• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DAAzF對(duì)DAAF熱性能的影響

    2022-07-13 00:16:30莊思琪付小林陳建波
    含能材料 2022年7期
    關(guān)鍵詞:中國工程物理研究院材料科學(xué)綿陽

    莊思琪,付小林,于 謙,陳建波,劉 渝,金 波,黃 輝,

    (1. 西南科技大學(xué)材料科學(xué)與工程學(xué)院,四川 綿陽 621010;2. 中國工程物理研究院化工材料研究所,四川 綿陽 621999)

    1 Introduction

    Insensitive energetic materials based on furazan rings have received wide attention in the last decade due to their favorable properties including high energy density,good safety,and high nitrogen content[1-3].Among them,3,3'-diamino-4,4'-azoxyfurazan(DAAF)is regarded as one of the most promising explosives due to its good thermal stability,high positive enthalpy,high detonation velocity of 8.02 km·s-1,and detonation pressure of 30.6 GPa[4-5]. DAAF,as an excellent explosive,is expected to be used in place of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)in insensitive booster explosives and hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)in melt cast explosives[6-7]. However,it is reported that the impurities have a negative effect on the thermal performance of DAAF,as the onset temperature of DAAF measured by differential scanning calorimetry (DSC) is decreased from 250 ℃to 128 ℃by the impurities[8].Therefore,it is necessary to study the change of DAAF's thermal performance in the presence of the impurities.

    For the preparation of nano-explosives and plastic-bonded explosives[7,9],DAAF is mainly synthesized based on the Oxone oxidation method[8],which yields as well various impurities such as unreacted precursors,intermediates,and side-products.In our previous study,we found that the impurities of DAAF could not be ignored with a relatively high content of 6.62% of DAAF final product[10]. It is very difficult to remove 3,3'-diamino-4,4'-azofurazan(DAAzF)from DAAF via common purification due to the similar structure between DAAzF and DAAF.Compared to DAAF,DAAzF only lacks an oxygen atom that bound to the azo group. Therefore,DAAzF is regarded as a major impurity of DAAF[11-12]. Some properties of DAAzF itself have been investigated in the past. The vacuum thermal stability test of DAAzF is 5.87 mL·g-1,which is much higher than that of DAAF(0.69 mL·g-1)[13-15].Besides,the detonation velocity and pressure of DAAzF are 7.42 km·s-1and 26.2 GPa,respectively,which are lower than that of DAAF[16]. However,there is no study about the effect of DAAzF as the coexisting impurity on the thermal performance of DAAF until now.

    In this study, we investigated the effect of DAAzF on the thermal performance of DAAF for the first time. DAAzF was firstly synthesized,and then several composite DAAF@DAAzF explosives were obtained by doping different content of DAAzF into DAAF. Subsequently, the doping process of DAAF@DAAzF explosives was investigated by analyzing the DAAzF content and the characterizing the morphology. Further,the thermal performances of DAAF@DAAzF explosives,including melting point,thermal decomposition temperature,and activation energy,were investigated via simultaneous thermogravimetry and differential scanning calorimetry(TG-DSC). In addition, the thermal stability of DAAF explosives in the presence of DAAzF was obtained through the study of isothermal thermal decomposition.

    2 Experimental Section

    2.1 Reagents and instrumentations

    3,4-Diaminofurazan(DAF),DAAF and DAAzF were synthesized in our laboratory. Analytical reagent(AR)N,N-dimethylformamide(DMF)was purchased from Kelong Chemical(Chengdu,Sichuan).

    High-performance liquid chromatography(HPLC)grade acetonitrile was purchased from Merck Chemicals(Darmstadt,Germany). Ultrapure water was purified by a Millipore-Q system(Bedford,USA)with the resistivity of 18.2 MΩ. Thermal analysis was performed on Mettler Toledo TG-DSC 3+(Zurich, Switzerland). Chromatography analysis was carried out with an Agilent 1260 infinity ultrahigh-performance liquid chromatography(HPLC) system (Waldbronn,Germany). Powder X-Ray diffraction(PXRD)was measured on a Bruker D8 Advance diffractometer(Karlsruhe,Germany).Scanning electron microscopy(SEM)was conducted on a Zeiss high-resolution field emission scanning electron microscopy instrument(Oberkochen,Germany).

    2.2 Sample preparation

    DAF,DAAF and DAAzF were synthesized according to the reported literature[17].

    DAAF(10 g)and different weights of DAAzF(0-1.0 g)were added into DMF(10 mL),and then the mixture was stirred at 60 ℃. After complete dissolution,cool water was added quickly into the above solution,and then the precipitates were filtered, washed, and dried to obtain DAAF@DAAzF explosives.The composite explosives doped with 0.5%,1.0%,2.5%,5.0%,and 10% mass fractions were named as DAAF@DAAzF-1,DAAF@DAAzF-2,DAAF@DAAzF-3,DAAF@DAAzF-4,and DAAF@DAAzF-5,respectively. As a control experiment,raw DAAF without the addition of DAAzF was performed by the above method.

    2.3 The characterization of DAAF@DAAzF

    DAAF@DAAzF explosives were measured by PXRD. The tube current and voltage of PXRD were set at 40 mA and 40 kV,respectively,and the images were scanned in a range of 2θfrom 10° to 40° by using a Vantec detector with Cu Kα as radiation(λ=1.54180 ?). Meanwhile,the morphology and particle size of DAAF@DAAzF were characterized by SEM.

    The solution of DAAF@DAAzF explosives was prepared with the concentration of 1.0 mg·mL-1in acetonitrile and then diluted to the concentration of 1.0 μg·mL-1for chromatographic analysis. The above solution was filtered through a 0.45 μm membrane before the HPLC analysis. Then,the diluted solution of DAAF@DAAzF explosives was analyzed by HPLC with reversed-phase Hypersil Gold C18column (100 mm×2.1 mm,1.9 μm). The mobile phase consisted of acetonitrile and ultrapure water.The flow rate was set at 0.5 mL·min-1. The temperature of HPLC column oven was set at 35 ℃. The detection wavelength of HPLC was set at 230 nm.

    2.4 Thermal analysis of raw DAAF and DAAF@DAAzF explosives

    Thermal analysis of both raw DAAF and DAAF@DAAzF explosives were performed by TG-DSC. All the experiments were measured in encapsulated aluminum pans with a low-sized pinhole.The mass of all explosives was about 1.5 mg for each measurement. Nitrogen was chosen as the shield gas with a flow rate of 30 mL·min-1. For the programmed heating measurements,all explosives were heated from 30 ℃to 350 ℃under different heating rates of 2,5,10 K·min-1and 20 K·min-1,respectively. All data of thermal analysis was processed by using the Netzsch kinetics Neo Trial software[18].

    3 Results and Discussion

    3.1 The doping of DAAzF in DAAF

    It would be more homogeneous to dope DAAzF in DAAF through the dissolution-precipitation method compared to the direct mixing of two different solid powders,because all molecules of DAAF and DAAzF can be homogeneously dispersed in the same solvent(DMF)before the precipitation. With that in mind,DAAF explosives were doped with different mass fractions of DAAzF from 0.5% to 10% to prepare DAAF@DAAzF explosives via the dissolution-precipitation method,which is shown in Fig.1.

    Fig.1 The process of doping DAAzF into DAAF

    3.2 The analysis of DAAzF content

    PXRD was used to characterize the doping of DAAzF in DAAF@DAAzF explosives. PXRD patterns of raw DAAF and DAAF@DAAzF explosives are shown in Fig. 2a. It is shown that the signal of raw DAAF at 27.70° disappears after doping 0.5% DAAzF.When 10% DAAzF is doped in DAAF@DAAzF explosives,two signals of DAAzF at 20.08° and 28.02° are observed obviously, which indicates that DAAF@DAAzF explosives contain DAAzF. To obtain the quantitative analysis of the doping content of DAAzF,the content of DAAzF in DAAF@DAAzF explosives was further analyzed by HPLC in Fig. 2b.Chromatographic peaks of DAAF and DAAzF are separated fully by HPLC,because DAAF and DAAzF have different retention times of 8.70 min and 9.36 min,respectively. Although raw DAAF has a very weak signal of DAAzF due to raw DAAF itself containing tiny DAAzF as a byproduct before the doping(Table 1),the signals of DAAzF in DAAF@DAAzF explosives become stronger gradually with the increase of DAAzF content. After the deduction of background signal of DAAzF in raw DAAF,DAAF@DAAzF explosives including DAAF@DAAzF-1,DAAF@DAAzF-2,DAAF@DAAzF-3,DAAF@DAAzF-4,DAAF@DAAzF-5 were doped with 0.5%,1.0%,2.5%,5.0%,and 10% DAAzF,respectively. Moreover,the SEM images in Fig.2c show the morphology of DAAF@DAAzF explosives is more homogeneous compared to raw DAAF,and the particle size of DAAF@DAAzF explosives is less than 1.0 μm. Therefore,different contents of DAAzF are homogeneously doped in DAAF@DAAzF explosives.

    Table 1 HPLC data of different content of DAAzF doped in DAAF@DAAzF explosives

    Fig.2 PXRD,HPLC and SEM analysis of raw DAAF,raw DAAzF and DAAF@DAAzF explosives

    3.3 Mass loss

    All TG/DTG curves of raw DAAF and DAAF@DAAzF explosives were determined by TG-DSC with the heating rate at 10 K·min-1. According to the TG curves of Fig.3a,DAAF@DAAzF explosives display a mass loss in one step for their thermal decomposition. The mass loss begins at about 244.3 ℃,and then there is about 60% mass loss observed after 10 min. Through the analysis of DTG curves in Fig.3b,an obvious difference is found between raw DAAF and DAAF@DAAzF explosives.The peak temperature in the DTG curve is 256.7 ℃for raw DAAF. The DTG peak temperature of DAAF@DAAzF explosives decreases with the increase of DAAzF content. The peak temperature is 255.8 ℃ for DAAF@DAAzF-2 with 1.0% DAAzF,and 254.8 ℃ for DAAF@DAAzF-4 with 5.0%DAAzF. Meanwhile, the mass loss rate of DAAF@DAAzF explosives increases with the increase of DAAzF content at the initial stage of thermal decomposition. However,the mass loss rate becomes slow under higher content of DAAzF doped in DAAF@DAAzF explosives at the end of thermal decomposition. Therefore,the doping of DAAzF can slightly lower the peak temperature of DAAF-based explosives in DTG curves.

    Fig.3 TG and DTG curves of raw DAAF and DAAF@DAAzF explosives at 10 K·min-1

    3.4 Melting point and melting heat

    The DSC curves of DAAF@DAAzF explosives were investigated under the heating rate of 10 K·min-1in Fig. 4a. An endothermic peak of raw DAAF is observed at 249.0 ℃,which indicates there is an endothermic process before thermal decomposition.Through the endothermic reaction,DAAF melts to provide a liquid phase for its thermal decomposition,which is similar to RDX and HMX[15,19-20]. Meanwhile,melting point of DAAF@DAAzF explosives decreases with increasing DAAzF content,which is shown in Fig.4b. The melting point of raw DAAF is 246.4 ℃. At the heating rate of 10 K·min-1,melting points of DAAF@DAAzF explosives with 0.5%,1.0%,2.5%,5.0%,and 10% DAAzF are 245.9,245.1,244.4,242.9 ℃,and 239.3 ℃,respectively,which indicates that DAAzF as the impurity obviously decreases the melting point of DAAF-based explosives. A linear relationship(y=-0.6862x+246.27)is found between the melting point of DAAF@DAAzF explosives(y)and the content of DAAzF(x)with anR2value of 0.9930,which is in agreement with Raoult's law of colligative property in dilute solution[21]. Compared to solid-phase decomposition,DAAF@DAAzF explosives display much faster thermal decomposition at the initial melting stage due to the decrease of melting points by DAAzF,which is in good agreement with the change of mass loss of DAAF@DAAzF explosives.

    Fig.4 DSC curves and melting points of raw DAAF and DAAF@DAAzF explosives at 10 K·min-1,DSC curves of raw DAAF under different heating rates,and melting heat of raw DAAF and DAAF@DAAzF explosives at 20 K·min-1

    Further,the DSC curves of raw DAAF were measured under different heating rates in Fig.4c. The melting heat of raw DAAF under 5,10,15 K·min-1,and 20 K·min-1is 211.09,184.34,146.93 J·g-1,and 125.59 J·g-1,respectively. Normally,the melting point of raw DAAF keeps constant under different heating rates. However,the decomposition temperature of raw DAAF at a higher heating rate of 20 K·min-1apparently lags behind that at a low heating rate of 5 K·min-1. So,the melting heat of raw DAAF decreases with the increase of the heating rate. As shown in Fig. 4d,the melting heat of DAAF@DAAzF explosives after the doping of DAAzF was also investigated at 20 K·min-1. The melting heat of DAAF@DAAzF explosives increases with the increase of DAAzF content,when the doping content of DAAzF is less than 5.0%.DAAF@DAAzF-4 containing 5.0% DAAzF displays the maximum melting heat with the value of 337.38 J·g-1. The melting heat of DAAF@DAAzF explosives decreases with the increase of DAAzF content,when DAAzF content is higher than 5.0%.Therefore,the change of melting heat indicates the eutectic mixture is formed between 5.0% DAAzF and 95% DAAF.

    Besides,the melting process of DAAF@DAAzF-3 containing 2.5% DAAzF is successfully observed by a microscopic melting point meter in Fig.5. During the melting process,solid samples began to spin and move,and then melted with the bubbles appearing,which indicates that thermal decomposition of DAAF@DAAzF explosives includes solid decomposition,melting,and liquid decomposition.Thus,it is further demonstrated that the thermal process of DAAF-based explosives containing DAAzF includes both melting and thermal decomposition.

    Fig.5 The melting process of DAAF@DAAzF-3 containing 2.5% DAAzF

    3.5 Kinetic analysis

    Kinetic parameters of thermal decomposition of DAAF explosives in the presence of DAAzF were calculated by Friedman method(Eq.(1))based on TG curves at different heating rates[20]:

    whereEais the apparent activation energy,kJ·mol-1;Ais the pre-exponential(frequency)factor,s-1;αis the conversion fraction;βis the heating rate,K·min-1;R is the gas constant,8.314 J·mol-1·K-1;Tis the absolute temperature,K;f(α)is the differential expression of the reaction model function.The pre-exponential factor(A)can be found by model-free analysis only assumption of known functionf(α),which is often used in the view of reaction ofnthorder in model-free analysis.

    As shown in Fig.6a,a high activation energy((560.9±60.8)kJ·mol-1)of raw DAAF is obtained at the initial thermal decomposition (α<0.30),which may be attributed to several coexisting processes of solid decomposition:melting and liquid decomposition. The doping of DAAzF can decrease the activation energy of DAAF-based explosives,which is similar to the decrease of melting point and mass loss rate of DAAF@DAAzF explosives. After doping with 0.5% DAAzF,the activation energy of DAAF@DAAzF-1 is decreased to(423.2±6.9)kJ·mol-1.The activation energy decreases as the reaction goes on.The change of activation energy of DAAF@DAAzF explosives becomes slow when the conversion is over 0.30. The activation energy values of all DAAF@DAAzF explosives range from (155.3±9.9) kJ·mol-1to(213.2±44.2) kJ·mol-1under high conversion(α≥0.30),which is in agreement with that of the reported DAAF explosive[4,16]. As shown in Fig. 6b,pre-exponential factors(logA)of all DAAF-based explosives show similar trends with their activation energies. Before the doping of DAAzF,raw DAAF shows a high pre-exponential factor with logAof(39.3±3.3)s-1. However,the pre-exponential factor of DAAF@DAAzF explosives is decreased with logAranging from(31.7±1.3)s-1to(23.4±1.5)s-1during the initial decomposition when the doping content of DAAzF is over 0.5%.

    Fig.6 Activation energies and pre-exponential factors of raw DAAF and DAAF@DAAzF explosives under different conversion(α),linear relationship between pre-exponential factor(ln(A))and activation energy(Ea),and isothermal thermal decomposition of raw DAAF and DAAF@DAAzF explosives

    Further,there is a kinetic compensation effect existing between apparent activation energy and pre-exponential factor,which means a linear relationship(lnA=a+bEa)between lnAandEa[22-23]. As shown in Fig.6c and Table 2,different content of DAAzF shows nearly the same slopes of 0.227~0.229 by performing a plot of lnAagainstEawith a good linear relationship ofR2=0.9999,which indicates raw DAAF and DAAF@DAAzF explosives have the same decomposition mechanism. According to Eq.(2)[24],the decomposition rate constant(k)of raw DAAF is(1.11×10-3)s-1at 250 ℃. After the doping of DAAzF,the rate constant of thermal decomposition increases with the increase of DAAzF content,and thekvalue of DAAF@DAAzF-5 containing 10% DAAzF is(3.59×10-3)s-1:

    Table 2 The parameters of linear equations between pre-exponential factors and activation energies

    where dα/dtis the reaction rate,s-1;αis the conversion fraction;k(T)is the rate constant,s-1;tis time,s;Tis temperature,K;f(α)is the reaction model.

    In addition,the isothermal thermal decomposition of DAAF@DAAzF explosives was investigated before the melting. Fig. 6d displays the isothermal DSC curves of all DAAF-based explosives at 230 ℃.It can be found that the decomposition peak time of raw DAAF is located at 41.72 min. After doping with 0.5% and 5.0% DAAzF,the DSC peak time of DAAF@DAAzF-1 and DAAF@DAAzF-4 is decreased to 27.09 min and 21.75 min,respectively. Compared to raw DAAF,isothermal thermal decomposition of DAAF@DAAzF explosives occurs in advance due to the doping of DAAzF. Therefore,the doping of DAAzF decreases the thermal stability of DAAF-based explosives.

    4 Conclusions

    (1)The effect of DAAzF on the thermal performance of DAAF@DAAzF explosives were studied comprehensively by TG-DSC after doping different content of DAAzF from 0.5% to 10% in DAAF explosives.

    (2) DAAzF decreases the melting points of DAAF@DAAzF explosives,with the largest decline of 7.1 ℃in the presence of 10% DAAzF. The doping of 5.0% DAAzF in DAAF can lead to the formation of the eutectic mixture between them.

    (3)The coexistence of DAAzF also decreases the activation energies and pre-exponential factors of DAAF@DAAzF explosives during the initial decomposition. Meanwhile,DAAzF can increase the rate constant of thermal decomposition of DAAF-based explosives.

    (4) Through isothermal thermal decomposition,the decomposition peak time of DAAF@DAAzF explosives is advanced clearly due to the presence of DAAzF. Therefore,DAAzF as an impurity accelerates the thermal decomposition of DAAF-based explosives and decreases their thermal stability.

    Acknowledgements:This work was financially supported by the National Natural Science Foundation of China(No. 21975235).

    猜你喜歡
    中國工程物理研究院材料科學(xué)綿陽
    中海油化工與新材料科學(xué)研究院
    基于目標(biāo)航跡的引導(dǎo)誤差校正方法研究
    中國工程物理研究院
    軍工文化(2023年3期)2023-04-28 08:39:41
    材料科學(xué)與工程學(xué)科
    CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計(jì)算
    四川綿陽卷
    四川綿陽卷
    基于四傳感器的弱信號(hào)源定位方法
    傳感器世界(2019年9期)2019-03-17 18:52:46
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    亚洲欧美日韩东京热| 一区二区三区高清视频在线| 亚洲欧美成人精品一区二区| 亚洲av成人精品一区久久| 国产精品麻豆人妻色哟哟久久 | 18禁黄网站禁片免费观看直播| 在线观看66精品国产| 欧美高清成人免费视频www| 国产午夜精品一二区理论片| 亚洲三级黄色毛片| 国内精品久久久久精免费| 久久人妻av系列| 99久久人妻综合| 女的被弄到高潮叫床怎么办| 免费在线观看成人毛片| 最近的中文字幕免费完整| 国产精品久久久久久精品电影小说 | 成熟少妇高潮喷水视频| 婷婷色av中文字幕| 少妇熟女欧美另类| 国产美女午夜福利| 在线观看午夜福利视频| 美女内射精品一级片tv| 一区二区三区四区激情视频 | 亚洲性久久影院| 国产精品久久久久久久久免| 亚洲在线自拍视频| 日韩亚洲欧美综合| 欧美日韩在线观看h| 麻豆精品久久久久久蜜桃| 性色avwww在线观看| 麻豆成人午夜福利视频| 男人的好看免费观看在线视频| 性插视频无遮挡在线免费观看| 国产精品精品国产色婷婷| 亚洲精品国产成人久久av| 丰满乱子伦码专区| 欧美一区二区国产精品久久精品| 国国产精品蜜臀av免费| 亚洲av一区综合| 狠狠狠狠99中文字幕| 在线观看美女被高潮喷水网站| 嫩草影院入口| 久久综合国产亚洲精品| 99九九线精品视频在线观看视频| 中文字幕熟女人妻在线| 亚洲精品国产成人久久av| 亚洲国产欧美人成| 少妇的逼好多水| 少妇的逼好多水| 国产一区二区激情短视频| 亚州av有码| 亚洲国产欧洲综合997久久,| 菩萨蛮人人尽说江南好唐韦庄 | 国产免费男女视频| 特级一级黄色大片| 亚洲,欧美,日韩| 网址你懂的国产日韩在线| 你懂的网址亚洲精品在线观看 | 永久网站在线| 天堂中文最新版在线下载 | 久久久久免费精品人妻一区二区| 91精品一卡2卡3卡4卡| 日韩欧美在线乱码| 国产精品永久免费网站| 精品人妻一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 国产熟女欧美一区二区| 成人亚洲欧美一区二区av| 在线观看免费视频日本深夜| 99热这里只有是精品50| 欧美zozozo另类| 色播亚洲综合网| 久久精品夜夜夜夜夜久久蜜豆| 12—13女人毛片做爰片一| 成人国产麻豆网| 天堂av国产一区二区熟女人妻| 国产高清不卡午夜福利| eeuss影院久久| 亚洲欧洲日产国产| 男人和女人高潮做爰伦理| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜精品一二区理论片| 亚洲精品亚洲一区二区| 91麻豆精品激情在线观看国产| 日韩av在线大香蕉| 高清毛片免费看| 99久久九九国产精品国产免费| 亚洲精品日韩在线中文字幕 | a级毛色黄片| 亚洲欧美日韩高清在线视频| 精品一区二区三区人妻视频| 精华霜和精华液先用哪个| 一级二级三级毛片免费看| 亚洲国产精品成人综合色| 性欧美人与动物交配| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 亚洲av成人av| 亚洲av免费高清在线观看| 高清在线视频一区二区三区 | 欧美最新免费一区二区三区| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 免费在线观看成人毛片| 色5月婷婷丁香| 男人舔奶头视频| 久久久精品94久久精品| 麻豆乱淫一区二区| 亚洲成av人片在线播放无| 99国产极品粉嫩在线观看| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 亚洲av中文字字幕乱码综合| av天堂在线播放| 中国国产av一级| 99热全是精品| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 丝袜美腿在线中文| 国产久久久一区二区三区| 欧美最新免费一区二区三区| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 亚洲国产色片| 欧美日本视频| 日韩精品有码人妻一区| videossex国产| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看 | 一本久久中文字幕| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 18禁在线播放成人免费| 国产精品三级大全| 99久久精品国产国产毛片| 国内精品久久久久精免费| 亚洲成人久久性| 男女边吃奶边做爰视频| 干丝袜人妻中文字幕| 成人永久免费在线观看视频| 久久这里只有精品中国| 久久九九热精品免费| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 亚洲av电影不卡..在线观看| 高清毛片免费观看视频网站| 免费av毛片视频| 午夜福利高清视频| .国产精品久久| 亚洲精品乱码久久久v下载方式| 国产黄片视频在线免费观看| 国产高潮美女av| 欧美不卡视频在线免费观看| 天堂网av新在线| 欧美极品一区二区三区四区| 精品欧美国产一区二区三| 欧美性猛交╳xxx乱大交人| 五月玫瑰六月丁香| 久久久成人免费电影| www日本黄色视频网| 欧美+亚洲+日韩+国产| 欧美精品一区二区大全| 我要看日韩黄色一级片| 99热这里只有精品一区| 永久网站在线| a级毛片免费高清观看在线播放| 免费在线观看成人毛片| 国产精品一区二区在线观看99 | 亚洲av二区三区四区| 国产精品一及| 久久精品夜色国产| 99久久九九国产精品国产免费| 久久热精品热| 亚洲欧美精品专区久久| 久久99热这里只有精品18| 久久久久久久午夜电影| 亚洲av熟女| 亚洲成人久久爱视频| 亚洲久久久久久中文字幕| 日韩大尺度精品在线看网址| 精品久久久久久成人av| 一本精品99久久精品77| 成人欧美大片| 九草在线视频观看| 亚洲一区二区三区色噜噜| 亚洲真实伦在线观看| 日韩三级伦理在线观看| 日韩成人av中文字幕在线观看| 毛片女人毛片| 亚洲欧美中文字幕日韩二区| 蜜桃亚洲精品一区二区三区| 精品人妻一区二区三区麻豆| 看黄色毛片网站| 插逼视频在线观看| av天堂在线播放| 热99在线观看视频| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| www.色视频.com| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 午夜精品在线福利| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 色视频www国产| h日本视频在线播放| 村上凉子中文字幕在线| 日韩高清综合在线| 日韩成人伦理影院| 国产私拍福利视频在线观看| 国产亚洲欧美98| 成人亚洲欧美一区二区av| 色哟哟·www| 久久精品国产99精品国产亚洲性色| .国产精品久久| 麻豆国产97在线/欧美| 干丝袜人妻中文字幕| 九九在线视频观看精品| 18禁在线播放成人免费| av黄色大香蕉| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 在线国产一区二区在线| 久久久久久久久大av| av女优亚洲男人天堂| 国产成人freesex在线| av免费在线看不卡| 国产v大片淫在线免费观看| 亚洲中文字幕日韩| 天美传媒精品一区二区| 国产探花在线观看一区二区| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 婷婷亚洲欧美| 乱人视频在线观看| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 亚洲欧美清纯卡通| 欧美激情久久久久久爽电影| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 国产av在哪里看| 午夜福利在线观看吧| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9| 亚洲国产色片| 人体艺术视频欧美日本| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 色吧在线观看| 国产精品久久电影中文字幕| 久久99蜜桃精品久久| 国产成人影院久久av| 在线播放无遮挡| 久久精品国产清高在天天线| 91精品国产九色| 色哟哟哟哟哟哟| 亚洲av熟女| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 人妻系列 视频| 日韩av在线大香蕉| 成人午夜精彩视频在线观看| 免费av毛片视频| 桃色一区二区三区在线观看| 欧美精品一区二区大全| 男人的好看免费观看在线视频| 国产伦理片在线播放av一区 | 三级毛片av免费| 岛国毛片在线播放| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| 婷婷色综合大香蕉| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 我要搜黄色片| 久久久欧美国产精品| 国产精品一及| 国产av一区在线观看免费| 国产三级中文精品| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 99久久无色码亚洲精品果冻| 中文字幕制服av| 午夜视频国产福利| 22中文网久久字幕| a级毛片免费高清观看在线播放| 卡戴珊不雅视频在线播放| 别揉我奶头 嗯啊视频| 国产午夜精品论理片| 国产熟女欧美一区二区| 国产三级中文精品| 国产精品一及| 精品久久久久久久末码| 女人被狂操c到高潮| 欧美潮喷喷水| 国产老妇女一区| 日日啪夜夜撸| 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 天美传媒精品一区二区| 如何舔出高潮| 不卡视频在线观看欧美| 中文欧美无线码| 麻豆国产av国片精品| 99视频精品全部免费 在线| 欧美在线一区亚洲| 国产精品一区二区三区四区免费观看| 欧美zozozo另类| 特级一级黄色大片| 综合色丁香网| 国产精品人妻久久久久久| АⅤ资源中文在线天堂| 欧美潮喷喷水| 97在线视频观看| 精品国内亚洲2022精品成人| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 亚洲欧洲日产国产| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频 | 五月伊人婷婷丁香| 欧美另类亚洲清纯唯美| 热99在线观看视频| 国产乱人偷精品视频| 国产不卡一卡二| 成人二区视频| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类| 日韩欧美 国产精品| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 日本欧美国产在线视频| 在线a可以看的网站| 免费人成视频x8x8入口观看| 亚洲av二区三区四区| 日韩av在线大香蕉| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 黄色一级大片看看| 免费搜索国产男女视频| 三级经典国产精品| 久久午夜福利片| 看十八女毛片水多多多| 亚洲五月天丁香| 婷婷精品国产亚洲av| 91久久精品国产一区二区成人| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 一区二区三区免费毛片| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 欧美区成人在线视频| 嫩草影院入口| av福利片在线观看| videossex国产| 小说图片视频综合网站| 亚洲va在线va天堂va国产| 九九在线视频观看精品| 在现免费观看毛片| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 天天躁日日操中文字幕| 中文亚洲av片在线观看爽| 成人午夜高清在线视频| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 午夜老司机福利剧场| 在线a可以看的网站| 一级毛片我不卡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产欧洲综合997久久,| 日韩大尺度精品在线看网址| 色综合站精品国产| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 亚洲成av人片在线播放无| 欧美性感艳星| 亚洲欧美日韩东京热| 在线观看美女被高潮喷水网站| 国产伦精品一区二区三区四那| 亚洲欧洲日产国产| 亚洲成av人片在线播放无| 欧美一区二区亚洲| 国产精品99久久久久久久久| 日日摸夜夜添夜夜爱| 国产精品国产高清国产av| 欧美成人a在线观看| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 午夜福利在线观看免费完整高清在 | 日韩视频在线欧美| 久久久久久久午夜电影| 色5月婷婷丁香| 乱人视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 级片在线观看| av在线观看视频网站免费| 春色校园在线视频观看| 国产午夜精品论理片| 天堂√8在线中文| 女的被弄到高潮叫床怎么办| 久久精品91蜜桃| 综合色丁香网| 日韩大尺度精品在线看网址| 亚洲精品成人久久久久久| 简卡轻食公司| 在线a可以看的网站| 综合色av麻豆| 一本精品99久久精品77| 最好的美女福利视频网| 午夜精品在线福利| 亚洲av二区三区四区| 综合色av麻豆| 欧美一级a爱片免费观看看| 日本五十路高清| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 亚洲精品粉嫩美女一区| 精品人妻熟女av久视频| 亚洲最大成人中文| 97在线视频观看| 久久久久久久亚洲中文字幕| 日韩欧美精品v在线| 老司机影院成人| 日本熟妇午夜| 九九热线精品视视频播放| 乱码一卡2卡4卡精品| 一区福利在线观看| 嘟嘟电影网在线观看| 只有这里有精品99| 久久精品夜色国产| 天堂中文最新版在线下载 | 噜噜噜噜噜久久久久久91| 久久久精品大字幕| 在线观看一区二区三区| 国产精品久久久久久精品电影小说 | 毛片一级片免费看久久久久| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 日韩精品青青久久久久久| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 成人综合一区亚洲| 我的老师免费观看完整版| 成人午夜高清在线视频| 国产精品人妻久久久久久| 久久精品国产亚洲av香蕉五月| 免费看av在线观看网站| 亚洲电影在线观看av| 色播亚洲综合网| 亚洲精华国产精华液的使用体验 | 久久人妻av系列| eeuss影院久久| a级毛色黄片| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级国产av玫瑰| 日韩av在线大香蕉| 国产午夜福利久久久久久| 一进一出抽搐动态| 黄片无遮挡物在线观看| 精品99又大又爽又粗少妇毛片| 亚洲在线观看片| 亚洲国产欧美人成| 91狼人影院| 偷拍熟女少妇极品色| 久久久久久久久中文| 免费观看人在逋| 黄色配什么色好看| 最近中文字幕高清免费大全6| 国产免费男女视频| 亚洲av一区综合| 午夜免费男女啪啪视频观看| 偷拍熟女少妇极品色| 一级黄色大片毛片| 久99久视频精品免费| 亚洲成人精品中文字幕电影| 亚洲精品乱码久久久v下载方式| 深夜精品福利| 亚洲av中文字字幕乱码综合| 一夜夜www| 白带黄色成豆腐渣| 国产老妇伦熟女老妇高清| 国产三级中文精品| 成年av动漫网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇熟女aⅴ在线视频| videossex国产| 成人毛片a级毛片在线播放| 国产精品一区www在线观看| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 久久久久久久久大av| 天堂av国产一区二区熟女人妻| 搡老妇女老女人老熟妇| h日本视频在线播放| 1024手机看黄色片| 亚洲精品久久久久久婷婷小说 | 你懂的网址亚洲精品在线观看 | 久久久国产成人免费| 国产亚洲5aaaaa淫片| 亚洲av电影不卡..在线观看| 91av网一区二区| 老师上课跳d突然被开到最大视频| 亚洲精品粉嫩美女一区| 亚洲精华国产精华液的使用体验 | 天天一区二区日本电影三级| 身体一侧抽搐| 国产精品久久久久久精品电影小说 | 国产视频首页在线观看| 欧美最新免费一区二区三区| 久99久视频精品免费| 此物有八面人人有两片| 免费在线观看成人毛片| 九九久久精品国产亚洲av麻豆| 午夜视频国产福利| 一区二区三区免费毛片| 少妇高潮的动态图| 午夜免费激情av| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| 久久国产乱子免费精品| 亚洲美女搞黄在线观看| 成人三级黄色视频| 久久久国产成人精品二区| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 网址你懂的国产日韩在线| av卡一久久| 国产成人freesex在线| 综合色丁香网| 赤兔流量卡办理| 我要看日韩黄色一级片| 中国美白少妇内射xxxbb| 丰满乱子伦码专区| 国产激情偷乱视频一区二区| 99热只有精品国产| 黄色欧美视频在线观看| 国产伦精品一区二区三区视频9| 亚洲欧美精品综合久久99| 热99在线观看视频| 国产乱人偷精品视频| avwww免费| 中文字幕免费在线视频6| 亚洲精品自拍成人| 中文字幕精品亚洲无线码一区| 亚洲精品久久久久久婷婷小说 | 国产精品不卡视频一区二区| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 欧美xxxx黑人xx丫x性爽| 成年女人看的毛片在线观看| 午夜免费激情av| 久久人人精品亚洲av| 99久久人妻综合| 国产黄a三级三级三级人| 黄色日韩在线| 久久人人爽人人片av| 波野结衣二区三区在线| 桃色一区二区三区在线观看| 亚洲国产欧洲综合997久久,| 黄色配什么色好看| 男人和女人高潮做爰伦理| 男女下面进入的视频免费午夜| 国产 一区 欧美 日韩| 久久99热这里只有精品18| 亚洲精品国产av成人精品| 欧美成人精品欧美一级黄| 国产一区二区在线观看日韩| 91精品国产九色| 久久99精品国语久久久| 51国产日韩欧美| 成人特级黄色片久久久久久久| 亚洲av免费高清在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲五月天丁香| 国产精品久久久久久久电影| 69人妻影院| 18+在线观看网站| 两个人视频免费观看高清| 国产伦在线观看视频一区| www.色视频.com| 在线国产一区二区在线| 亚洲av成人av| 99热精品在线国产| 成年女人永久免费观看视频| 亚洲成av人片在线播放无| 久久久久久久午夜电影| 麻豆成人av视频| 国产黄a三级三级三级人| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 午夜视频国产福利|