• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬有機(jī)配合物Mg(Salen)和Pb(Salen)對(duì)HMX 的催化分解作用和機(jī)理

    2022-07-13 00:16:38馬文喆楊燕京趙鳳起劉興利付東曉賈玉馨徐抗震
    含能材料 2022年7期
    關(guān)鍵詞:興利西北大學(xué)化工學(xué)院

    馬文喆,楊燕京,趙鳳起,劉興利,付東曉,賈玉馨,徐抗震

    (1. 陜西應(yīng)用物理化學(xué)研究所,陜西 西安 710061;2. 西北大學(xué)化工學(xué)院,陜西 西安 710069;3. 西安近代化學(xué)研究所,陜西 西安 710065)

    1 Introduction

    The thermal decomposition characteristics of energetic components in solid rocket propellants have a profound effect on the combustion properties of the propellants[1-4]. HMX,a widely used energetic component,can improve the energetic performance of solid propellants[2]. However,large quantities of HMX in solid propellants lead to slow burning rates and high burning rate pressure indices,which are harmful to the performance reliability of solid motors[5-8]. Many studies have proven that one of the effective approaches to modulate the combustion performance of solid propellants is to add combustion catalysts[9-11]. Besides,the thermal decomposition properties of energetic compounds are closely related to their combustion properties in propellants[12-16].According to the mechanism analysis,the reduction of the decomposition temperature of energetic materials is one of the most obvious characteristics of the combustion catalysis process of solid propellants[17-19]. Moreover, the development of compounds could adjust the thermal decomposition behavior of HMX and further optimize the combustion properties of solid propellants[2,9,20-23].

    Compounds based on Schiff bases have various structures and possess many interesting properties.Specifically,they have been proved to have high catalytic activities in hydrogenation of cyclohexene reactions,carbene reactions,and nitrogen cycle reactions[24-26]. It is noticed that nitrogen cycle reactions are involved in the thermal decomposition of HMX and the combustion processes of propellants containing HMX. Therefore,the metal Schiff base compounds are proposed to be potential catalysts for enhancing the decomposition and combustion of HMX[26]. N,N'-Bis(salicylidene)ethylenediamine,also called Salen ligand(Fig.1),is one of the widely used Schiff bases with an inner cavity between two salicylaldehyde moieties,which could accommodate suitable metal ions to form stable Salen metal complexes[28-29].

    Fig.1 The structure of Salen ligand

    Herein, N,N'-Bis(salicylidene)ethylenediamine-Mg and -Pd complexes were synthesized and presented as potential candidates for combustion catalysts of solid propellants,and their catalytic effects and mechanisms on the thermal decomposition of HMX were investigated.

    2 Experimental

    2.1 Materials

    All chemicals used were commercially available. Salicylaldehyde (99.5%), ethylenediamine(99.9%),magnesium chloride(99.5%),lead(Ⅱ)nitrate(99.5%),and NaOH were purchased from Aladdin Inc. HMX was obtained from Xi'an Modern Chemistry Research Institute,and its purity was over 99%. Mg(Salen)/Pb(Salen)and HMX were mixed in a mass ratio of 1∶10 for the DSC tests.

    2.2 Synthesis of Mg(Salen) and Pb(Salen)

    N,N'-Bis (salicylidene) ethylenediamino(Salen)was prepared according to Reference[30].Briefly,Salen and NaOH generate a sodium salt in ethanol solution. Then MgCl2·6H2O or Pb(NO3)2was added in the ethanol solution,and Mg(Salen)or Pb(Salen)complexes were obtained after stirring for 2 h. Mg(Salen):yield,71.5%;elem. anal.(%),calcd for C16H14N2MgO2:C,66.13;H,4.86;N,9.64;found:C,66.53;H,4.72;N,9.19. Pb(Salen):yield,63.2%;elem. anal.(%),calcd for C16H14N2PbO2: C, 40.72; H, 2.75; N, 5.89;found:C,40.52;H,4.79;N,8.85.

    2.3 Characterization

    Elemental analysis(C,H,N)was performed on a Flash EA 1112 full-automatic trace element analyzer. X-ray diffraction(XRD)patterns were determined using a Rigaku Mini Flex 600 X-ray diffractometer with Cu Kα radiation(2θfrom 5° to 60°).The vibrational characteristics of the chemical bonds were determined using a Bruker Tensor 27 Fourier transform infrared (FTIR) spectrometer. The morphologies of complexes were studied by scanning electron microscope(SEM). The differential scanning calorimetry (DSC) experiments were performed using a DSC200 F3 apparatus(NETZSCH,Germany)under nitrogen atmosphere at a flow rate of 80 mL·min-1,and the heating rates were 5.0,10.0,15.0 ℃·min-1and 20.0 ℃·min-1from ambient temperature to 350 ℃,respectively. The TG/DTG experiments were performed using a SDT-Q600 apparatus(TA,USA)under nitrogen atmosphere at a flow rate of 100 mL·min-1,and the heating rate was 10.0 ℃·min-1from ambient temperature to 500 ℃.

    3 Results and discussion

    3.1 Structure and morphology

    Salen is one of the most widely used organic Schiff base ligands. Fig.2a shows the XRD patterns of the as-prepared Salen and Salen complexes. It can be seen that the XRD pattern of Salen has low-density diffraction peaks with high intensity and narrow half-width,which is due to its great crystallinity and large size. Only a few diffraction peaks located at approximately 5.80°,11.56°,17.34°,23.28°and 29.22° are present on the XRD pattern of Salen.However,there is no diffraction peaks of Salen in the XRD patterns of Mg(Salen)and Pb(Salen),indicating the absence of free Salen in complexes,which confirms that these compounds are successfully synthesized. In addition,the high signal-to-noise ratio of the XRD patterns suggests the good crystallinity of both complexes.

    Fig.2 XRD patterns and FTIR spectra of the Salen ligand,Mg(Salen)and Pb(Salen)

    The structural characteristics of Salen, Mg(Salen)and Pb(Salen)were further comfirmed by using FTIR spectroscopy. As shown in Fig.2b,two stretching vibrational absorption bands of the bridging carbon-nitrogen double bond(1150.5 cm-1)and the carbon-nitrogen single bond(1637.6 cm-1)are detected on the spectra of Salen,Mg(Salen)and Pb(Salen),indicating that the bridging ethyl group does not participate in the coordination. Additionally,the two absorption peaks at 1576.8 cm-1and 1611.9 cm-1merge into one(1595.7 cm-1)in Mg(Salen)and Pb(Salen),which can be attributed to the coordination of —OH with either the Mg ion or Pb ion. During the formation process of complexes,the bands at 1450.5, 1244.3, 989.2, 649.6,612.3 cm-1and 551.3 cm-1indicate the presence of Mg—N coordination bonds in Mg(Salen). And the bands at 1438.7,1216.3,975.1,633.2,565.4 cm-1and 511.4 cm-1are attributed to the Pb-N bond in Pb(Salen). Besides,the absorption peaks appearing at 902.4,752.7,584.1 cm-1and 443.6 cm-1can be assigned to either the Mg—O or Pb—O coordination bonds,suggesting that the transition metal in the complexes is coordinated to the phenolic hydroxyl group.

    As can be seen in Fig.3,the Salen sample is composed of irregularly sheet particles with an average diameter of 0.3-1 μm,which are clearly agglomerated. However,many sheets with lengths of dozens of micrometers and widths of several micrometers are observed in the image of Mg(Salen),which reveals that it has a distinct 2D layered structure. The sheet surface of Mg(Salen)appears to be relatively smooth and the layered crystal structure is closely related to its morphology. However,the microscopic morphology of Pb(Salen)differs from that of Mg(Salen),showing numerous fibrous filaments. The filaments are between 100 nm and 500 nm in diameter,which provides the possibility of a high contact activity of the catalyst due to its high surface area.

    Fig.3 SEM images of the Salen ligand,Mg(Salen)and Pb(Salen)

    3.2 Thermal decomposition behavior

    DSC curves of HMX/Mg(Salen)and HMX/Pb(Salen)are shown in Fig.4,and the HMX is measured for comparison. It can be seen that two peaks are detected for HMX from 100℃ to 350 ℃ at a heating rate of 10.0 ℃·min-1,where an endothermic peak can be observed at 199 ℃due to the transition of HMX from the low-temperature orthorhombic crystalline form to the high-temperature cubic form. HMX melts at 282.3 ℃with the thermal decomposition. However, we can see a distinct change of the decomposition characteristics with the addition of Mg(Salen)or Pb(Salen). The exothermic decomposition peak temperature,Tp,of HMX/Mg(Salen)is 279.3 ℃,which is 3.0 ℃lower than that of HMX. Surprisingly,theTpof HMX/Pb(Salen)is reduced to 248.3 ℃,which presents a reduction of 34.0 ℃compared to that of HMX. The results suggest that the decomposition of HMX is promoted by the addition of Mg(Salen)and Pb(Salen).

    Fig.4 DSC curves of HMX,HMX/Mg(Salen)and HMX/Pb(Salen)

    The TG/DTG curves of HMX, HMX/Mg(Salen),and HMX/Pb(Salen)were recorded at a heating rate of 10 ℃·min-1and are shown in Fig.5.We can observe only one stage of mass loss for the three samples. The total mass loss of HMX is 97.4%,which is due to the fact that only the C residue remains in the decomposition products. However,the mass loss for HMX/Mg(Salen)and HMX/Pb(Salen)change from 97.4% to 69.1% and 76.3%,respectively,which may be due to the addition of the complexes that makes the decomposition products of HMX include some C residues and corresponding metal oxides. The corresponding peak temperatures of DTG for HMX/Mg(Salen)and HMX/Pb(Salen)are advanced by 3.1 ℃and 34.6 ℃,respectively,which agrees well with the DSC results.

    Fig.5 TG/DTG curves of HMX,HMX/Mg(Salen)and HMX/Pb(Salen)

    The FTIR characteristic patterns of the gaseous pyrolysis products of HMX,HMX/Mg(Salen)and HMX/Pb(Salen)at the peak temperature are shown in Fig.6. Although the positions of the absorption peaks of HMX/Mg(Salen)and HMX/Pb(Salen)are consistent with that of HMX,the absorption peak intensity of HMX/Mg(Salen)is lower. The phenomenon may be related to the sample amounts used in the test. Additionally,the strongest absorption double peaks at 2208 cm-1and 2241 cm-1can be attributed to N2O (υas),the peaks at 1263 cm-1and 1762 cm-1are attributed to NO,and the peak around 2360 cm-1belongs to CO2. The sharp peak at 715 cm-1may be formed by HCN,and the peaks at 1746 cm-1and 2841 cm-1can be assigned to HCHO. Meanwhile,the broad band near 2841 cm-1is assigned to the rupture of the eight-membered heterocycle,indicating the cleavage of the C—N bond.The band around 3505 cm-1can be attributed to the presence of H2O,and the peaks at 1635 cm-1is attributed to the generation of NO2. Therefore,the pyrolysis gaseous products of HMX/Mg(Salen) and HMX/Pb(Salen)at the peak temperature are consistent with those of HMX,proving that the addition of the complexes does not change the nature of the decomposition products during the decomposition process. Based on this,the addition of Pb(Salen)or Mg(Salen) has an effect on the activation energy of HMX decomposition,but does not involve changes of the decomposition mechanism.

    Fig.6 FTIR spectra of the gaseous products

    MS spectra show that all gaseous products are consistent during the decomposition of HMX and HMX/Salen(Fig.7). The intense peaks atm/z=18 andm/z=44 are attributed to H2O and CO2in HMX/Mg(Salen) and HMX/Pb(Salen). The existence of H2O and CO2from the ambient environment is an external disruptive factor that must be taken into account throughout the test. Therefore,all gaseous products of HMX,HMX/Mg(Salen),and HMX/Pb(Salen) can be considered as consistent.The results indicate that the pyrolysis of HMX follows similar pathways under the three conditions.

    Fig.7 MS spectra of HMX,HMX/Mg(Salen)and HMX/Pb(Salen)

    3.3 Apparent activation energy

    To further investigate the catalytic properties of Mg(Salen)and Pb(Salen)for the thermal decomposition of HMX,the DSC curves of the samples were recorded at different heating rates,and the results are shown in Fig.8. The peak temperature(Tp),the apparent activation energy(E),and linear correlation coefficient(r)were calculated using Kissinger method and Ozawa method[7,18]and are listed in Table 1.

    Table 1 Peak temperatures and kinetic parameters of the thermal decomposition of HMX,HMX/Mg(Salen)and HMX/Pb(Salen)

    Fig.8 DSC curves of HMX/Mg(Salen)and HMX/Pb(Salen)at different heating rates

    From Table 1,we can see that the addition of Mg(Salen)and Pb(Salen)decreases the apparent activation energy of the decomposition of HMX from 349.5 kJ·mol-1to 341.8 kJ·mol-1and 315.1 kJ·mol-1,respectively. Meanwhile,Pb(Salen)/HMX has much lower apparent activation energy than Mg(Salen)/HMX,further indicating that Pb(Salen)is more effective than Mg(Salen)in catalyzing the thermal decomposition of HMX.

    The values ofEawere obtained from DSC data at the different heating rates by Ozawa method,and the relationship betweenEaand conversion(α)is shown in Fig.9. It can be seen that the activation energy slightly changes in the range of 0.35-0.95(α),and this range was selected to calculate the non-isothermal reaction kinetic parameters and the most probable kinetic model functions.

    Fig.9 Curves of Ea versus α of HMX/Mg(Salen)and HMX/Pb(Salen)obtained by Ozawa method

    Five integral methods(Agrawal,Satava-Sestak,MacCallum-Tanner,Universal integral,and General integral)were employed to calculate the kinetic equations. Forty-one kinetic model functions and the basic data were put into the integral and differential equations for the calculation[18,31-33]. The kinetic parameters and the probable kinetic model function were selected by the logical choice method and satisfying the ordinary range of the thermal decomposition kinetic parameters for energetic materials. These data together with their appropriate values of linear correlation coefficient(r)are presented in Table 2.The values ofEaand logAthat obtained from each single DSC curve are in good agreement with the values calculated by Kissinger method and Ozawa method. Therefore,it seems reasonable to conclude that the reaction mechanism for the intense exothermic decomposition process of HMX/Mg(Salen)and HMX/Pb(Salen) follows the Mampel power law equationG(α)=α1/4. Thef(α)variable in Eq.(1)can be substituted by 4α3/4,whileEacan be replaced by 332.46 kJ·mol-1or 316.34 kJ·mol-1,andAby 1017.49s-1or 1018.7s-1.

    Table 2 Calculated values for the kinetic parameters of the decomposition reaction

    wheref(α) and dα/dTare the differential model function and the rate of conversion,respectively.

    The kinetic equations of the exothermic decomposition reaction for HMX/Mg(Salen)and HMX/Pb(Salen)may be described as follows:

    The thermal behavior of HMX was also analyzed using the same method. The results show that the reaction mechanism of the intense exothermic decomposition process can be described asf(α)=4(1-α)3/4,G(α)=[1-(1-α)]1/4,which differs from the decomposition mechanism function of HMX/Mg(Salen)and HMX/Pb(Salen). Thus,the addition of Mg(Salen)or Pb(Salen)obviously reduces the apparent activation energy and changes the kinetic model function of decomposition for HMX. Mg(Salen)and Pb(Salen) can accelerate the decomposition of HMX.

    4 Conclusion

    Mg(Salen)and Pb(Salen)were prepared and their structures were confirmed. Thermal analysis results show that these complexes can facilitate the decomposition of HMX. Mg(Salen)and Pb(Salen)can reduce the thermal decomposition peak temperature and apparent activation energy of HMX by 3 ℃and 34 ℃,and 7.7 kJ·mol-1and 34.4 kJ·mol-1,respectively. The addition of Mg(Salen)or Pb(Salen)also changes the kinetic model function of the decomposition of HMX.The addition of Mg(Salen)and Pb(Salen)can significantly improve the thermal decomposition characteristics of HMX,which is beneficial for improving the combustion performance of HMX-containing propellants. They may be considered as combustion catalysts for solid propellants.

    猜你喜歡
    興利西北大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    堅(jiān)持“人民至上、生命至上”我省各地各部門全力防汛迎汛
    河北水利(2022年7期)2023-01-02 10:50:44
    西北大學(xué)木香文學(xué)社
    某車型排氣消聲器冰堵問題的分析及優(yōu)化
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《西北大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
    2017食安縱覽:穩(wěn)中向好的同時(shí)仍需把握平衡創(chuàng)新
    食品界(2018年2期)2018-03-28 08:23:58
    《我們》、《疑惑》
    西北大學(xué)博物館
    亚洲一码二码三码区别大吗| cao死你这个sao货| e午夜精品久久久久久久| 国产精品亚洲av一区麻豆| 亚洲在线自拍视频| 日本黄色视频三级网站网址| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 久久久国产成人免费| 天堂影院成人在线观看| 侵犯人妻中文字幕一二三四区| 97碰自拍视频| 天堂√8在线中文| 久久天躁狠狠躁夜夜2o2o| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 人人妻人人澡欧美一区二区 | 亚洲色图 男人天堂 中文字幕| 麻豆av在线久日| 久久国产乱子伦精品免费另类| 神马国产精品三级电影在线观看 | 这个男人来自地球电影免费观看| 真人一进一出gif抽搐免费| 别揉我奶头~嗯~啊~动态视频| 性色av乱码一区二区三区2| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av高清一级| 日本 欧美在线| 香蕉国产在线看| 亚洲情色 制服丝袜| 中文亚洲av片在线观看爽| 黄色女人牲交| 欧美乱妇无乱码| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 久久婷婷人人爽人人干人人爱 | 一边摸一边做爽爽视频免费| 亚洲av美国av| 国产亚洲av嫩草精品影院| 午夜成年电影在线免费观看| 激情视频va一区二区三区| 国产91精品成人一区二区三区| 一级,二级,三级黄色视频| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 少妇被粗大的猛进出69影院| 禁无遮挡网站| 日日爽夜夜爽网站| av天堂在线播放| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 精品国内亚洲2022精品成人| 午夜精品国产一区二区电影| 黄色视频不卡| 热99re8久久精品国产| 久久久久精品国产欧美久久久| 一个人免费在线观看的高清视频| 久久欧美精品欧美久久欧美| 国产精品久久久久久亚洲av鲁大| 最好的美女福利视频网| av中文乱码字幕在线| 免费在线观看影片大全网站| 动漫黄色视频在线观看| 亚洲色图av天堂| 午夜激情av网站| 精品国产亚洲在线| 女同久久另类99精品国产91| 女人被躁到高潮嗷嗷叫费观| 99国产极品粉嫩在线观看| 免费少妇av软件| 国产精品二区激情视频| 欧美激情高清一区二区三区| 日本三级黄在线观看| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频| av天堂在线播放| 日韩视频一区二区在线观看| 亚洲五月天丁香| 成年人黄色毛片网站| 国产亚洲av高清不卡| 欧美成人午夜精品| 精品国产亚洲在线| 伊人久久大香线蕉亚洲五| 久久国产乱子伦精品免费另类| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 淫秽高清视频在线观看| 久久精品成人免费网站| 在线av久久热| 一级毛片精品| 久久国产精品人妻蜜桃| 国产区一区二久久| 日日夜夜操网爽| 老司机靠b影院| 日韩欧美一区视频在线观看| 国产精品,欧美在线| 性色av乱码一区二区三区2| 精品一区二区三区四区五区乱码| 久久人人爽av亚洲精品天堂| 熟妇人妻久久中文字幕3abv| 神马国产精品三级电影在线观看 | 亚洲成a人片在线一区二区| 精品国内亚洲2022精品成人| 黑人巨大精品欧美一区二区mp4| 女人被躁到高潮嗷嗷叫费观| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜亚洲福利在线播放| 国产97色在线日韩免费| www.熟女人妻精品国产| 天天一区二区日本电影三级 | 可以在线观看的亚洲视频| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 欧美日本视频| 妹子高潮喷水视频| 日韩欧美一区二区三区在线观看| 香蕉丝袜av| tocl精华| 制服人妻中文乱码| 啦啦啦观看免费观看视频高清 | 香蕉丝袜av| 亚洲一卡2卡3卡4卡5卡精品中文| 在线播放国产精品三级| 久久精品国产综合久久久| 久久久久久久久中文| 国产精品一区二区三区四区久久 | 亚洲成人免费电影在线观看| 国产私拍福利视频在线观看| 国产精品秋霞免费鲁丝片| av电影中文网址| 啦啦啦免费观看视频1| 国产精品久久视频播放| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区精品91| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区| 伊人久久大香线蕉亚洲五| 性色av乱码一区二区三区2| 欧美国产日韩亚洲一区| 国产99白浆流出| 精品久久久久久久毛片微露脸| 成熟少妇高潮喷水视频| 18禁观看日本| 日本免费a在线| 亚洲成国产人片在线观看| 制服人妻中文乱码| 1024视频免费在线观看| 日本vs欧美在线观看视频| 人妻丰满熟妇av一区二区三区| 中文字幕高清在线视频| 亚洲中文日韩欧美视频| 日韩精品中文字幕看吧| 又紧又爽又黄一区二区| 国产99白浆流出| 日本 av在线| 国产伦人伦偷精品视频| 热99re8久久精品国产| 性少妇av在线| 成人三级做爰电影| 两个人看的免费小视频| 亚洲欧美精品综合一区二区三区| 欧美黄色片欧美黄色片| 欧美色欧美亚洲另类二区 | 欧美午夜高清在线| bbb黄色大片| 啦啦啦观看免费观看视频高清 | 亚洲黑人精品在线| 国产精华一区二区三区| 欧美成人一区二区免费高清观看 | www.www免费av| 午夜老司机福利片| 成人18禁高潮啪啪吃奶动态图| 亚洲五月色婷婷综合| 久久中文看片网| 热99re8久久精品国产| 91九色精品人成在线观看| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看| 亚洲人成77777在线视频| 香蕉丝袜av| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 怎么达到女性高潮| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 久久久久久久久中文| 国产精品久久久av美女十八| 亚洲av熟女| 国产单亲对白刺激| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 日本免费a在线| 国产欧美日韩一区二区精品| 日日夜夜操网爽| 色婷婷久久久亚洲欧美| 亚洲片人在线观看| 丝袜人妻中文字幕| 可以免费在线观看a视频的电影网站| 国产精品 欧美亚洲| 黄色毛片三级朝国网站| 一级a爱视频在线免费观看| 久久欧美精品欧美久久欧美| 亚洲av成人av| 久久久久九九精品影院| 精品欧美一区二区三区在线| 日日爽夜夜爽网站| 久久人人97超碰香蕉20202| 成人免费观看视频高清| 日本撒尿小便嘘嘘汇集6| 久久国产精品影院| 99国产综合亚洲精品| 黄色丝袜av网址大全| 一区二区三区激情视频| 在线免费观看的www视频| 两个人视频免费观看高清| 一进一出抽搐动态| 可以在线观看的亚洲视频| 日韩欧美国产在线观看| 少妇熟女aⅴ在线视频| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影| 99香蕉大伊视频| 黑人欧美特级aaaaaa片| 黄色成人免费大全| 国产精品免费视频内射| 无限看片的www在线观看| 亚洲 国产 在线| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩黄片免| 19禁男女啪啪无遮挡网站| 两个人视频免费观看高清| 国产精品精品国产色婷婷| 最新在线观看一区二区三区| 国产激情欧美一区二区| 免费在线观看影片大全网站| 视频区欧美日本亚洲| 最新在线观看一区二区三区| av免费在线观看网站| 国产蜜桃级精品一区二区三区| 国产私拍福利视频在线观看| 日韩欧美三级三区| 久久久久久久精品吃奶| 精品国内亚洲2022精品成人| 日韩 欧美 亚洲 中文字幕| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 中文字幕色久视频| 国产成人免费无遮挡视频| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| av片东京热男人的天堂| 真人做人爱边吃奶动态| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 午夜免费激情av| 老司机福利观看| 成人国产综合亚洲| 国产蜜桃级精品一区二区三区| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 露出奶头的视频| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 亚洲少妇的诱惑av| cao死你这个sao货| 老司机深夜福利视频在线观看| 宅男免费午夜| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 精品人妻在线不人妻| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 老熟妇仑乱视频hdxx| 日韩三级视频一区二区三区| 操出白浆在线播放| 99精品在免费线老司机午夜| 黄色 视频免费看| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 久久久久久国产a免费观看| www.精华液| 精品国产亚洲在线| 免费高清在线观看日韩| 欧美国产日韩亚洲一区| 成人av一区二区三区在线看| 国产亚洲精品第一综合不卡| 色在线成人网| 18禁美女被吸乳视频| 久久伊人香网站| 午夜精品国产一区二区电影| 久久久久久久精品吃奶| 久久热在线av| 日韩免费av在线播放| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 美女大奶头视频| 日本免费a在线| 精品第一国产精品| 涩涩av久久男人的天堂| 国产精品av久久久久免费| av天堂久久9| 精品久久久久久,| 国产精品 国内视频| 国产av一区在线观看免费| 久久精品91蜜桃| 久久久精品欧美日韩精品| 久久伊人香网站| 国产精品影院久久| 精品国产一区二区三区四区第35| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 精品电影一区二区在线| 亚洲,欧美精品.| www.www免费av| 丁香六月欧美| 亚洲成人精品中文字幕电影| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 老熟妇仑乱视频hdxx| 69av精品久久久久久| 黑人欧美特级aaaaaa片| √禁漫天堂资源中文www| 亚洲精品国产色婷婷电影| 999精品在线视频| 俄罗斯特黄特色一大片| 午夜久久久久精精品| 18禁观看日本| 色播亚洲综合网| 精品卡一卡二卡四卡免费| 日本五十路高清| 午夜福利18| 视频在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 在线天堂中文资源库| 18禁黄网站禁片午夜丰满| 欧美绝顶高潮抽搐喷水| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品一区二区www| 两个人免费观看高清视频| 亚洲人成电影观看| 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 可以在线观看毛片的网站| 午夜久久久久精精品| 国产亚洲精品久久久久久毛片| 欧美日本中文国产一区发布| 很黄的视频免费| 国产精品1区2区在线观看.| 色综合站精品国产| 亚洲人成伊人成综合网2020| 欧美中文日本在线观看视频| 欧美 亚洲 国产 日韩一| 欧美在线黄色| 久久九九热精品免费| 色综合婷婷激情| 少妇被粗大的猛进出69影院| av福利片在线| 激情在线观看视频在线高清| 欧美午夜高清在线| 热99re8久久精品国产| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 美女 人体艺术 gogo| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 国产av又大| 激情视频va一区二区三区| 大香蕉久久成人网| 亚洲成人久久性| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 中文字幕人妻熟女乱码| 婷婷精品国产亚洲av在线| 日本vs欧美在线观看视频| 久久国产乱子伦精品免费另类| 91麻豆av在线| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 亚洲男人天堂网一区| 免费在线观看日本一区| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影| 国产免费男女视频| 亚洲五月天丁香| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 美国免费a级毛片| 长腿黑丝高跟| 制服人妻中文乱码| 亚洲精品久久成人aⅴ小说| 十分钟在线观看高清视频www| 老司机靠b影院| av超薄肉色丝袜交足视频| 91精品国产国语对白视频| 中文字幕人成人乱码亚洲影| 青草久久国产| 超碰成人久久| 亚洲熟妇熟女久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 视频区欧美日本亚洲| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 国产精品精品国产色婷婷| 久久精品成人免费网站| 搞女人的毛片| 精品人妻在线不人妻| 国产成人av教育| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 国产亚洲精品一区二区www| 国产一区二区激情短视频| 午夜免费鲁丝| 在线天堂中文资源库| 高潮久久久久久久久久久不卡| 国产精品二区激情视频| 看免费av毛片| 制服诱惑二区| 日韩欧美国产一区二区入口| 一个人观看的视频www高清免费观看 | av电影中文网址| 日韩欧美三级三区| 黄色片一级片一级黄色片| 国产高清视频在线播放一区| 国产色视频综合| 欧美亚洲日本最大视频资源| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 九色国产91popny在线| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 波多野结衣av一区二区av| 亚洲第一电影网av| 欧美日本中文国产一区发布| 欧美绝顶高潮抽搐喷水| 男人的好看免费观看在线视频 | 国产精品亚洲一级av第二区| 国产欧美日韩综合在线一区二区| 日本欧美视频一区| 黄片播放在线免费| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 在线观看免费午夜福利视频| 免费少妇av软件| 国产片内射在线| 国产一区二区激情短视频| 欧美绝顶高潮抽搐喷水| 亚洲五月婷婷丁香| 国产男靠女视频免费网站| 久久久久久亚洲精品国产蜜桃av| 丰满的人妻完整版| 久久久久久久久中文| 69av精品久久久久久| 女同久久另类99精品国产91| 18禁裸乳无遮挡免费网站照片 | 男人舔女人下体高潮全视频| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 | x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 天天躁日日操中文字幕| 国产精品一区二区免费欧美| 日韩在线高清观看一区二区三区 | 99九九线精品视频在线观看视频| 一本精品99久久精品77| 亚洲美女视频黄频| 精品国内亚洲2022精品成人| 日日干狠狠操夜夜爽| 熟女电影av网| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影| 麻豆一二三区av精品| av视频在线观看入口| 999久久久精品免费观看国产| 免费在线观看成人毛片| 亚洲综合色惰| 欧美国产日韩亚洲一区| 国产精品一及| 可以在线观看的亚洲视频| 级片在线观看| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 波野结衣二区三区在线| 日本a在线网址| 亚洲中文日韩欧美视频| 国产亚洲91精品色在线| 久久久精品大字幕| eeuss影院久久| 91精品国产九色| 日韩一本色道免费dvd| 久99久视频精品免费| 国产精品久久久久久久电影| 久久午夜福利片| 亚洲色图av天堂| 亚洲国产精品成人综合色| 国产精品野战在线观看| 天堂动漫精品| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 伦理电影大哥的女人| 久99久视频精品免费| 成人国产麻豆网| 午夜视频国产福利| 色精品久久人妻99蜜桃| 久久热精品热| 久久久久精品国产欧美久久久| 嫩草影院精品99| 在线观看66精品国产| 51国产日韩欧美| 国产免费av片在线观看野外av| 人人妻人人看人人澡| 久久午夜福利片| av中文乱码字幕在线| 久久人妻av系列| 日本免费a在线| av在线蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟·www| 一个人看视频在线观看www免费| 欧美激情在线99| 国产视频一区二区在线看| 国产亚洲精品久久久com| 亚洲精品一卡2卡三卡4卡5卡| 岛国在线免费视频观看| 欧美人与善性xxx| 我要看日韩黄色一级片| 色5月婷婷丁香| 国产欧美日韩精品亚洲av| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 校园春色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 啦啦啦观看免费观看视频高清| 国产黄a三级三级三级人| 久久久久久久久中文| 日韩欧美精品免费久久| 午夜福利18| 亚洲三级黄色毛片| 欧美成人a在线观看| 国产精品久久久久久亚洲av鲁大| 国产 一区 欧美 日韩| 一夜夜www| 国内少妇人妻偷人精品xxx网站| 欧美国产日韩亚洲一区| 国内毛片毛片毛片毛片毛片| 国产精品一区二区性色av| 99热这里只有精品一区| 亚洲狠狠婷婷综合久久图片| 成年女人看的毛片在线观看| 特大巨黑吊av在线直播| 欧美性猛交黑人性爽| 国产高清不卡午夜福利| 欧美中文日本在线观看视频| 精品久久久久久久久av| 在线观看66精品国产| 又爽又黄无遮挡网站| 国产亚洲91精品色在线| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| av天堂中文字幕网| 夜夜夜夜夜久久久久| 日日撸夜夜添| 看黄色毛片网站| 亚洲黑人精品在线| 国产免费一级a男人的天堂| 99热6这里只有精品| 久久国产乱子免费精品| 免费黄网站久久成人精品| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久 | 久久人人精品亚洲av| 久久久国产成人精品二区| 欧美bdsm另类| 中文字幕人妻熟人妻熟丝袜美| 色哟哟·www| 99久久精品一区二区三区|