频| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 亚洲精品一二三| 看非洲黑人一级黄片| 日韩欧美精品免费久久| 成年动漫av网址| 亚洲精品,欧美精品| 久久久久久久精品精品| 久久久a久久爽久久v久久| 永久免费av网站大全| 激情五月婷婷亚洲| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 日本91视频免费播放| 天堂中文最新版在线下载| 男女国产视频网站| 99久久人妻综合| 寂寞人妻少妇视频99o| 大码成人一级视频| 久热久热在线精品观看| 男女免费视频国产| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 我要看黄色一级片免费的| 少妇熟女欧美另类| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 如日韩欧美国产精品一区二区三区| 五月玫瑰六月丁香| 国产av国产精品国产| 在现免费观看毛片| 午夜福利乱码中文字幕| 国产欧美日韩综合在线一区二区| 男人爽女人下面视频在线观看| 伦精品一区二区三区| 极品人妻少妇av视频| 中文乱码字字幕精品一区二区三区| 人妻一区二区av| 搡女人真爽免费视频火全软件| av不卡在线播放| 久久这里有精品视频免费| 纵有疾风起免费观看全集完整版| 亚洲熟女精品中文字幕| 国产男人的电影天堂91| 国精品久久久久久国模美| 国产亚洲一区二区精品| a级片在线免费高清观看视频| 另类亚洲欧美激情| 成人黄色视频免费在线看| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 午夜影院在线不卡| 久久精品人人爽人人爽视色| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 久久国产精品大桥未久av| 国产精品欧美亚洲77777| 国产一级毛片在线| 男女下面插进去视频免费观看 | 99热全是精品| 青春草国产在线视频| 亚洲精品一区蜜桃| 国产成人一区二区在线| 国产福利在线免费观看视频| 亚洲国产精品专区欧美| 国产精品免费大片| 久久青草综合色| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频| 男女啪啪激烈高潮av片| 七月丁香在线播放| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 日本91视频免费播放| 国产精品.久久久| 欧美日韩成人在线一区二区| 大片电影免费在线观看免费| 国产免费一区二区三区四区乱码| 麻豆乱淫一区二区| 少妇的逼水好多| 久久久久久久久久久免费av| 日韩伦理黄色片| 亚洲国产最新在线播放| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 26uuu在线亚洲综合色| 亚洲四区av| www.av在线官网国产| 五月玫瑰六月丁香| 亚洲伊人色综图| 日韩av在线免费看完整版不卡| 久久青草综合色| 亚洲精品中文字幕在线视频| 国产午夜精品一二区理论片| 最新的欧美精品一区二区| 久久久久人妻精品一区果冻| 亚洲五月色婷婷综合| 97超碰精品成人国产| 亚洲天堂av无毛| av一本久久久久| 久久99热6这里只有精品| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 国内精品宾馆在线| 免费黄频网站在线观看国产| 成年美女黄网站色视频大全免费| 色婷婷av一区二区三区视频| 热re99久久国产66热| 国产欧美日韩一区二区三区在线| 久久久久久久久久成人| 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 婷婷色av中文字幕| 在线精品无人区一区二区三| 观看av在线不卡| 午夜91福利影院| 精品亚洲成国产av| 高清黄色对白视频在线免费看| 色哟哟·www| 免费看av在线观看网站| 国产在线免费精品| 最新中文字幕久久久久| 亚洲综合精品二区| 成年动漫av网址| 蜜臀久久99精品久久宅男| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影| 插逼视频在线观看| 男女国产视频网站| 亚洲精品中文字幕在线视频| videosex国产| 国产男人的电影天堂91| 久久人人爽人人片av| 国产成人精品福利久久| 精品久久蜜臀av无| 久久人人爽人人片av| 超色免费av| 免费观看无遮挡的男女| 国产午夜精品一二区理论片| 亚洲av福利一区| 成年av动漫网址| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 免费女性裸体啪啪无遮挡网站| 亚洲,一卡二卡三卡| h视频一区二区三区| 免费人妻精品一区二区三区视频| 国产国拍精品亚洲av在线观看| 女性生殖器流出的白浆| 一区在线观看完整版| www日本在线高清视频| 成人二区视频| videosex国产| 丰满乱子伦码专区| 亚洲欧美日韩另类电影网站| 宅男免费午夜| 男人操女人黄网站| 免费观看无遮挡的男女| 乱码一卡2卡4卡精品| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆| 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| 在线观看人妻少妇| 亚洲精品乱码久久久久久按摩| 久久ye,这里只有精品| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 久久久久久久精品精品| 亚洲国产精品国产精品| 熟女电影av网| 免费久久久久久久精品成人欧美视频 | 中国国产av一级| 在线观看www视频免费| 伦理电影大哥的女人| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 亚洲精品,欧美精品| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| 黄色毛片三级朝国网站| 亚洲第一av免费看| 免费高清在线观看视频在线观看| 国精品久久久久久国模美| 乱码一卡2卡4卡精品| 母亲3免费完整高清在线观看 | 女人精品久久久久毛片| 九色亚洲精品在线播放| 女人久久www免费人成看片| 国产成人免费观看mmmm| av天堂久久9| 在线观看美女被高潮喷水网站| 国产色婷婷99| 亚洲国产av新网站| 水蜜桃什么品种好| 熟女av电影| 七月丁香在线播放| 我要看黄色一级片免费的| 日韩视频在线欧美| 大香蕉久久成人网| xxxhd国产人妻xxx| 一个人免费看片子| 一级片免费观看大全| 日韩成人av中文字幕在线观看| 飞空精品影院首页| 久久精品久久久久久久性| 久久婷婷青草| 丝袜人妻中文字幕| 国产av国产精品国产| 久久久国产欧美日韩av| 欧美精品一区二区大全| 天美传媒精品一区二区| 精品亚洲成a人片在线观看| 2022亚洲国产成人精品| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 一级毛片黄色毛片免费观看视频| 欧美人与性动交α欧美软件 | 人妻少妇偷人精品九色| 视频在线观看一区二区三区| 在线观看www视频免费| 久久99蜜桃精品久久| 久久久精品区二区三区| 91aial.com中文字幕在线观看| 妹子高潮喷水视频| 免费人妻精品一区二区三区视频| 久热久热在线精品观看| 亚洲欧美成人综合另类久久久| 高清毛片免费看| 日韩不卡一区二区三区视频在线| 99久久人妻综合| 精品一区二区三区四区五区乱码 | 婷婷色综合大香蕉| 狠狠精品人妻久久久久久综合| 日韩中字成人| 熟妇人妻不卡中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 欧美精品高潮呻吟av久久| 国产精品国产三级国产av玫瑰| 丁香六月天网| 自拍欧美九色日韩亚洲蝌蚪91| 天天影视国产精品| 丰满乱子伦码专区| 亚洲,欧美,日韩| av国产精品久久久久影院| 五月开心婷婷网| 大片免费播放器 马上看| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 亚洲成人av在线免费| 午夜91福利影院| 日本免费在线观看一区| 国产成人aa在线观看| 亚洲av国产av综合av卡| a级毛色黄片| 亚洲天堂av无毛| 久久久久久人妻| 国产一区二区在线观看av| 涩涩av久久男人的天堂| 国产国拍精品亚洲av在线观看| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 亚洲国产日韩一区二区| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 午夜老司机福利剧场| 熟女电影av网| 欧美日韩av久久| 母亲3免费完整高清在线观看 | 伊人久久国产一区二区| 国产成人精品婷婷| 宅男免费午夜| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| 精品亚洲成国产av| 夫妻午夜视频| 捣出白浆h1v1| av电影中文网址| 国产免费福利视频在线观看| 侵犯人妻中文字幕一二三四区| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 又大又黄又爽视频免费| 久久久久久人妻| 一级毛片我不卡| 亚洲,欧美精品.| 免费观看性生交大片5| 欧美最新免费一区二区三区| www日本在线高清视频| 男女下面插进去视频免费观看 | 人人妻人人澡人人看| 国产色爽女视频免费观看| 日本猛色少妇xxxxx猛交久久| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 精品国产一区二区三区久久久樱花| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 国产亚洲一区二区精品| 久久这里只有精品19| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图| 久久久久国产网址| 国语对白做爰xxxⅹ性视频网站| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 在线观看美女被高潮喷水网站| 国产免费现黄频在线看| 我要看黄色一级片免费的| 美女大奶头黄色视频| 青春草国产在线视频| 国产欧美日韩综合在线一区二区| 国产日韩欧美在线精品| 制服人妻中文乱码| 岛国毛片在线播放| av不卡在线播放| 2022亚洲国产成人精品| 九九爱精品视频在线观看| 777米奇影视久久| 熟女av电影| 男男h啪啪无遮挡| 国产福利在线免费观看视频| 超碰97精品在线观看| 精品一区二区免费观看| 欧美变态另类bdsm刘玥| 日日爽夜夜爽网站| 亚洲一码二码三码区别大吗| 成人二区视频| 爱豆传媒免费全集在线观看| 欧美激情 高清一区二区三区| 国产成人a∨麻豆精品| 国产福利在线免费观看视频| 成人二区视频| 日韩中文字幕视频在线看片| a级片在线免费高清观看视频| 夫妻午夜视频| 黄色一级大片看看| 国产精品久久久久久精品电影小说| 欧美精品一区二区免费开放| 永久网站在线| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 国产精品久久久av美女十八| 中国国产av一级| 久久国产精品大桥未久av| 熟女人妻精品中文字幕| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 草草在线视频免费看| 精品一区二区三卡| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 免费看av在线观看网站| www.色视频.com| 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂| 日本免费在线观看一区| 另类精品久久| av又黄又爽大尺度在线免费看| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 免费高清在线观看视频在线观看| videos熟女内射| 丰满乱子伦码专区| 久久国产精品大桥未久av| 侵犯人妻中文字幕一二三四区| 亚洲美女视频黄频| 精品人妻在线不人妻| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 日韩成人伦理影院| 亚洲高清免费不卡视频| 丝袜人妻中文字幕| 丝袜在线中文字幕| 日本av免费视频播放| 成年人午夜在线观看视频| 国产精品久久久久久精品古装| 黑丝袜美女国产一区| 久久精品国产综合久久久 | 最黄视频免费看| 欧美日韩亚洲高清精品| 制服丝袜香蕉在线| 两个人看的免费小视频| 18+在线观看网站| 九色成人免费人妻av| av视频免费观看在线观看| 欧美性感艳星| 肉色欧美久久久久久久蜜桃| 亚洲成人一二三区av| 亚洲av福利一区| 免费大片黄手机在线观看| 熟女人妻精品中文字幕| 少妇人妻久久综合中文| 日韩成人伦理影院| 又黄又粗又硬又大视频| 香蕉国产在线看| 精品一区二区三卡| 久久 成人 亚洲| 1024视频免费在线观看| 男女午夜视频在线观看 | 国产一区二区三区综合在线观看 | 日本色播在线视频| 精品一区二区三卡| 毛片一级片免费看久久久久| 国产极品天堂在线| 日本91视频免费播放| 人人妻人人添人人爽欧美一区卜| 午夜福利在线观看免费完整高清在| 麻豆精品久久久久久蜜桃| 亚洲精品色激情综合| 久久精品国产亚洲av涩爱| 五月天丁香电影| 免费播放大片免费观看视频在线观看| 国产成人午夜福利电影在线观看| 一本大道久久a久久精品| 五月伊人婷婷丁香| h视频一区二区三区| 好男人视频免费观看在线| 大香蕉久久成人网| 亚洲三级黄色毛片| 王馨瑶露胸无遮挡在线观看| 黄片无遮挡物在线观看| 国产xxxxx性猛交| 国产成人a∨麻豆精品| 2022亚洲国产成人精品| 国产成人精品一,二区| 亚洲精品av麻豆狂野| 视频在线观看一区二区三区| tube8黄色片| 久久 成人 亚洲| 日产精品乱码卡一卡2卡三| 新久久久久国产一级毛片| 天堂8中文在线网| 亚洲一码二码三码区别大吗| 老熟女久久久| 色视频在线一区二区三区| 交换朋友夫妻互换小说| 婷婷成人精品国产| 国产成人免费观看mmmm| 午夜视频国产福利| 天美传媒精品一区二区| 免费大片黄手机在线观看| 好男人视频免费观看在线| 亚洲精品aⅴ在线观看| 99热这里只有是精品在线观看| 日本与韩国留学比较| 晚上一个人看的免费电影| 女人精品久久久久毛片| 不卡视频在线观看欧美| 97精品久久久久久久久久精品| 少妇的丰满在线观看|