• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent progress on the J-TEXT three-wave polarimeter-interferometer

    2022-07-13 00:36:24YuhanWANG王鈺涵LiGAO高麗PengSHI石鵬XinXU徐鑫YinanZHOU周乙楠QinglongYANG楊慶龍ChengyuYANG楊誠宇QinlinTAO陶沁林ChengshuoSHEN沈呈碩YajunWANG汪亞軍LuWANG王璐ZhipengCHEN陳志鵬DonghuiXIA夏冬輝ZhongyongCHEN陳忠勇NengchaoWANG王能超ZhoujunYANG楊州軍YonghuaDIN
    Plasma Science and Technology 2022年6期
    關(guān)鍵詞:王璐永華

    Yuhan WANG (王鈺涵),Li GAO (高麗),?,Peng SHI (石鵬),Xin XU (徐鑫),Yinan ZHOU (周乙楠),Qinglong YANG (楊慶龍),Chengyu YANG (楊誠宇),Qinlin TAO (陶沁林),Chengshuo SHEN (沈呈碩),Yajun WANG (汪亞軍),Lu WANG (王璐),Zhipeng CHEN (陳志鵬),Donghui XIA (夏冬輝),Zhongyong CHEN (陳忠勇),Nengchao WANG (王能超),Zhoujun YANG (楊州軍),Yonghua DING (丁永華),Yuan PAN (潘垣) and J-TEXT Team,3

    1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics,State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    2 United Kingdom Atomic Energy Authority,Culham Centre for Fusion Energy,Culham Science Centre,Abingdon,Oxon OX14 3DB,United Kingdom

    Abstract The J-TEXT three-wave polarimeter-interferometer system (POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium reconstruction method.The phase resolution of a Faraday rotation angle has been improved from 0.1 to 0.06 degree in chords from -0.18 to 0.18 m(plasma minor radius),and the sawtooth oscillation behavior has been detected by Faraday rotation angle measurement.By combining the POLARIS measured data and the equilibrium and fitting code (EFIT),an upgraded equilibrium reconstruction method has been developed,which provides a more accurate temporal and spatial distribution of current density and electron density.By means of the optimized POLARIS and improved equilibrium reconstruction,variations of profiles with increasing density have been carried out,under both Ohmic and electron cyclotron resonance heating discharges.

    Keywords: current density profile,EFIT,polarimeters

    1.Introduction

    The measurement of current density and electron density profiles are of great important in tokamak physics research.Due to the inaccessibility of hot plasma,it is difficult to obtain information on a magnetic field at the core region,which can derive the toroidal current profile in tokamaks with large sizes.A polarimeter,based on the Faraday rotation effect,is one of the most reliable instruments for measuring core magnetic fields in tokamaks.By utilizing the Faraday rotation effect,the first three-wave polarimeter-interferometer was designed and applied to the Rijnhuizen Tokamak Project(RTP) by Dodel and Kunz [1],and then it was also successfully demonstrated on other devices,such as TEXTOR[2],JET [3],MST [4] and EAST [5].In 2012,a new threewave polarimeter-interferometer was developed on J-TEXT tokamak,providing the chord-integral density and Faraday rotation angle simultaneously.The Joint-TEXT tokamak(J-TEXT) is a medium tokamak with a major radius (R0) of 1.05 m and a minor radius(a)of 0.25-0.3 m.The POLARIS is equipped with three far-infrared lasers at 432 μm,and achieves high resolution in both time (1 μs) and phase (0.1 degree) [6,7].Seventeen equally-spaced measuring chords with 3 cm spatial resolution were applied at the beginning.The seventeen chords are located at-24:3:24 cm(0 cm is the vacuum center,-24 cm and 24 cm are the high-and low-fieldside edges,respectively).In 2020,five new chords are implemented at 10.5:3:22.5 cm,and POLARIS achieves the spatial resolution of 1.5 cm in the low field side (LFS) [8].

    The three pumped HCOOH lasers have been working for nearly 10 years,since 2011,and the total output power has been greatly reduced by 45% compared to the original,and the stability of lasers has also deteriorated.In addition,some new diagnostics and auxiliary systems have been established near the detector array and optical path of the POLARIS system,which has brought a complicated electromagnetic environment to the system.Therefore,in order to maintain the high signal-to-noise ratio of the POLARIS system for future experiments,some optimizations have been made recently.The rest of this article describes the methods and results of POLARIS optimization.Optimizations of the optical part of POLARIS system and typical results of the raw data after improvement are given in details in sections 2.1-2.3,and section 2.4 presents the optimization of the equilibrium reconstruction.The application of the optimized POLARIS on experimental research is provided in section 3,and the discussion and summary are given in section 4.

    2.Optimization of the POLARIS system

    2.1.Improving the power distribution of the three beams

    The three-wave polarimeter-interferometer,which consists of two circularly polarized probing beams and one linearly polarized reference beam,can simultaneously provide chordintegral density and Faraday rotation angle.The Faraday rotation angle can be determined by the two probe beams which are counter-rotating and the chord-integral density is calculated by the phase difference of probe and reference beams.The phase shift of electron densityφand Faraday rotation angleψcan be obtained by equations (1) and (2).

    where B(z) is the component of the magnetic field parallel to the beam wave-vector,neis the electron density,and λ is the wavelength of beams,in MKS units.ΔφRandΔφLare the phase shift of the right- and left-hand circularly polarized beams,respectively.Obviously,the phase shift of the electron density is much larger than the Faraday rotation angle due to the fact that λ is quite a small value.This indicates that the Faraday rotation angle measurement requires a much higher phase resolution than electron density measurement.Thus,it is better to increase the power of two probe beams than to enhance the reference beam.However,after ten years running,the output power of two lasers serving as probe beams decreased with a larger amplitude than the reference laser.Besides,the total power of three beams has to be attenuated before acquisition to avoid the saturation of the acquisition system.Previously,the attenuation was done at front of the mixer detector,which would decrease the power of all three beams.Recently,in order to optimize the Faraday rotation angle measurement,an improved strategy has been carried out,which is to only attenuate the reference laser near the output port and to keep two probe beams working at maximum power.

    Figure 1 shows the power distribution of the three beams,before and after optimization.Obviously,the proportion of#1 and #2 beam power has been increased significantly.Figure 2 presents the frequency spectrum of raw data of mixer output,where the three intermediate frequencies can be seen.ω1(0.9 MHz) is the intermediate frequency between two counter-rotating probe beams,the amplitude of which is significantly enhanced by improving the power distribution of the three beams.In this way,the signal-to-noise ratio of Faraday rotation angle can be improved.In addition,ω2(1.4 MHz)andω3(2.3 MHz)are the intermediate frequencies for measuring the chord-integral electron density,and a decrease of the two intermediate frequencies would have little influence on the density measurement.

    Figure 1.The former (a) and new (b) power distribution of three beams,where #1 and #2 are probe beams,and #3 is the reference beam.

    Figure 2.Frequency spectrum of raw data of mixer output before(a)and after (b) improving the power distribution of three beams,ω1 is the intermediate frequency between two probe beams,ω2 and ω3 are intermediate frequencies between probe and reference beams.

    Figure 3.Photo of the optical path from the laser room to the J-TEXT machine.

    2.2.Built-up of collinear optical scheme

    Collinearity of the two counter-rotating circularly polarized beams is one of the most important prerequisites for achieving accurate Faraday rotation angle measurement in a three-wave polarimeter-interferometer.The collinear error is mainly composed of two parts,and physical principle is described by equation (3):

    Whereψis Faraday rotation angle without collinear error,lis beam path in plasma,Δxis the spatial offset of two probe beams,?neis density gradient between two probe beams in plasma,ΔLis the total path difference,and λ is the wavelength of beams,in MKS units.

    One part of the collinear error results from finite density gradients of two probe beam traces in plasma,and a millimeter misalignment would introduce a systematic error equivalent to the magnitude of the measurement [9].The other part of collinear error is caused by total path length difference.Figure 3 presents a part of the optical path from the laser room to the J-TEXT machine.Thus,even a small vibration of optical components would induce significant systematic error if the collinearity is not good enough.

    Figure 4.Auxiliary optical scheme for collinear alignment of two counter-rotating circularly polarized beams,(a) far-field and (b)near-field.

    Figure 5.Auxiliary optical layout in laser room.

    Figure 6.Comparison between the former (blue) and the new (red)phase resolution of (a) chord-integral density and (b) Faraday rotation angle.neL is chord -integral density and FA represents Faraday rotation angle.

    Figure 7.(a) The sawtooth oscillation behavior in Faraday rotation angle signals and detail of sawtooth for(b)r=9 cm(gray dash-line)and (c) r=-9 cm (black solid-line),r is the minor radius.

    Figure 8.(a) and (b) Inversion transform of chord-integral density,Faraday rotation angle (black solid-line with x symbols) and measured data (blue dash-line with o symbols),(c) electron density profile and (d) current density profile by EFIT (blue solid-line) and ERP (red dash-line).

    In order to minimize the collinear error of two probe beams,an auxiliary collinear optical scheme was built up near the laser source and it is shown in figure 4.

    This auxiliary optical layout can be switched between far-field and near-field easily by moving mirror No.3 and No.4.Mirrors are installed on an electric sliding rail and can move back and forth in some distances,as depicted in figure 5.A beam analyzer,which is sensitive to the invisible FIR beams,can display the intensity distribution of laser beam by cooperating with the software,Beam Gage Standard.With this auxiliary optical component,a good collinearity can be achieved by adjusting mirror No.1 in the near field and No.2 in the far-field to make sure the two probe beams coincide each other in both near and farfields.

    It has also been found that visible light,especially the visible light near the laser sources,would affect the phase resolution of Faraday rotation angle by experiments.The error of turning on the light in the laser room is 0.01° larger than that of turning off the light.Therefore,a further improvement on the accuracy of the Faraday rotation angle has been achieved by using absorbing material to reduce stray light near the J-TEXT device and laser sources.

    2.3.Improved system performance

    The phase resolution of the measurement can be reflected by the noise level.With the above optimizations on the POLARIS system,the noise level has been reduced,as shown in figure 6.The phase resolution of Faraday rotation angle and chord-integral electron density have been improved.The phase noise of the Faraday rotation angle is ~0.06 degree in the center chords after optimization.

    As figure 6(b)shows,the phase resolution of the Faraday rotation angle on center chords has been significantly improved,while the three chords close to the boundary have had few improvements.This is because the beams intensity in the center region is stronger than that at the boundary after being reflected by the parabolic mirror and dividing into multiple chords.In addition,the phase resolution of chordintegral electron density has had few improvements for the power redistribution of three beams.The proportion of the intermediate frequency for measuring chord-integral electron density has been decreased,in order to optimize the measurement of Faraday rotation angle.In actual measurement,the phase of the electron density is much larger than the Faraday rotation angle,so it is completely feasible to sacrifice a part of the phase resolution of the electron density to improve the phase resolution of the Faraday rotation angle.

    A high resolution POLARIS system provides great benefits for the study of equilibrium and perturbation of electron density and magnetic field,especially those associated with sawtooth and other MHD activities.Previously,the sawtooth oscillation behaviors were observed only by electron density measurements.Interestingly,it can also be observed on Faraday rotation angle after the improvement of phase resolution,as presented by data of shot 1073496 in figure 7.

    2.4.Equilibrium reconstruction by cooperating with EFIT

    The POLARIS mainly aims to resolve the radial profiles of safety factors,current density and electron density.Thus,a sophisticated equilibrium reconstruction method is highly important in applications of POLARIS in experimental researches.Previously,a method named as Equilibrium Reconstruction Procedure (ERP) was developed and applied on J-TEXT[10].The ERP firstly calculates the density profile by using chord-integral densities,and then determines the equilibrium flux profile by utilizing the density profile and chord-integral Faraday rotation angle.In this way,the inversion errors of magnetic flux are certainly larger than that of the electron density.In order to improve the accuracy of safety factor q and current profiles,we have recently incorporated the POLARIS measurement with the EFIT [11].The new EFIT method uses the position of limiter to determine the last closed flux surface (LCFS),and the core flux surface is determined only by POLARIS data.Besides,EFIT iterates the electron density and magnetic flux simultaneously,until the results converge.Therefore,magnetic flux shares the same inversion errors to electron density.Figures 8(a)and(b)show the inversion transformation of chord-integral density,Faraday rotation angle and measured data; figures 8(c) and (d)present the comparison between EFIT and ERP inversion results.The inversion results and measured data are wellfitted,which greatly benefit the accurate inversion of the internal flux surface.

    Figure 9.Typical high-density disruption discharge.(a) Time trace of chord-integral density ne0,(b) electron density profile and (c)current density profile at different ne0.ρ is the normalized radius.

    Figure 10.High-density disruption discharge with ECRH from 250 to 500 ms.Time trace of (a) chord-integral density,(b) electron density profile and(c)current density profile for shots 1070008.The dash-dotted line denoted discharge at 200 ms without ECRH,ne0=3×1019 m-3,and the solid line is at 300 ms with ECRH,ne0=3.5×1019 m-3.

    3.Applications of optimized POLARIS in experiments

    3.1.Evolution of profiles in high-density disruption

    With the benefits of improved POLARIS,profiles of current density and electron density in high-density disruption discharge have been studied on the J-TEXT.Some interesting features of current density profile variations in high-density disruption are identified by EFIT with measured data supplied by POLARIS.In the high-density plasma shown in figure 9,the current is Ip=180 kA,the toroidal magnetic field is Bt=2 T,and density ramps up to 5.2×1019m-3until density limit disruption.With the density ramping up,the peak of the electron density profile gradually increases and the current density flattens,as shown in figures 9(b) and (c).

    3.2.Effects of ECRH on profiles

    The evolution of electron density profile in high-density under Electron Cyclotron Resonance Heating (ECRH) has been carried out in J-TEXT.In the ECRH applied pulse,plasma current is Ip=120 kA,toroidal magnetic field is Bt=1.9 T,the ECRH is switched on from 0.25 s to 0.2 s,with heating power of 320 kW,as presented in figure 10(a).The profiles of electron density and current density affected by ECRH are presented in figures 10(b) and (c).Within 200-300 ms,the plasma density ramps up from 3×1019to 3.5×1019m-3.Unlike the peaking tendency with density increasing in Ohmic pulse shown in figure 9,the electron density profile in ECRH pulse tends to flatten significantly,which indicates that a pump-out of particles is induced by ECRH.Meanwhile,the variation of the current density profile with increasing density is similar to the Ohmic case depicted in figure 9(c),inferring that the ECRH has few effects on current density profiles.

    4.Discussion and summary

    The improved performance of the POLARIS system in J-TEXT has been achieved by optimizing the power proportion of three beams,the collinear of two probe beams and reducing stray lights near the laser source.The phase resolutions of Faraday rotation angle have been improved from 0.1 to 0.06 degree on most chords,and the sawtooth oscillation behavior has been observed on Faraday rotation angle.In addition,the equilibrium reconstruction method has been upgraded from ERP to EFIT,which is combined with the measurement of POLARIS that the calculated Faraday rotation angle and chord-integral density are continuously obtained from the inversion profiles for fitting the measurement parameters during the iterations.By means of the optimized POLARIS and improved equilibrium reconstruction method,the evolution of the profiles in physical experiments have been studied.It has been found that the peaking factor of the electron density profile gradually increases with the plasma density ramping up,while the current density profile evolves to be more flat.The pump out of electron density after applying the ECRH is also observed on the electron density profile.

    Acknowledgments

    This work is supported by the National MCF Energy R&D Program of China (No.2018YFE0310300) and National Natural Science Foundation of China (Nos.11905080 and 51821005).

    ORCID iDs

    猜你喜歡
    王璐永華
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    交互式教學在英語專業(yè)閱讀課改中的應(yīng)用研究
    How To Get Along With Your Friends Better
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    Club Recruitment
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    哪把鑰匙開哪把鎖
    直徑不超過2的無爪圖的2—因子
    脾踩踏板有利于學習
    日本欧美国产在线视频| 国国产精品蜜臀av免费| 久久韩国三级中文字幕| 久久久久久久国产电影| 麻豆成人av视频| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说 | 在线播放无遮挡| av在线蜜桃| 在线免费观看的www视频| 91在线精品国自产拍蜜月| 在线免费观看不下载黄p国产| 大又大粗又爽又黄少妇毛片口| 你懂的网址亚洲精品在线观看 | 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 日本色播在线视频| 日本免费a在线| 日韩 亚洲 欧美在线| 国产色婷婷99| 日韩一本色道免费dvd| 亚洲av福利一区| 国产精华一区二区三区| 国产淫语在线视频| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 99热全是精品| 国产在线男女| 男人舔奶头视频| 久久久久久国产a免费观看| av女优亚洲男人天堂| 日韩视频在线欧美| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 最近手机中文字幕大全| 国产精品电影一区二区三区| 国产极品天堂在线| 综合色丁香网| 免费黄网站久久成人精品| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 噜噜噜噜噜久久久久久91| 能在线免费看毛片的网站| 久久久久久久国产电影| 亚洲中文字幕日韩| 国产成人福利小说| 久久精品久久久久久久性| 欧美日韩国产亚洲二区| eeuss影院久久| 久久6这里有精品| 久久久久久久国产电影| 国产精品久久久久久久电影| 99久久精品热视频| 一级毛片久久久久久久久女| 午夜免费激情av| 国产精品伦人一区二区| 国产日韩欧美在线精品| 亚洲欧美日韩东京热| 欧美一区二区精品小视频在线| 亚洲精品自拍成人| 国产精品av视频在线免费观看| 在线免费观看的www视频| 国产精品三级大全| 日本免费a在线| 国产亚洲精品久久久com| 桃色一区二区三区在线观看| 晚上一个人看的免费电影| 又爽又黄a免费视频| 亚洲成av人片在线播放无| 亚洲经典国产精华液单| 中文天堂在线官网| 国内揄拍国产精品人妻在线| 噜噜噜噜噜久久久久久91| 一级毛片我不卡| 干丝袜人妻中文字幕| 国产午夜精品论理片| 国产午夜精品久久久久久一区二区三区| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 一个人看视频在线观看www免费| 日本午夜av视频| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 亚洲国产精品国产精品| 国产极品精品免费视频能看的| 国产欧美另类精品又又久久亚洲欧美| 一级黄片播放器| kizo精华| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看| 啦啦啦韩国在线观看视频| av在线蜜桃| 欧美一区二区国产精品久久精品| 久久久久久久国产电影| av在线蜜桃| 欧美一区二区国产精品久久精品| 中文字幕制服av| 网址你懂的国产日韩在线| 婷婷六月久久综合丁香| 水蜜桃什么品种好| 黄色一级大片看看| 在线免费观看的www视频| 国产老妇伦熟女老妇高清| 麻豆一二三区av精品| 国产极品天堂在线| 一区二区三区免费毛片| 黄色欧美视频在线观看| 精品人妻视频免费看| 一区二区三区四区激情视频| 国产成人a区在线观看| 久久热精品热| 一二三四中文在线观看免费高清| 精品国内亚洲2022精品成人| 自拍偷自拍亚洲精品老妇| 69人妻影院| 国产91av在线免费观看| 人妻夜夜爽99麻豆av| 淫秽高清视频在线观看| 99久国产av精品| 亚洲国产精品合色在线| 国产av不卡久久| 51国产日韩欧美| 一个人看视频在线观看www免费| 热99在线观看视频| 能在线免费看毛片的网站| 中文字幕久久专区| 国产极品天堂在线| 国产在视频线精品| 亚洲性久久影院| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 免费人成在线观看视频色| 亚洲精品aⅴ在线观看| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 久久久久久国产a免费观看| 干丝袜人妻中文字幕| 人人妻人人澡人人爽人人夜夜 | 日韩强制内射视频| 欧美人与善性xxx| 久久久久久久久中文| 狠狠狠狠99中文字幕| 免费看日本二区| 国产av一区在线观看免费| .国产精品久久| 婷婷六月久久综合丁香| 欧美成人a在线观看| 亚洲精品乱码久久久v下载方式| 久久精品熟女亚洲av麻豆精品 | 亚洲不卡免费看| 九草在线视频观看| 日本色播在线视频| 我要看日韩黄色一级片| 亚洲va在线va天堂va国产| 18禁动态无遮挡网站| 99热精品在线国产| 亚洲欧美日韩东京热| av在线观看视频网站免费| 高清日韩中文字幕在线| 亚洲内射少妇av| 春色校园在线视频观看| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 91午夜精品亚洲一区二区三区| 免费电影在线观看免费观看| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 91精品一卡2卡3卡4卡| 日韩av在线免费看完整版不卡| 国产男人的电影天堂91| 三级毛片av免费| 99久久九九国产精品国产免费| 精品午夜福利在线看| 99热这里只有是精品在线观看| 人人妻人人澡人人爽人人夜夜 | 国产黄片视频在线免费观看| 美女被艹到高潮喷水动态| 亚洲精品成人久久久久久| 国产亚洲精品久久久com| 久久久久免费精品人妻一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人特级av手机在线观看| 日韩一区二区三区影片| 国产精品一区二区在线观看99 | 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 亚洲av日韩在线播放| 一个人免费在线观看电影| av在线老鸭窝| 91av网一区二区| 精品欧美国产一区二区三| 国产伦理片在线播放av一区| 国产亚洲91精品色在线| 亚洲精品一区蜜桃| 只有这里有精品99| 亚洲国产精品成人久久小说| 欧美日韩综合久久久久久| 欧美性猛交黑人性爽| 欧美成人午夜免费资源| 亚洲成人精品中文字幕电影| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 97热精品久久久久久| 亚洲精华国产精华液的使用体验| 欧美精品国产亚洲| 欧美高清性xxxxhd video| 22中文网久久字幕| 国产亚洲av嫩草精品影院| 精品少妇黑人巨大在线播放 | 国产精品99久久久久久久久| 床上黄色一级片| 99热这里只有精品一区| av在线观看视频网站免费| 麻豆av噜噜一区二区三区| 亚洲成色77777| 日韩强制内射视频| 精品国内亚洲2022精品成人| 最近最新中文字幕免费大全7| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 亚洲五月天丁香| 97超碰精品成人国产| 国产私拍福利视频在线观看| 欧美另类亚洲清纯唯美| 国产精品无大码| 1024手机看黄色片| 国产成人freesex在线| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 黄片wwwwww| 国产在视频线精品| 一个人看的www免费观看视频| 男女国产视频网站| 啦啦啦韩国在线观看视频| 午夜a级毛片| 秋霞在线观看毛片| 永久网站在线| 久久午夜福利片| 91狼人影院| 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 亚洲乱码一区二区免费版| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 久久99热这里只频精品6学生 | 我的女老师完整版在线观看| 国产91av在线免费观看| 日本五十路高清| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 丝袜喷水一区| 久久久久久伊人网av| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 国模一区二区三区四区视频| 看十八女毛片水多多多| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| 国产av不卡久久| 国产精品伦人一区二区| 国产精品国产三级专区第一集| 亚洲精品国产av成人精品| 亚洲国产精品合色在线| 嫩草影院新地址| 久久久久久久久中文| 国产成年人精品一区二区| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说 | 一边亲一边摸免费视频| 国产精品永久免费网站| 国产一区二区三区av在线| 成人性生交大片免费视频hd| 天堂中文最新版在线下载 | 成人国产麻豆网| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 亚洲中文字幕一区二区三区有码在线看| 国产午夜精品一二区理论片| 日本-黄色视频高清免费观看| 黑人高潮一二区| 久久午夜福利片| 免费不卡的大黄色大毛片视频在线观看 | 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 18+在线观看网站| 男人舔女人下体高潮全视频| 18禁在线播放成人免费| 久久久久久久午夜电影| 成人av在线播放网站| 欧美日本视频| 中文欧美无线码| 国产黄片视频在线免费观看| 九九爱精品视频在线观看| 搞女人的毛片| 中文欧美无线码| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 丰满少妇做爰视频| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 久久久久久国产a免费观看| 久久精品夜色国产| 欧美激情国产日韩精品一区| 午夜日本视频在线| 一夜夜www| 国产精品永久免费网站| 91午夜精品亚洲一区二区三区| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 日韩大片免费观看网站 | 三级男女做爰猛烈吃奶摸视频| 嫩草影院新地址| 91狼人影院| 淫秽高清视频在线观看| 亚洲欧美成人精品一区二区| 欧美性猛交╳xxx乱大交人| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 成人美女网站在线观看视频| 日本与韩国留学比较| 亚洲高清免费不卡视频| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 麻豆乱淫一区二区| 黄色一级大片看看| 亚洲精品色激情综合| 超碰97精品在线观看| 小说图片视频综合网站| 九色成人免费人妻av| 成人二区视频| av.在线天堂| 搡老妇女老女人老熟妇| 大香蕉久久网| 如何舔出高潮| 国产女主播在线喷水免费视频网站 | 午夜日本视频在线| 免费大片18禁| 黄色配什么色好看| 久久精品久久久久久噜噜老黄 | 熟女电影av网| 久久精品综合一区二区三区| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 美女xxoo啪啪120秒动态图| 国产精品久久电影中文字幕| 精品人妻偷拍中文字幕| 国产免费视频播放在线视频 | 麻豆乱淫一区二区| 白带黄色成豆腐渣| av免费在线看不卡| 亚洲欧美日韩高清专用| a级一级毛片免费在线观看| 久久精品人妻少妇| av视频在线观看入口| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 岛国在线免费视频观看| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 卡戴珊不雅视频在线播放| 十八禁国产超污无遮挡网站| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 日韩成人伦理影院| 草草在线视频免费看| 韩国高清视频一区二区三区| av.在线天堂| 久久99热这里只频精品6学生 | 天堂√8在线中文| 国产亚洲av片在线观看秒播厂 | 久久久久久大精品| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 97超碰精品成人国产| 欧美性感艳星| 欧美人与善性xxx| 嫩草影院新地址| 岛国毛片在线播放| 午夜老司机福利剧场| 三级经典国产精品| 一区二区三区乱码不卡18| 精品不卡国产一区二区三区| 禁无遮挡网站| 纵有疾风起免费观看全集完整版 | 亚洲精品456在线播放app| av国产免费在线观看| 亚洲久久久久久中文字幕| 日韩制服骚丝袜av| 久久久精品大字幕| 亚洲精品国产成人久久av| 国产亚洲精品av在线| 我要搜黄色片| 三级经典国产精品| 亚洲最大成人手机在线| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 日韩精品青青久久久久久| 桃色一区二区三区在线观看| 看非洲黑人一级黄片| 久久精品国产亚洲av天美| 色吧在线观看| 天堂av国产一区二区熟女人妻| or卡值多少钱| 久久精品国产亚洲av涩爱| 亚洲精品国产成人久久av| 久久精品国产99精品国产亚洲性色| 色视频www国产| 九草在线视频观看| 亚洲国产欧美在线一区| 99久国产av精品| 日韩av在线免费看完整版不卡| 丝袜美腿在线中文| 久久精品熟女亚洲av麻豆精品 | 久久亚洲国产成人精品v| 日韩欧美三级三区| 国产中年淑女户外野战色| 亚洲国产精品合色在线| 亚洲av福利一区| 成人鲁丝片一二三区免费| 久久精品91蜜桃| or卡值多少钱| 午夜久久久久精精品| 日本色播在线视频| 久久久久网色| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 白带黄色成豆腐渣| 亚洲最大成人手机在线| 国产精品国产三级专区第一集| 蜜桃亚洲精品一区二区三区| 国产精品一及| 小蜜桃在线观看免费完整版高清| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 老司机影院成人| 午夜福利在线在线| 国产精品蜜桃在线观看| 亚洲av免费在线观看| 国产在线男女| 69av精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 久久久亚洲精品成人影院| 免费看av在线观看网站| 婷婷六月久久综合丁香| 欧美变态另类bdsm刘玥| 日本午夜av视频| 国产69精品久久久久777片| 国产伦在线观看视频一区| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 内射极品少妇av片p| 久久亚洲精品不卡| 三级国产精品片| 婷婷色麻豆天堂久久 | 免费看光身美女| 日本av手机在线免费观看| 看免费成人av毛片| 亚洲aⅴ乱码一区二区在线播放| 欧美+日韩+精品| 日韩三级伦理在线观看| 直男gayav资源| 欧美精品一区二区大全| 两个人视频免费观看高清| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| av专区在线播放| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久 | 日韩欧美三级三区| videos熟女内射| 97超视频在线观看视频| 三级毛片av免费| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 亚洲电影在线观看av| 国产亚洲精品久久久com| 夫妻性生交免费视频一级片| 久久久久久大精品| 99久久精品一区二区三区| 色哟哟·www| 国产免费又黄又爽又色| 亚洲伊人久久精品综合 | 午夜福利高清视频| 国产成人aa在线观看| 亚洲精品久久久久久婷婷小说 | 国产亚洲91精品色在线| 国产av一区在线观看免费| 我的女老师完整版在线观看| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 久久久a久久爽久久v久久| 99热网站在线观看| 中文在线观看免费www的网站| 成人国产麻豆网| 99久久成人亚洲精品观看| 黑人高潮一二区| 成人午夜精彩视频在线观看| 噜噜噜噜噜久久久久久91| 亚洲,欧美,日韩| 卡戴珊不雅视频在线播放| 小说图片视频综合网站| 国产精品熟女久久久久浪| 亚洲精品自拍成人| 啦啦啦啦在线视频资源| 免费播放大片免费观看视频在线观看 | 中文字幕久久专区| 中文字幕熟女人妻在线| 人妻制服诱惑在线中文字幕| 18禁裸乳无遮挡免费网站照片| 国产女主播在线喷水免费视频网站 | 一级毛片我不卡| 午夜福利在线观看免费完整高清在| 一二三四中文在线观看免费高清| 亚洲av二区三区四区| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 亚洲激情五月婷婷啪啪| 99久国产av精品| www.色视频.com| 嘟嘟电影网在线观看| 精品一区二区免费观看| 国产高清三级在线| 久久久久久久午夜电影| 欧美+日韩+精品| 国产成人a∨麻豆精品| 国产黄片美女视频| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 美女高潮的动态| 精品国产三级普通话版| 男女那种视频在线观看| 日韩精品青青久久久久久| 久久99热6这里只有精品| av免费观看日本| 国产精品蜜桃在线观看| 久久久久精品久久久久真实原创| 国产久久久一区二区三区| av国产免费在线观看| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 真实男女啪啪啪动态图| 亚洲av福利一区| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 特级一级黄色大片| 亚洲怡红院男人天堂| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 十八禁国产超污无遮挡网站| 精品午夜福利在线看| 成人一区二区视频在线观看| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| 一夜夜www| 少妇高潮的动态图| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 1024手机看黄色片| 九九在线视频观看精品| 成人性生交大片免费视频hd| 2021天堂中文幕一二区在线观| 嘟嘟电影网在线观看| 亚洲欧美成人综合另类久久久 | 在线观看一区二区三区| 亚洲图色成人| 亚洲怡红院男人天堂| 久久人妻av系列| 国产国拍精品亚洲av在线观看| a级一级毛片免费在线观看| 青春草亚洲视频在线观看| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜 | 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 国产亚洲午夜精品一区二区久久 | 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 日韩亚洲欧美综合| av在线观看视频网站免费| 欧美另类亚洲清纯唯美| 国产一区亚洲一区在线观看| 91精品一卡2卡3卡4卡| 性插视频无遮挡在线免费观看| 久久精品91蜜桃| 久久久久网色| 97人妻精品一区二区三区麻豆| 成人美女网站在线观看视频| 亚洲av一区综合| av福利片在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲怡红院男人天堂| 久久久欧美国产精品|