• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stochastic model predictive braking control for heavy-duty commercial vehicles during uncertain brake pressure and road profile conditions

    2022-07-06 05:53:10RyotaNakaharaKazumaSekiguchiKenichiroNonakaMasahiroTakasugiHirokiHasebeKenichiMatsubara
    Control Theory and Technology 2022年2期

    Ryota Nakahara·Kazuma Sekiguchi·Kenichiro Nonaka·Masahiro Takasugi·Hiroki Hasebe·Kenichi Matsubara

    Abstract When heavy-duty commercial vehicles(HDCVs)must engage in emergency braking,uncertain conditions such as the brake pressure and road profile variations will inevitably affect braking control. To minimize these uncertainties, we propose a combined longitudinal and lateral controller method based on stochastic model predictive control(SMPC)that is achieved via Chebyshev-Cantelli inequality.In our method,SMPC calculates braking control inputs based on a finite time prediction that is achieved by solving stochastic programming elements,including chance constraints.To accomplish this,SMPC explicitly describes the probabilistic uncertainties to be used when designing a robust control strategy.The main contribution of this paper is the proposal of a braking control formulation that is robust against probabilistic friction circle uncertainty effects.More specifically, the use of Chebyshev-Cantelli inequality suppresses road profile influences, which have characteristics that are different from the Gaussian distribution,thereby improving both braking robustness and control performance against statistical disturbances.Additionally,since the Kalman filtering(KF)algorithm is used to obtain the expectation and covariance used for calculating deterministic transformed chance constraints,the SMPC is reformulated as a KF embedded deterministic MPC.Herein,the effectiveness of our proposed method is verified via a MATLAB/Simulink and TruckSim co-simulation.

    Keywords Heavy-duty commercial vehicle·Brake system·Stochastic model predictive control·Road profile

    1 Introduction

    Advanced vehicle control features, including traction control, anti-lock braking systems, electronic stability control,adaptive cruise control, lane-keeping assistance, etc., have been topics of intense study over many years,and a variety of such functions have already been implemented to assist drivers. These and even more advanced driving automation functions are currently being readied for application to passenger cars,buses,and large vehicles whose handling requires superior driving skills. In particular, in emergency situations, advanced braking control is required to regulate the vertical vehicle control of vehicles of buses or trucks with large inertia and bring them to safe stops.Today,most buses and trucks are equipped with pneumatic braking systems that use compressed air as their energy medium.However,pneumatic braking systems have characteristics that make control design difficult[1-4].First,large time delays occur due to the compressibility of air,and the dynamics of pneumatic braking systems inevitably mean that the relationship between the air medium and pressure flow is non-linear. Hence,when combined with the vehicle’s longitudinal dynamics,pneumatic braking systems are prone to various uncertainties. These include supply pressure variations due to brake application and release,temperature increases resulting from frequent braking,brake system component wear,vehicle load fluctuations, and changes in road surface conditions due to rain or snow.

    When considering such factors,model predictive control(MPC) [5], which considers dynamic coupling [6,7], topographical information[8],and horizontal vehicle dynamics,provides an optimal control method for safe vehicle control during emergency stop conditions.For that reason,MPC is incorporated into a wide variety of automatic control systems such as train pneumatic braking systems [9], bus braking energy efficiency systems[10],and the steering systems of all-terrain cranes with slow dynamic response levels [11].The high utility of MPC is its ability to solve the constrained optimization problem of a finite-time interval for each sampling step based on the model to be controlled.Then the controller applies the first component of the calculated input series in each sampling step. MPC makes it possible to calculate control inputs that explicitly consider functional,physical,and safety restrictions by applying constraints for input and state.However,MPC is vulnerable to the influence of actual motion factors that are not considered in models. Therefore, although preset constraints may be satisfied in MPC predictions, those constraints may be exceeded in actual conditions. MPC-based control has also been applied to heavy-duty commercial vehicle (HDCV)wheel slip control [12,13], fuel consumption systems [14-17],automatic hydraulic transmission systems[18],actuator time delay controllers [19], pneumatic actuator controllers[20]. The challenge of the controller design of HDCVs are robustness against model uncertainty due to actuator or loading.The methods proposed in[21]is not considered against the uncertainty of the plant model. Also, the Kalman filer(KF) embedded MPC brake system [22] is available to use state covariance for the controller.To solve that,robust antislip control systems for different road surface environments[23] and systems that compensate for vehicle specification changes caused by load variations[24,25]is reported.However,the deterministic constraints result in aggressive inputs when the model has stochastic uncertainty.This may result in the model not complying with the constraints as theory suggests.

    In contrast, stochastic model predictive control (SMPC)is a robust control method that considers such uncertainties.In the SMPC approach,which is shown in Fig.1,we can see that SMPC inputs a stochastic constraint called a “chance constraint”based on the probability distribution of the prediction error and designates it as the upper and lower limits of the state.This allows SMPC to explicitly describe the probabilistic uncertainties in designing the robust control strategy.For example, let the deterministic constraint bex≤xmax,withxas the states andxmaxas the upper limit states. Ifxis uncertain, the probability will not reach fifty percent. To avoid creating too large a value,the deterministic constraint needs to converted into a probabilistic (also called chance)constraint,in which Pr(x≤xmax)≥1-α,withα∈(0,0.5]is the allowable probability. In many applications, system uncertainties are often considered to be stochastic processes,which allows the incompleteness and uncertainties of set optimization problems to be taken into consideration. This suppresses erroneous control that can result from discrepancies between theory and an actual environment. SMPC can also improve both robustness and control performance using statistical information related to disturbances.For that reason,SMPC is also applied to uncertainties in automobile control [26-28]. On the other hand, external disturbances due to road environments,such as gradients and road surface friction coefficients,affect dynamic vehicle behaviors during emergency stops[22].In such cases,wheel slip suppressionimprovements can be anticipated by considering the vehicle uncertainties,such as the brake pressure and road profile.

    Fig.1 Overview of SMPC approach.SMPC explicitly describes the probabilistic uncertainties that need consideration when designing a robust control strategy using a probabilistic(also called chance)constraint.Here,Pr(x ≤xmax)≥1-α,with α ∈(0,0.5]is the allowable probability

    To facilitate this, this paper proposes a braking control method that considers the road profile outlined in Reference [29] as a stochastic uncertainty, and via which SMPC is applied to the control of HDCVs during emergency braking.The results of this study show that our proposed method improves braking system robustness against fluctuations in temperature,air brake system measurement values,and road surface features, all of which are mathematical programming problems involving random variables that are generally considered challenging to solve.In our method,we reformulate an SMPC into a deterministic equivalent model based on the expectations and covariances of random variables,whichweachieveusingtheKFalgorithm.ThisallowsHDCV uncertainties to be controlled via the SMPC by considering disturbance-related statistical information. Hence, the primary contribution of this paper is the proposal of a braking control formulation that is robust against the probabilistic friction circle uncertainties affect. The remainder of this paper is organized as follows. The vehicle model, including an HDCV airbrake system,is described in Sect.2,while road profiles are discussed in Sect. 3. Next, the KF-based state estimation is described in Sect. 4, while the SMPCbased controlled design is discussed in Sect.5 and numerical simulation results are shown in Sect.6.Finally,Sect.7 concludes the paper.

    2 Vehicle model

    This section describes the equation of motion of HDCV’s kinematic and dynamic maneuvers in the horizontalX-Yplane, as shown in Fig.2. To facilitate its adaptation as a control model,some assumptions are simplified.

    Fig.2 3 DoF vehicle model with a reference path

    Next, assuming the vehicle side-slip angleβand the front-wheel steering angleδare small,the equations for the longitudinal,lateral,and yaw dynamics in the vehicle frame are expressed,respectively,as follows:

    whereMis total vehicle mass,lfandlrare the distances from the center of gravity(CoG)to the front and rear axles,Izis the vehicle body moment of inertia about thez-axis,andwfandwrare the widths of the front and rear track,respectively. In addition,F(xiàn)xi jandFyi jare the longitudinal and lateral tire forces,sdis the vehicle driving distance,andeyandeψdenote the heading error and the lateral deviation values,respectively.

    2.1 Longitudinal dynamics

    When the slip ratio of each wheel is small(|λ| ?1),brake torque is approximated as follows:

    2.2 Lateral dynamics

    Fig.3 Air-brake system

    2.3 Air-brake model

    The air-brake system structure is shown in Fig.3. Assuming good mechanical lubrication, we ignore the effects of mechanical and viscous friction of actuators. This system consists of an air tank, a brake chamber, a solenoid, and a valve. The brake chamber is supplied with compressed air through the relay valve.We assume that the supply source is always filled with compressed air.The air pressure is adjusted by opening and closing the valve by the command voltage applied to the solenoid.

    In this paper,we assume that a time delay occurs due to air propagation and that the time delay is modeled as a first-order delay system as follows:

    whereτiandK Piare the time constant and gain of the airbrake system, respectively, which parameters are same as[21].uiis the command voltage,andPi jis the brake pressure.

    2.4 Vehicle load transfer

    The formula used for the vehicle load transfer estimate is as follows[32]:

    whereL=lf+lris the wheelbase,msis the vehicle sprung mass,mufandmurare the vehicle front and rear spring mass,respectively, g is the acceleration due to gravity,hgis the CoG height,andrwis the effective tire rolling radius.

    2.5 State equation

    From(4),(7),(11)and(13),the augmented systems of longitudinal,lateral,and air-brake model are expressed as follows:

    3 Road profile

    Because there is such a wide variety of road surface environments,including asphalt,cobblestones,and unpaved ground,the International Organization for Standardization(ISO)has classified road surface conditions into eight levels(from A to H)in the ISO 8608[33]standard.This standard also classifies road surface heightzg(sd),which is expressed as follows:

    whereAnis the complex Fourier coefficient,f0= 1/(2π),andfnis the spatial frequency,S(fn)is the power spectral density(PSD)function,andθ~U(0,2π)is the phase with a uniform distribution.We consider the finite partial sum up to theNterm for the infinite series of(16)[34].

    First,fromtheFourierspectrum,Ψ(fn)ofS(fn)isdefined as follows:

    Table 1 k values of ISO-8608 road roughness classification

    Fig.4 ISO-8608 road surface profiles

    Fig.5 Q-Q plot of road profile(D-E class)

    whereΓ= 2k· 10-3,sd∈[0,Lroad],Δ f= 1/Lroad,nmax=1/fmax,N=nmax/Δn=Lroad/fmax,andfmaxis the highest spatial frequency. The road surface unevenness degree is expressed by thekvalue ofS(f0). The correspondence between thekvalues and the eight road state classifications are listed in Table1. The A and B classes correspond approximately to asphalt,while the D-E classes correspond to irregular roads.The road profile(with respect to the driving distance represented by(16))is shown in Fig.4,whereLroad= 250m, andN= 2500. Increasedkvalues indicate increased vertical height.

    Next,we will examine the distribution of road profile characteristics.The D-E class road profile histogram is shown in Fig.6.To compare similarities between normal and sample distributions, the quantile-quantile (Q-Q) plot of the D-E class road profile is shown in Fig.5 where the horizontal axis is the quantiles of the standard normal distribution,and the vertical axis is the sample quantiles. As the quantiles increase in similarity,the tendency of the blue dots to follow the straight line indicated by the red alternating long-short dashed line increases.The green line shows the interquartile.As can be seen in Fig.5,the road profile characteristics differ from the normal distribution.

    Fig.6 Histogram of road profile(D-E class)

    4 Kalman filter

    In this paper,the output is expressed as follows:

    whereMkis the Kalman gain, and ?xk|kandPk|kare the a posteriori state estimate and error covariance,respectively.

    5 Stochastic MPC-based vehicle control

    This section describes the formulation of the optimization problem designed to achieve vehicle stability. First, we describe the cost function required to balance the input and state priority necessary to achieve the desired performance,after which we describe the constraints. In particular, we examine how uncertainty is considered via the chance constraint in the optimization problem.

    5.1 Cost function

    In this paper,the evaluation function of the following equation is defined as follows:

    5.2 Constraints

    Next, we will explain how to transform the chance constraint into a deterministic constraint to solve the stochastic optimization problem as an equivalent deterministic problem

    5.3 Optimization problem

    Using a vehicle model, a cost function, and the relevant constraints,a deterministic equivalent constrained stochastic programming is expressed as follows:

    6 Simulation result and discussion

    Fig.7 SMPC system Block diagram

    Table 2 Vehicle parameters

    In this figure, the black-filled area shows the time evolution after the vehicle has stopped.A comparison between SMPC and MPC model results during braking on a split-μroad with a vertical road profile displacement is shown in Fig.9.The red and blue solid lines show the cases of SMPC and MPC,respectively.The green dashed line shows the ref-erence trajectory.Trajectories on theX-Yplane are shown in Fig.9a,while Fig.9b shows the time evolution of the vehicle longitudinal speed. The lateral deviation time evolution is shown in Fig.9c. The chain line shows constraints. The time evolution of QP iterations is shown in Fig.9d. Here,the yellow line shows that using the QP is infeasible,while the chain line shows max iterations. The time evolution of traveling distance is shown in Fig.9e.The Key Performance Indicators(KPIs)is shown in Table5 and Fig.9f,where index factor is max deceleration, max corrective steering angle,max traveling distance, mean front wheels slip ratio, mean rear wheels slip ratio,max yaw rate[13].The time evolution of execution time is shown in Fig.10,while Fig.10a,c and Fig.10b,d show the SMPC and MPC cases,respectively.The time evolution of brake pressure in the SMPC case is shown in Fig.11, while Fig.11a and b show the SMPC and MPC cases,respectively.Additionally,the slip ratio of each wheel in the SMPC case are shown in Fig.12,while Fig.12a shows the slip ratio of first and second axle wheels.Next,F(xiàn)ig.12b shows the slip ratio of third and fourth axle wheels, while Fig.13 shows the slip ratio of each wheel in the MPC case.

    Table 3 Control parameters

    Table 4 Estimate parameters

    Fig.8 Simulation scenario involving a braking turn on a split-μ road

    Fig.9 Comparison between SMPC and MPC during braking on a splitμ road with aa vertical road profile displacement broken down by a trajectory,b longitudinal speed of the vehicle CoG,c lateral deviation,and d quadratic programming (QP) iterations. e Traveling distance. f Key Performance Indicators(KPIs)The red and blue solid lines show the SMPC and MPC cases, respectively, while the green dashed line shows the reference trajectory and the chain lines show constraints.The yellow line shows that using QP is infeasible,while the chain line shows the max iterations

    Table 5 KPIs

    Fig.10 Execution time.a SMPC(fixed with Δt =100 ms).b MPC(fixed with Δt =100 ms).c SMPC(fixed with Hp =10).d MPC(fixed with Hp =10)

    The vehicle braked while maintaining lane tracking in each case,as shown in Fig.9a.As shown in Fig.9c,the lateral deviation constraint was violated in both the SMPC and MPC cases because it was necessary to allow the slack variable constraint to be violated to make the chance constraint of the friction circle feasible.In addition,the lateral deviation in the SMPC case was smaller than in the MPC case because the solution became infeasible in the MPC case when its optimality was lost at the 2-s mark,as shown in Fig.9d.Hence,when considering the statistical information related to disturbances,the results of this study show that lane followability and running stability during braking on a split-μcircular route are improved by the use of SMPC.In Fig.9b,we can see that the SMPC simulation stopping time was slightly longer than the MPC stopping time.However,As shown in Fig.9e, stopping distance of SMPC is 71.8m and MPC is 72.2m. Also, as shown Table5 and in Fig.9f, SMPC KPIs areimprovedcomparedwithMPCKPIs.Theslipratioduring braking in the SMPC case,as shown in Fig.12,was smaller than the MPC case, as shown in Fig.13. This is because SMPC considers the confidence interval of the brake pressure to be a chance constraint and is more conservative than the original constraint, as shown in (31) and Fig.11. As a result,slippage due to uncertainty is suppressed,as shown in Fig.12.In the MPC case,the brake pressure uncertainty is not explicitly considered,so the ratio of time exceeding the tire friction circle constraint is higher than that of SMPC,which means the vehicle slipped more, as shown in Fig.13. The slip ratio values in the black-filled area oscillated after the vehicle stopped as shown in Figs.12 and 13.This is because the formula for calculating the vehicle skid angle has a term that includes velocity in the denominator, and the calculation becomes unstable due to division by zero as the vehicle is braked.From Fig.10,the longer the prediction horizonHpis, the more dimensionality of the matrices handled in the optimization calculation. Therefore, the average and peak execution times are longer.In all cases ofHp=10,7,5,the computation time peaked at 2s,which is the start of stopping,but it was below the sampling time of MPCΔt= 100 ms.This is because the vehicle switched from constant driving,which does not reach the friction circle constraint,to braking,which does reach the friction circle constraint. As a result,the active constraints in the effective constraint method were updated, and the Hesse matrix of the Lagrangian function was re-evaluated. This resulted in a temporary increase in the run time by 2s.

    Fig.11 Brake pressure of the front left wheel during braking on the split-μ road with vertical road profile displacement.The green marker shows the measurement values while the red solid line shows the estimation. The blue solid line shows the upper bound predicted by the tire friction circle,while the yellow solid line shows the true value.The violet dashed line shows 2σ confidence interval:a SMPC.b MPC

    Fig.12 Slip ratio during braking in a turn on an split-μ road(SMPC).The blackfilled area shows the time evolution after the vehicle has stopped.a First and second left/right wheels,b third and fourth left/right wheels

    Fig.13 Slip ratio during braking in a turn on an split-μ road(MPC).The black-filled area shows the time evolution after the vehicle has stopped.a First and second left/right wheels,b third and fourth left/right wheels

    7 Conclusions

    This paper proposed a method of SMPC that considers the uncertainty of brake pressure and road profiles in relation to the emergency braking of heavy-duty commercial vehicles(HDCVs).Herein,the proposed method was verified through a simulation involving turning braking on a split-μroad.The running stability of an HDCV ensured stable conditions in areas where the controlling braking force and the lateral force interacted.

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyright holder. To view a copy of this licence, visit http://creativecomm ons.org/licenses/by/4.0/.

    亚洲av熟女| 99久久成人亚洲精品观看| 啦啦啦啦在线视频资源| 国产淫片久久久久久久久| 精品欧美国产一区二区三| 啦啦啦啦在线视频资源| 熟妇人妻久久中文字幕3abv| 国产亚洲5aaaaa淫片| 九色成人免费人妻av| 亚洲电影在线观看av| 久久婷婷人人爽人人干人人爱| 国产精品精品国产色婷婷| 国产精品久久久久久精品电影小说 | 日韩成人av中文字幕在线观看| 热99re8久久精品国产| 国产探花在线观看一区二区| 欧美三级亚洲精品| 久久精品影院6| 丰满少妇做爰视频| 久久久久久久久久久丰满| www.av在线官网国产| 黄片无遮挡物在线观看| 亚洲av一区综合| 麻豆乱淫一区二区| 亚洲成av人片在线播放无| 又粗又爽又猛毛片免费看| 精品久久久久久久久av| 免费黄色在线免费观看| 亚洲无线观看免费| www日本黄色视频网| 观看美女的网站| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 中文欧美无线码| 综合色av麻豆| 韩国高清视频一区二区三区| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| 欧美性感艳星| 国产乱来视频区| 看片在线看免费视频| 国产免费一级a男人的天堂| 国产精品,欧美在线| 能在线免费看毛片的网站| 欧美高清性xxxxhd video| 精品酒店卫生间| 村上凉子中文字幕在线| 亚洲国产精品专区欧美| 在线天堂最新版资源| 极品教师在线视频| 久久草成人影院| 又爽又黄无遮挡网站| 久久精品国产99精品国产亚洲性色| 亚洲国产精品久久男人天堂| 成人综合一区亚洲| 久久久久久久久中文| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜 | 亚洲人成网站高清观看| 麻豆成人av视频| 国产三级中文精品| 91在线精品国自产拍蜜月| 嘟嘟电影网在线观看| 国产伦在线观看视频一区| 免费看a级黄色片| 美女xxoo啪啪120秒动态图| 成年免费大片在线观看| 免费看光身美女| 婷婷色综合大香蕉| 午夜免费激情av| 国产 一区 欧美 日韩| 欧美区成人在线视频| 日韩大片免费观看网站 | 国产精品乱码一区二三区的特点| 美女国产视频在线观看| 春色校园在线视频观看| 99热精品在线国产| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 国产在视频线在精品| 国产熟女欧美一区二区| 丰满乱子伦码专区| a级毛色黄片| 伊人久久精品亚洲午夜| 国产成人91sexporn| 亚洲精品国产av成人精品| 国产大屁股一区二区在线视频| 全区人妻精品视频| 91久久精品国产一区二区三区| 少妇熟女欧美另类| 欧美不卡视频在线免费观看| 五月玫瑰六月丁香| 在线免费十八禁| 看片在线看免费视频| 蜜臀久久99精品久久宅男| av在线天堂中文字幕| 麻豆精品久久久久久蜜桃| 欧美人与善性xxx| 日本午夜av视频| 嫩草影院入口| 久久这里有精品视频免费| 亚洲精品自拍成人| av在线播放精品| 中文字幕免费在线视频6| 国产毛片a区久久久久| 99久久精品热视频| 国产美女午夜福利| 人妻制服诱惑在线中文字幕| 国产精品人妻久久久影院| 成人漫画全彩无遮挡| 一级毛片久久久久久久久女| 日产精品乱码卡一卡2卡三| av免费观看日本| 亚洲精品日韩在线中文字幕| 日韩成人伦理影院| 插逼视频在线观看| 免费看a级黄色片| 婷婷六月久久综合丁香| 色哟哟·www| av卡一久久| 免费在线观看成人毛片| 亚洲精品一区蜜桃| 国产精品不卡视频一区二区| 夜夜看夜夜爽夜夜摸| 国产 一区精品| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 舔av片在线| 亚洲av不卡在线观看| av福利片在线观看| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 欧美高清性xxxxhd video| 亚洲电影在线观看av| 欧美一区二区国产精品久久精品| 午夜精品国产一区二区电影 | 国语对白做爰xxxⅹ性视频网站| 天堂网av新在线| 午夜福利在线在线| 午夜老司机福利剧场| 中文字幕久久专区| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 午夜福利在线在线| 日本一二三区视频观看| 熟妇人妻久久中文字幕3abv| 七月丁香在线播放| 国产精品国产三级国产专区5o | 国产淫片久久久久久久久| 日日摸夜夜添夜夜添av毛片| 日韩大片免费观看网站 | 精品一区二区三区人妻视频| 国产亚洲最大av| 亚洲欧美精品综合久久99| 国产av码专区亚洲av| 高清av免费在线| 久久99热6这里只有精品| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 国产乱来视频区| 免费无遮挡裸体视频| 97超视频在线观看视频| 亚洲欧美精品综合久久99| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 国产一区有黄有色的免费视频 | 精品少妇黑人巨大在线播放 | 精品久久久久久久久久久久久| 国产日韩欧美在线精品| www.av在线官网国产| 欧美一区二区精品小视频在线| 亚洲欧美日韩无卡精品| 国产精品一区二区三区四区久久| 欧美性感艳星| 免费在线观看成人毛片| 欧美丝袜亚洲另类| 国产综合懂色| 小说图片视频综合网站| 欧美日韩精品成人综合77777| 欧美性猛交黑人性爽| 乱系列少妇在线播放| 搞女人的毛片| 国产精品日韩av在线免费观看| 亚洲欧美精品综合久久99| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 日本色播在线视频| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 黑人高潮一二区| a级毛色黄片| 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 亚洲美女视频黄频| 欧美3d第一页| 国产爱豆传媒在线观看| 性色avwww在线观看| 中国美白少妇内射xxxbb| 久久99热这里只有精品18| 国产成人aa在线观看| 岛国毛片在线播放| 我要看日韩黄色一级片| 十八禁国产超污无遮挡网站| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 国产高清视频在线观看网站| 别揉我奶头 嗯啊视频| 在线观看av片永久免费下载| 亚洲欧美清纯卡通| 岛国毛片在线播放| 欧美性感艳星| 麻豆一二三区av精品| 久久这里只有精品中国| 韩国av在线不卡| 欧美区成人在线视频| 免费看美女性在线毛片视频| 秋霞伦理黄片| 丰满人妻一区二区三区视频av| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 精品久久久久久久末码| 伊人久久精品亚洲午夜| 高清av免费在线| 亚洲国产精品久久男人天堂| 日本色播在线视频| 建设人人有责人人尽责人人享有的 | av国产免费在线观看| 一本一本综合久久| 99视频精品全部免费 在线| 亚洲av一区综合| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看 | 一边摸一边抽搐一进一小说| av女优亚洲男人天堂| 99热网站在线观看| 久久人人爽人人爽人人片va| av在线播放精品| 美女cb高潮喷水在线观看| 午夜久久久久精精品| 欧美精品一区二区大全| 亚洲精品乱久久久久久| 国产亚洲精品久久久com| 国产精品永久免费网站| 色5月婷婷丁香| 2021天堂中文幕一二区在线观| 91久久精品国产一区二区三区| 欧美成人a在线观看| 真实男女啪啪啪动态图| 欧美区成人在线视频| 黑人高潮一二区| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 久久久色成人| 国产av码专区亚洲av| 岛国在线免费视频观看| 久久精品国产亚洲av涩爱| 中国国产av一级| 国产在线一区二区三区精 | or卡值多少钱| 久久这里有精品视频免费| 国产成人免费观看mmmm| 精品久久久久久成人av| 日本午夜av视频| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 99国产精品一区二区蜜桃av| 99热精品在线国产| 又粗又硬又长又爽又黄的视频| 欧美高清性xxxxhd video| 黄片无遮挡物在线观看| 午夜激情欧美在线| 国产乱人视频| 国产美女午夜福利| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| 寂寞人妻少妇视频99o| 欧美成人一区二区免费高清观看| 亚洲色图av天堂| 超碰av人人做人人爽久久| 国产精品野战在线观看| 有码 亚洲区| 亚洲在线自拍视频| 亚洲av免费在线观看| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 青春草国产在线视频| 边亲边吃奶的免费视频| 99久久无色码亚洲精品果冻| 国产精品.久久久| 欧美性感艳星| av在线亚洲专区| 一级毛片电影观看 | 日韩精品有码人妻一区| 中文字幕免费在线视频6| 日韩欧美精品v在线| 三级毛片av免费| av在线蜜桃| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 久久久精品欧美日韩精品| 秋霞伦理黄片| 欧美一区二区国产精品久久精品| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 99热精品在线国产| 麻豆国产97在线/欧美| 国产成人精品一,二区| 七月丁香在线播放| 国产大屁股一区二区在线视频| 久久亚洲精品不卡| 直男gayav资源| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 国产免费男女视频| 亚洲一区高清亚洲精品| 亚洲av不卡在线观看| 亚洲人成网站在线观看播放| 国产午夜福利久久久久久| 国产高清视频在线观看网站| 日韩 亚洲 欧美在线| 看免费成人av毛片| 丰满人妻一区二区三区视频av| 午夜免费激情av| 麻豆成人av视频| 久久精品久久久久久噜噜老黄 | 欧美日本视频| 成人国产麻豆网| 大香蕉97超碰在线| 国产在线男女| 久久精品国产自在天天线| 插阴视频在线观看视频| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 偷拍熟女少妇极品色| 欧美日本视频| 日韩成人av中文字幕在线观看| 亚洲性久久影院| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 日韩强制内射视频| 国产亚洲精品av在线| 一级毛片电影观看 | 97超视频在线观看视频| 欧美97在线视频| АⅤ资源中文在线天堂| 啦啦啦观看免费观看视频高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91精品伊人久久大香线蕉| 国内精品一区二区在线观看| av卡一久久| av福利片在线观看| 国产亚洲av嫩草精品影院| 三级男女做爰猛烈吃奶摸视频| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 禁无遮挡网站| 三级国产精品欧美在线观看| 51国产日韩欧美| 国产乱人视频| 国产精品一二三区在线看| 欧美日本亚洲视频在线播放| 极品教师在线视频| 国产伦精品一区二区三区视频9| 国产精品永久免费网站| 亚洲av免费在线观看| 亚洲在线观看片| 国产精品人妻久久久影院| 夜夜爽夜夜爽视频| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 国产免费视频播放在线视频 | 国产成人91sexporn| 中文字幕人妻熟人妻熟丝袜美| 亚洲av.av天堂| 最近最新中文字幕大全电影3| 我的女老师完整版在线观看| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 国产午夜精品一二区理论片| 日本免费a在线| 亚洲最大成人中文| 国模一区二区三区四区视频| 国内精品美女久久久久久| 国内精品宾馆在线| 91午夜精品亚洲一区二区三区| 热99re8久久精品国产| 2022亚洲国产成人精品| 极品教师在线视频| 99热网站在线观看| 亚洲三级黄色毛片| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 久久久久久久久久久免费av| 男人的好看免费观看在线视频| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 国产三级在线视频| 欧美3d第一页| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 国产单亲对白刺激| 中文字幕精品亚洲无线码一区| 日韩成人伦理影院| 国产av不卡久久| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 免费观看人在逋| 女的被弄到高潮叫床怎么办| 欧美丝袜亚洲另类| 国产伦在线观看视频一区| 日韩欧美三级三区| 免费看av在线观看网站| 成人毛片60女人毛片免费| 最近视频中文字幕2019在线8| 成人av在线播放网站| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 国内精品宾馆在线| 国产免费男女视频| 国产一区二区亚洲精品在线观看| 91精品国产九色| 久久99蜜桃精品久久| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 一级黄片播放器| 51国产日韩欧美| 麻豆成人av视频| 欧美zozozo另类| 国产av码专区亚洲av| 在线免费十八禁| 2021天堂中文幕一二区在线观| 亚洲av电影不卡..在线观看| 黑人高潮一二区| 人人妻人人看人人澡| 日韩成人av中文字幕在线观看| 人人妻人人澡人人爽人人夜夜 | 一级毛片我不卡| 精品一区二区三区人妻视频| 韩国高清视频一区二区三区| 日本wwww免费看| av在线老鸭窝| 我要看日韩黄色一级片| h日本视频在线播放| 毛片女人毛片| 久久欧美精品欧美久久欧美| 亚洲久久久久久中文字幕| 丰满人妻一区二区三区视频av| 国产高清三级在线| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 99久久精品国产国产毛片| 午夜福利网站1000一区二区三区| 啦啦啦啦在线视频资源| 日日撸夜夜添| 欧美高清成人免费视频www| 69av精品久久久久久| 免费观看在线日韩| 99热这里只有是精品在线观看| 男人舔女人下体高潮全视频| 国产综合懂色| av女优亚洲男人天堂| 国产高清不卡午夜福利| 狠狠狠狠99中文字幕| 国产成人一区二区在线| 久久久久久大精品| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 日韩中字成人| 国产一级毛片在线| 美女大奶头视频| 国产69精品久久久久777片| 久久久午夜欧美精品| 狂野欧美白嫩少妇大欣赏| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 国产高潮美女av| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 国内精品宾馆在线| av在线蜜桃| 能在线免费观看的黄片| 中文字幕av成人在线电影| 国内精品宾馆在线| 午夜福利在线观看免费完整高清在| 国模一区二区三区四区视频| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 91久久精品国产一区二区成人| 免费看光身美女| 免费观看性生交大片5| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 欧美一区二区亚洲| 久久久久免费精品人妻一区二区| 乱人视频在线观看| 日韩欧美在线乱码| 日韩强制内射视频| 中文资源天堂在线| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 听说在线观看完整版免费高清| 免费av观看视频| 美女xxoo啪啪120秒动态图| 色网站视频免费| 水蜜桃什么品种好| 久久这里只有精品中国| 看黄色毛片网站| 91精品伊人久久大香线蕉| 久久热精品热| av线在线观看网站| 日韩强制内射视频| 插逼视频在线观看| 免费看av在线观看网站| 亚洲国产欧洲综合997久久,| 久久久久国产网址| 熟女人妻精品中文字幕| 亚洲av成人精品一二三区| 午夜视频国产福利| 精品久久久久久久末码| 婷婷色麻豆天堂久久 | 欧美bdsm另类| 欧美潮喷喷水| av卡一久久| 亚洲精品日韩在线中文字幕| 午夜久久久久精精品| 深爱激情五月婷婷| 欧美日韩一区二区视频在线观看视频在线 | 日韩av不卡免费在线播放| 蜜桃久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 在线观看66精品国产| 麻豆精品久久久久久蜜桃| 丰满人妻一区二区三区视频av| 麻豆成人av视频| 国产精品熟女久久久久浪| 婷婷色综合大香蕉| 99久久精品一区二区三区| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 乱码一卡2卡4卡精品| 观看美女的网站| 1000部很黄的大片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品日韩av在线免费观看| 免费av不卡在线播放| 一级黄片播放器| 最近最新中文字幕免费大全7| av在线亚洲专区| 国产精品嫩草影院av在线观看| 日本午夜av视频| 国产激情偷乱视频一区二区| av视频在线观看入口| 你懂的网址亚洲精品在线观看 | 国产麻豆成人av免费视频| 22中文网久久字幕| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 精品久久久久久电影网 | 国产精品三级大全| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 国产综合懂色| 国产一区二区亚洲精品在线观看| 久久久久久久久久成人| 性色avwww在线观看| 美女脱内裤让男人舔精品视频| 最近2019中文字幕mv第一页| 日本色播在线视频| 高清在线视频一区二区三区 | 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 国产69精品久久久久777片| 精品一区二区免费观看| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 老司机影院毛片| 国产美女午夜福利| 久久欧美精品欧美久久欧美| 中文字幕亚洲精品专区| 亚洲精品色激情综合| 中国美白少妇内射xxxbb| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 春色校园在线视频观看| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久| 久久久成人免费电影| 赤兔流量卡办理| 久久韩国三级中文字幕|