• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time energy-efficient anticipative driving control of connected and automated hybrid electric vehicles

    2022-07-06 05:53:46ShiyingDongHongChenLuluGuoQifangLiuBingzhaoGao
    Control Theory and Technology 2022年2期

    Shiying Dong·Hong Chen·Lulu Guo·Qifang Liu·Bingzhao Gao

    Abstract In this paper, we propose a real-time energy-efficient anticipative driving control strategy for connected and automated hybrid electric vehicles (HEVs). Considering the inherent complexities brought about by the velocity profile optimization and energy management control, a hierarchical control architecture in the model predictive control (MPC) framework is developed for real-time implementation. In the higher level controller, a novel velocity optimization problem is proposed to realize safe and energy-efficient anticipative driving.The real-time control actions are derived through a computationally efficient algorithm.In the lower level controller,an explicit solution of the optimal torque split ratio and gear shift schedule is introduced for following the optimal velocity profile obtained from the higher level controller.The comparative simulation results demonstrate that the proposed strategy can achieve approximately 13% fuel consumption saving compared with a benchmark strategy.

    Keywords Connected and automated vehicle · Hybrid electric vehicle · Anticipative driving · Hierarchical control architecture·Real-time solution

    1 Introduction

    In recent years,serious environmental concerns have placed the energy efficiency of vehicles at the center of researchers’efforts [1]. Great leaps have been made in this area by employing a variety of strategies that reduce fuel consumption and carbon dioxide release.Among these strategies,the hybrid powertrain has been widely concerned [2]. A typical HEV usually consists of the internal combustion engine(ICE),the energy storage unit,and the electric motors.Both the engine and the motor can provide power either separately or jointly. The energy management strategy (EMS)aims at optimally distributing the power among the energy sources.To fully maximum energy-saving potential,the need for a real-time EMS for HEVs becomes a critical issue in vehicle control [3-5]. In addition to the electrified powertrain trend,connected and automated vehicles equipped with communication devices to access information from traffic big data yield significant improvements in the energy economy[6,7].To develop such connected and automated vehicle(CAV) applications, the problem can be formulated as an optimal control problem based on predicted traffic information [8,9]. The key issue is to solve, in real-time, the energy-efficient anticipative driving problem of a CAV by predicting future traffic conditions and responding proactively. As stated above, there are two key challenges in the area of energy-efficient anticipative driving control for connected and automated HEVs.

    The first challenge is to address the problem of automotive control in real time.This is crucial because the optimal control inputs need to be recalculated when the controlled vehicle obtains rapidly changing traffic information. During the past few decades,a large variety of EMSs have been studied from both control and optimization perspectives[10].Comprehensive overviews have also been published to provide comparisons of the strategies [11]. Rule-based (RB)EMSs, which are based on heuristics, intuition, or human expertise without prior knowledge of the trip, have been widely investigated in the automobile industry[12,13].The main advantage of an RB-EMS is its simplicity, although its optimality is lacking. Since optimization-based EMSs have a better theoretical energy economy[14],optimizationbased approaches,such as dynamic programming(DP)[15],Pontryagin’s minimum principle(PMP)[16,17],model predictive control (MPC) [18-21], and reinforcement learning(RL) [22,23], have received more attention. Moreover, the up-to-date numerical algorithm[24]has been investigated in automotive control.However,since the energy consumption model with discrete gears is usually nonlinear and complex,nonlinear optimization is usually time-consuming and not suitable for online implementation in general.Thus,a computationally efficient control strategy needs to be developed.

    The second challenge is whether the strategy can perfectly predicttheprecedingvehicleandeffectivelyusethepredicted information. However, such a prediction of the externally controlled vehicle in a dynamic traffic environment is not an easy task[25,26].Most of the existing studies,such as that on an adaptive cruise control(ACC)[27-29],use the information of the immediate preceding vehicle(iPV)and generate control action by ignoring the future situation.The simplest straightforward ways in which to predict the preceding vehicle (PV) are considering that it will continue maintaining the currently measured states in the prediction horizon[30].Obviously,theenergy-savingpotentialofanticipativedriving based on such an imperfect prediction may not be maximized in the long run. Due to the rapid development of vehicleto-everything(V2X)communication,precise information of preceding traffic can be easily obtained with negligible delay,and thus, a relatively accurate prediction of future traffic can be achieved.In a previous paper[31,32],more accurate velocity prediction models of the iPV are proposed using the current velocity and acceleration state information.

    Fig.1 Hierarchical energy-efficient anticipative driving control strategy for an HEV using preceding traffic information in the connected vehicle environment

    This paper proposes a hierarchical energy-efficient anticipative driving control strategy to find a real-time optimal solution of a connected and automated HEV, as shown in Fig.1. The higher and lower level controller share information with each other and solve two different problems that aim at improving the energy economy. In the higher level controller, based on predicted traffic information, a novel velocity trajectory optimization is proposed for the realization of highly anticipative driving. The lower level controller uses an explicit solution of the optimal torque split ratio and gear shift schedule for following the velocity trajectory obtained from the higher level controller in an energy-efficient manner.

    The paper contributions can be highlighted as follows:

    1) Considering the inherent complexities brought about by the velocity profile optimization and energy management control, a hierarchical control architecture in the MPC framework is proposed to reduce the complexity;

    2) Anovelvelocityoptimizationstrategyisproposedforsafe and energy-efficient anticipative driving through the early and effective anticipation of the predicted information;

    3) The real-time energy-efficient solutions of velocity optimization and energy management problem are generated by the computationally efficient algorithms,respectively.

    The comparative simulation results demonstrate (1) a significant improvement in the fuel economy of the proposed strategy and (2) an improvement of the computational efficiency of the proposed strategy against traditional numerical methods.

    The rest of this paper is organized as follows.In Sect.2,thepredictionoftheprecedingvehicleisdeveloped.Section3 describes the velocity optimization problem for anticipative driving in the higher level controller. In Sect.4, the lower level controller is formulated.In Sect.5,the effectiveness of the energy-efficient anticipative driving system is evaluated throughcomparativesimulations,andfinally,conclusionsare given in Sect.6.

    2 Prediction of the preceding vehicle

    The host vehicle driving is affected by both geographic information(such as traffic lights,road topologies,and road speed limits)and preceding vehicles.For convenience,the driving condition is mainly divided into two scenarios: one is the host vehicle with preceding vehicle, while the other is the host vehicle without preceding vehicles.

    2.1 Scenario I:host vehicle without preceding vehicles

    In this scenario,the host vehicle is mainly affected by the traffic light and road speed limit information,not by surrounding vehicles. To reduce energy consumption by preventing a vehicle from coming to a full stop at the intersections,we set the prediction horizon according to the remaining time within the green phase. The speed constraint of the velocity optimization problem is the maximum road speed limit.Through the above-mentioned approach, the predictive energy efficient control inputs with external traffic information in this scenario can be obtained. It is noted that the velocity optimization problem in this scenario is presented in our previous research[21].Thus,this paper mainly focuses on the energyefficient anticipative driving control problem in scenario II.

    2.2 Scenario II:host vehicle with preceding vehicle

    The future speed of the preceding vehicle is related to the traffic flow and driving style[32].To accurately predict the future speed information of the preceding vehicle, a multiplier [31] is introduced to estimate the acceleration of the preceding vehicleap(τ)forτ >t,which is defined as

    whereμ1>0 andμ2>0 express the sharpness of the function,vpis thespeedof theprecedingvehicle,andthen,γ1andγ2define an approximate range of velocities.As shown in Fig.2, the above function means that the acceleration of the leading vehicle approaches zero when the vehicle reaches a maximum speed limit or completely stops,and the vehicle never moves backward.As discussed above,through Eq.(1),we can predict the speed of the preceding vehicle.How to use the obtained information will be described in the following sections.

    Fig.2 Multiplier ?(vp(.))in the prediction model(1)

    3 Higher level controller:velocity optimization for anticipative driving

    Using the predicted traffic information, the velocity optimization problem for energy-efficient anticipative driving is formulated in this section.The control will be updated every fixed time(selected asΔt=50ms in this layer)as new traffic information becomes available.The real-time solution is generated by a fast algorithm that combines Pontryagin’s minimum principle(PMP)and a numerical method.

    3.1 Velocity optimization problem formulation

    For the velocity trajectory optimal problem, the objective is to find the optimal velocity profile to improve energy efficiency.In equations,find the control policyu:=[Ft(k),F(xiàn)b(k)]T∈R2,k∈[1,Np],such that

    where theξ1,ξ2,φare the weighting parameters and ~v fis the terminal speed.The terminal constraint is added to satisfy traffic constraints and will be discussed later.

    3.2 Constraints

    While using predicted traffic information, multiple constraints should be added to the velocity optimization problem, such as speed limitsv(k)≤vlim(s(k)), and safe car-following distance.Assuming that the maximum deceleration is estimated asah,maxbr=ap,maxbr=g,then in case of accidents,the traveling distances of the two vehicles are

    3.3 Fast numerical solution based on PMP

    3.3.1 Necessary conditions of optimality

    Consider the velocity trajectory problem and defining the Hamiltonian functionHas

    whereuo(k),xo(k),λo(k)are the optimal control trajectory,state trajectory and corresponding co-state trajectory,respectively.Since theHis not a function of the state variablesh(k),the optimal co-stateλo1(k)is a constant(λ1≡0).

    3.3.2 Explicit solution

    Based on the above necessary conditions,we can derive the relationship between the optimal statesxo,λoand the control variableuo.At time stepk,reformulate the Hamiltonian(11)as a two-dimensional polynomial as follows:

    Then,according to the optimal control law(13)and characteristics of quadratic functions, the explicit solution can be obtained by

    3.3.3 Bisection method for finding the optimal solution

    Based on the necessary conditions and explicit solution given above,we can easily derive the relationship between the initialstate{λ2(1),vh(1)}andtheterminalstateλ2(N+1).Ifthe initial value of the costate variableλ2(1)can be found such that the terminal conditionλ2(N+1)-2φ(vh(N+1)-~v f)=0,then the boundary value problem can be solved by the preceding optimal control law (20). As described above, the original optimization problem(3)is formulated as a problem of finding the roots of a nonlinear equation. The bisection method is used to find a feasible root(optimal initial costate variableλ2(1)),wherein the termination of the iteration can be defined as

    whererdenotes the number of iterations, and∈is the prescribed tolerance.The convergence analysis is presented in Appendix A.

    Fig.3 Topology of the parallel hybrid electric vehicle powertrain

    4 Lower level controller:torque split and gear shift optimization

    In this section,with a parallel HEV powertrain model illustrated is Fig.3,we provide an explicit solution of the optimal torque split ratio and the gear shift schedule under the optimal velocity obtained from the higher level controller during the time horizon[t,t+Δt].

    4.1 Problem formulation

    We define electric motor torqueTmas having a relationship with the total torque demandTdby introducing a ratioRt.Thus, there are four possible driving modes, namely pure thermal mode(Rt=0),pure electric mode(Rt=1),hybrid mode(0<Rt <1)and recharging mode(Rt <0).

    Given driving force demandFt(t)solved by the higher level controller in time lengthτ=[t,t+Δt]which is also the prediction horizon of the suboptimal problem,we find the optimal control law of this layer controlleru= [Rt,Ig]T,which minimizes energy consumption:

    Fig. 4 a Fuel consumption rate map of an engine Fe g/kWh. b Efficiency map of an electric motor

    whererwis the dynamic tire radius,I0is the final transmission ratio,αi,jare the fitting coefficients,andωis a vehicle parameter determined by its construction.

    4.1.2 Electric motor

    The motor power is modeled as a function of the mechanicalTmnmand the machine efficiencyηm,as follows:

    The system constraints for the above problem are summarized as follows:

    4.2 Explicit solution of the torque split

    For the purpose of avoiding frequent and skippable gear shift,during the control horizon[t,t+Δt],it is assumed that the gear ratio is set as constant. Thus, the possible gear shift commands are supposed as{-1,1,0},respectively,indicating downshifting,upshifting and sustaining.There are three optimalcontrollawsoftorquesplittingcorrespondingtoeach of the possible gear ratios.Consequently,the three gear positions determine three energy consumption values,J-1,J1andJ0for which the derivation is presented in detail as follows.

    The Hamiltonian function of this optimal problem is formulated as follows:

    Similar to the discussion in the previous section,the Hamiltonian functionHis a quadratic function of the control variablesu= [Rt,Ig]T. We can also obtain the explicit solutions according to the characteristics of quadratic functions as follows:

    where the control input constraintsRtor,maxandRtor,minare

    According to the above explicit control law, at current timet,the predictive energy consumption is obtained under a given gear ratio.Then,the optimal gear shift is determined by comparing these energy consumptions corresponding to the given gears,asI*g=arg min{J-1,J1,J0}.In this paper,the sampling time of the lower level controller isδt=10ms.

    5 Simulation results and discussion

    The simulation study is conducted in this section to demonstrate the validity of the proposed energy-efficient anticipative driving control strategy for connected and automated HEVs.

    5.1 Fuel economy

    In this section,a few comparative simulations are performed to evaluate the energy-economy performance of the proposed energy-efficient anticipative driving strategy. A standard ACC system with the EMS presented in Sect.4 is chosen as the benchmark strategy,wherein,if there is no preceding vehicle, then the host car accelerates to the setting speed,cruises until it approaches a preceding vehicle, follows the preceding vehicle and only considers safe distance.

    Table 1 and Fig.5 summarize the energy-saving capacity with different lengths of the prediction horizon(Np).To acquire convincing comparison results for fuel economy,the final SoC is equal to the initial value.From the results,we can see that with the increasing length of the prediction horizon,the fuel consumption decreases at first and then increases after the prediction steps exceed a certain value.The reasons for this phenomenon are as follows: (1) with the increas-ing length of the prediction horizon,the vehicle can respond proactively to reduce the fuel consumption by predicting the further future traffic conditions. (2) Unfortunately, the prediction error also increases with the increasing length of the prediction horizon, and when the prediction model cannot accurately estimate the traffic situations ahead, the energysaving potential will decrease.Therefore,in energy-efficient anticipative driving control,a proper prediction horizonNpshould be considered.

    Table 1 Energy consumption comparison

    An example of simulation results is shown in Fig.6.From the results, we can see that the vehicle with the standard ACC is controlled aggressively. However, the host vehicle controlled by the anticipative driving strategy accelerates and decelerates relatively gently.The reason for this difference is that host vehicle can proactively optimize vehicle speed by considering the preceding traffic conditions and trends.

    5.2 Computational efficiency

    For further evaluation of the improved performance in terms of computational efficiency,we compare the computational timeofsolvingtheoptimalproblemwithsequentialquadratic programming(SQP).It is noted that the computational efficiency of EMS in the lower level controller was discussed in our previous research[21],thus,this paper only focuses on the computational efficiency of the velocity optimization in higher-level controller.

    In this paper, the simulations are run on an Intel(R)Core(TM) i7-8550U CPU (1.8 GHz). An estimate of CPU computational time was obtained using the CPU command in MATLAB. Figure7 shows the mean values of computational time at each time step using different prediction stepsNpwith the same driving cycle in the simulation of Sect.5.1.The results indicate that the proposed method is more computationally efficient as compared to the SQP while ensuring computational accuracy (see Fig.8). The reasons for this improvement are as follows:(1)In the traditional numerical methods,such as SQP,the original optimal control problems are translated as nonlinear programming problems,wherein thedimensionsofthevariable(mu+mx)×Nparetoolarge.

    Fig.5 Fuel consumption and economy improvement

    Fig.6 Comparison in vehicle speed and car-following distance results(Np =60)

    Fig. 7 Computational efficiency the proposed method compared to SQP

    Here,mx,muare the dimensions of the state and control variables,respectively.Therefore,with the increasing length of the prediction horizon, the complexity grows quickly. (2)Unlike a numerical algorithm, the proposed method translates the original optimal problem into a nonlinear equation,that is, finding the optimalλ2(1)making the terminal conditionΓ(λ2(1)) <∈. Benefiting from this, the influence of the length of the prediction horizon is not the dimension of the problem. 3) Furthermore, at every time step,with known states {x(k),λ2(k)}, the optimal inputs can be obtained explicitly using (18) and (19), which can greatly accelerate the calculation process fromλ2(1)toΓ(λ2(1))and reduce the influence of the prediction horizon.

    Fig.8 Computational accuracy of the proposed method

    6 Conclusions

    In this paper,a hierarchical real-time energy-efficient anticipative driving control strategy for a connected and automated hybrid electric vehicle(HEV)is proposed.In the higher-level controller,with the predicted traffic information,the highly energy-efficient anticipative driving of a connected and automated HEV is realized by proactively optimizing the vehicle speed. In the lower level controller, an explicit solution of the optimal torque split ratio and gear shift schedule is introduced for following the energy-efficient velocity trajectory.The important findings in this research are detailed as follows:

    (i) Benefiting from the precise traffic prediction, the proposed energy-efficient anticipative driving control strategy can effectively achieve approximately 13%fuel consumption saving compared with a traditional ACC strategy.(ii) The results of computational efficiency reveal that the proposed strategy has the potential of real-time application.

    Futureworkswillfocusontherealvehicleimplementation of the proposed energy-efficient anticipative driving control strategy.

    Appendix A:Convergence analysis

    精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 黄片wwwwww| 亚洲色图av天堂| 免费av观看视频| 乱码一卡2卡4卡精品| 麻豆成人午夜福利视频| 丝袜美腿在线中文| 国产一区二区亚洲精品在线观看| 男女下面进入的视频免费午夜| 色网站视频免费| 亚洲av中文字字幕乱码综合| 亚洲人成网站在线播| 好男人在线观看高清免费视频| 亚洲精品久久午夜乱码| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩无卡精品| 一个人看的www免费观看视频| 秋霞伦理黄片| 久久精品国产鲁丝片午夜精品| 免费黄色在线免费观看| 日本欧美国产在线视频| 国精品久久久久久国模美| 高清日韩中文字幕在线| 国产精品av视频在线免费观看| 成年女人看的毛片在线观看| 高清视频免费观看一区二区 | 免费看a级黄色片| 人妻夜夜爽99麻豆av| 久久久久久久久久人人人人人人| 午夜视频国产福利| av黄色大香蕉| 久久99热6这里只有精品| 男人和女人高潮做爰伦理| 中国国产av一级| 久久综合国产亚洲精品| 99热网站在线观看| av又黄又爽大尺度在线免费看| www.色视频.com| 只有这里有精品99| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 啦啦啦韩国在线观看视频| 99久久精品一区二区三区| 国产精品国产三级国产专区5o| 国模一区二区三区四区视频| 舔av片在线| 插阴视频在线观看视频| 毛片一级片免费看久久久久| 舔av片在线| 国产一区二区亚洲精品在线观看| 美女黄网站色视频| 欧美bdsm另类| 看非洲黑人一级黄片| 免费看a级黄色片| 中文字幕av成人在线电影| 九九在线视频观看精品| 日韩国内少妇激情av| kizo精华| 国产欧美日韩精品一区二区| 真实男女啪啪啪动态图| 高清毛片免费看| 特大巨黑吊av在线直播| 99热这里只有是精品在线观看| 亚洲精品日本国产第一区| 精品久久久精品久久久| 国产av国产精品国产| 一级毛片久久久久久久久女| 激情 狠狠 欧美| 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 精品国产三级普通话版| 美女大奶头视频| 国产黄频视频在线观看| ponron亚洲| 亚洲av日韩在线播放| 大话2 男鬼变身卡| 亚洲国产高清在线一区二区三| 亚洲色图av天堂| 亚洲,欧美,日韩| 久久这里有精品视频免费| 国产一级毛片在线| 午夜免费激情av| 日韩大片免费观看网站| 97人妻精品一区二区三区麻豆| 亚洲精品乱久久久久久| 日日撸夜夜添| 高清日韩中文字幕在线| 黑人高潮一二区| 久久久成人免费电影| 亚洲一级一片aⅴ在线观看| 日本wwww免费看| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 精品亚洲乱码少妇综合久久| 久热久热在线精品观看| 国产视频内射| 水蜜桃什么品种好| 久久久久精品性色| 在线 av 中文字幕| 一区二区三区乱码不卡18| 嫩草影院入口| 一夜夜www| 综合色丁香网| 美女xxoo啪啪120秒动态图| 一级毛片电影观看| 狂野欧美激情性xxxx在线观看| 一级a做视频免费观看| 久久久久久伊人网av| 亚洲真实伦在线观看| 国产免费一级a男人的天堂| 亚洲色图av天堂| 最近中文字幕2019免费版| 免费观看av网站的网址| 亚洲精品乱码久久久久久按摩| 哪个播放器可以免费观看大片| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| xxx大片免费视频| 精品午夜福利在线看| 国产亚洲91精品色在线| 国产亚洲午夜精品一区二区久久 | 国产国拍精品亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 国产成人精品婷婷| 国产av不卡久久| or卡值多少钱| 久久99热这里只频精品6学生| 国产免费视频播放在线视频 | 熟妇人妻久久中文字幕3abv| 国产毛片a区久久久久| 伦理电影大哥的女人| 亚洲欧美一区二区三区黑人 | 亚洲丝袜综合中文字幕| 国产激情偷乱视频一区二区| 国产又色又爽无遮挡免| 精品不卡国产一区二区三区| 在线天堂最新版资源| 国产午夜精品论理片| www.av在线官网国产| 欧美日韩综合久久久久久| 天堂中文最新版在线下载 | 免费观看精品视频网站| 久久久久久久久中文| 国产亚洲精品av在线| 日韩国内少妇激情av| 国产白丝娇喘喷水9色精品| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| av.在线天堂| 午夜福利网站1000一区二区三区| 22中文网久久字幕| 婷婷色麻豆天堂久久| 2021天堂中文幕一二区在线观| eeuss影院久久| 免费播放大片免费观看视频在线观看| 色综合亚洲欧美另类图片| 国产成人91sexporn| 国产一区亚洲一区在线观看| 一边亲一边摸免费视频| 国产精品三级大全| 噜噜噜噜噜久久久久久91| 听说在线观看完整版免费高清| 日本爱情动作片www.在线观看| 久久韩国三级中文字幕| 禁无遮挡网站| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 街头女战士在线观看网站| 亚洲欧美日韩无卡精品| 欧美不卡视频在线免费观看| 黄片无遮挡物在线观看| 校园人妻丝袜中文字幕| 久久精品国产亚洲网站| 国产成人freesex在线| 日韩精品有码人妻一区| 男女视频在线观看网站免费| 精品一区二区三区视频在线| 成人欧美大片| 午夜日本视频在线| 嫩草影院新地址| 成年av动漫网址| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 国产精品三级大全| a级毛色黄片| 18+在线观看网站| 男人舔奶头视频| 18禁在线播放成人免费| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 精品久久久久久电影网| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 色网站视频免费| 午夜激情久久久久久久| 亚洲av免费高清在线观看| 国产日韩欧美在线精品| 精品国产露脸久久av麻豆 | 伊人久久国产一区二区| videos熟女内射| 久久久欧美国产精品| 国产精品一区二区在线观看99 | 精品国产三级普通话版| 久久久久久久午夜电影| 欧美日韩视频高清一区二区三区二| 亚洲国产精品成人综合色| 嫩草影院入口| 日韩av在线大香蕉| 最近手机中文字幕大全| 日本欧美国产在线视频| 五月天丁香电影| 免费在线观看成人毛片| 久久精品久久久久久久性| 又爽又黄无遮挡网站| 日本黄色片子视频| 成年女人在线观看亚洲视频 | 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 日本av手机在线免费观看| 国内精品宾馆在线| 欧美极品一区二区三区四区| 极品少妇高潮喷水抽搐| 国产高清三级在线| 午夜免费男女啪啪视频观看| 伊人久久精品亚洲午夜| 美女脱内裤让男人舔精品视频| 亚洲精品aⅴ在线观看| 亚洲真实伦在线观看| 亚洲欧美成人综合另类久久久| xxx大片免费视频| 成人漫画全彩无遮挡| 亚洲国产精品成人综合色| 2021少妇久久久久久久久久久| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 又黄又爽又刺激的免费视频.| 免费观看精品视频网站| 特级一级黄色大片| 九九在线视频观看精品| 少妇的逼水好多| 一个人看视频在线观看www免费| 国产午夜福利久久久久久| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 色吧在线观看| 亚洲最大成人av| 国产成人a∨麻豆精品| 成人性生交大片免费视频hd| 欧美 日韩 精品 国产| 午夜精品一区二区三区免费看| 成人午夜精彩视频在线观看| 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 少妇人妻一区二区三区视频| 国产精品国产三级国产av玫瑰| 天堂√8在线中文| 国产黄片视频在线免费观看| 国产亚洲av嫩草精品影院| 麻豆av噜噜一区二区三区| 乱码一卡2卡4卡精品| 久久久久免费精品人妻一区二区| av福利片在线观看| av播播在线观看一区| 大片免费播放器 马上看| 熟妇人妻不卡中文字幕| 成年av动漫网址| 成人午夜精彩视频在线观看| 国产精品.久久久| 久久久亚洲精品成人影院| 热99在线观看视频| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 国产乱来视频区| 免费黄频网站在线观看国产| 特级一级黄色大片| av在线蜜桃| 男人舔女人下体高潮全视频| 精品久久国产蜜桃| 在线观看免费高清a一片| 最近的中文字幕免费完整| 国产乱人偷精品视频| 18+在线观看网站| 国产精品久久久久久久电影| freevideosex欧美| 精品国产三级普通话版| 日本与韩国留学比较| 99久久精品热视频| 婷婷色综合大香蕉| 日韩av免费高清视频| 嫩草影院入口| 国产亚洲一区二区精品| 日韩视频在线欧美| 亚洲av二区三区四区| 日日啪夜夜撸| 国产欧美另类精品又又久久亚洲欧美| 国产av国产精品国产| 中文乱码字字幕精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 亚洲国产最新在线播放| 在线 av 中文字幕| av专区在线播放| 91aial.com中文字幕在线观看| 一区二区三区免费毛片| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 国产亚洲av片在线观看秒播厂 | 亚洲av成人av| 国产亚洲av嫩草精品影院| 免费看日本二区| 中国美白少妇内射xxxbb| 韩国高清视频一区二区三区| 中文字幕制服av| 久久这里有精品视频免费| 国产熟女欧美一区二区| 哪个播放器可以免费观看大片| 国产视频首页在线观看| 美女cb高潮喷水在线观看| 亚洲不卡免费看| 国产伦理片在线播放av一区| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 国产亚洲最大av| 老司机影院成人| 亚洲国产精品国产精品| 久久久久久久久久久免费av| 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 欧美潮喷喷水| 国产精品久久久久久久电影| 美女大奶头视频| 国产精品日韩av在线免费观看| 亚洲精品成人av观看孕妇| 内射极品少妇av片p| 99久久精品热视频| 婷婷色综合www| 一级爰片在线观看| 国产黄色免费在线视频| 色哟哟·www| 韩国高清视频一区二区三区| h日本视频在线播放| 精品久久久久久电影网| 97精品久久久久久久久久精品| 欧美激情久久久久久爽电影| 亚洲国产精品专区欧美| 午夜精品在线福利| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久 | 91在线精品国自产拍蜜月| 如何舔出高潮| 免费无遮挡裸体视频| 在线观看一区二区三区| 亚洲va在线va天堂va国产| 精品国产露脸久久av麻豆 | 欧美一区二区亚洲| 麻豆av噜噜一区二区三区| av在线亚洲专区| 只有这里有精品99| 国产精品女同一区二区软件| 国产精品一二三区在线看| 亚洲精品一二三| 人人妻人人澡欧美一区二区| 国产综合精华液| 免费看日本二区| 女人久久www免费人成看片| 亚洲国产av新网站| 久久久久九九精品影院| 国产精品麻豆人妻色哟哟久久 | 欧美激情在线99| 丝瓜视频免费看黄片| 色网站视频免费| 亚洲av男天堂| 2021少妇久久久久久久久久久| 亚洲在线自拍视频| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| a级毛色黄片| 高清视频免费观看一区二区 | 97精品久久久久久久久久精品| 18+在线观看网站| 国产精品福利在线免费观看| 一夜夜www| 亚洲精品国产av蜜桃| 欧美激情久久久久久爽电影| 亚洲av成人精品一二三区| 性色avwww在线观看| 精品久久久噜噜| 午夜福利高清视频| 乱人视频在线观看| 91精品国产九色| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 午夜精品在线福利| 亚洲av中文字字幕乱码综合| 2022亚洲国产成人精品| 日本av手机在线免费观看| 亚洲人成网站在线播| 99视频精品全部免费 在线| 国产欧美另类精品又又久久亚洲欧美| 麻豆成人午夜福利视频| 伦精品一区二区三区| 国产成人免费观看mmmm| 毛片女人毛片| 国产又色又爽无遮挡免| 久久国产乱子免费精品| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 日本黄大片高清| 2018国产大陆天天弄谢| 免费在线观看成人毛片| 免费大片黄手机在线观看| 亚洲av男天堂| 2021少妇久久久久久久久久久| 亚洲人成网站在线观看播放| 少妇人妻一区二区三区视频| 国产在视频线精品| 联通29元200g的流量卡| 街头女战士在线观看网站| 嫩草影院入口| 成人欧美大片| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 18+在线观看网站| 在线观看一区二区三区| 亚洲四区av| 国产伦理片在线播放av一区| 婷婷六月久久综合丁香| 在现免费观看毛片| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 能在线免费看毛片的网站| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 久久午夜福利片| 成人一区二区视频在线观看| 免费看a级黄色片| 精品久久久久久久末码| 日韩电影二区| 亚洲欧美日韩无卡精品| 日本欧美国产在线视频| 国产伦理片在线播放av一区| 一级毛片 在线播放| 亚洲一区高清亚洲精品| av天堂中文字幕网| 激情五月婷婷亚洲| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 69av精品久久久久久| 国产成人精品一,二区| 国产精品福利在线免费观看| 久久6这里有精品| 午夜福利视频1000在线观看| 色5月婷婷丁香| 亚洲av男天堂| 天天躁日日操中文字幕| 国产在线男女| 久久久久精品久久久久真实原创| 成年人午夜在线观看视频 | 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 日本av手机在线免费观看| 免费看不卡的av| 久久久国产一区二区| 亚洲天堂国产精品一区在线| av播播在线观看一区| 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| 亚洲精品第二区| 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 国内精品美女久久久久久| 午夜老司机福利剧场| 白带黄色成豆腐渣| 少妇裸体淫交视频免费看高清| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 亚洲精品456在线播放app| 天天躁夜夜躁狠狠久久av| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 精品久久久噜噜| 美女国产视频在线观看| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 成年版毛片免费区| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 欧美丝袜亚洲另类| 成年女人看的毛片在线观看| 一区二区三区四区激情视频| 亚洲性久久影院| 亚洲国产欧美在线一区| 国产大屁股一区二区在线视频| 日韩伦理黄色片| 韩国av在线不卡| 久久热精品热| 日本一二三区视频观看| 黄色日韩在线| 一夜夜www| 小蜜桃在线观看免费完整版高清| 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 国产三级在线视频| 三级毛片av免费| 麻豆久久精品国产亚洲av| 美女内射精品一级片tv| 国产成人freesex在线| 久久久久久国产a免费观看| 午夜久久久久精精品| 美女主播在线视频| 一级黄片播放器| 国产高潮美女av| 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 性色avwww在线观看| 久久久久久久久久久免费av| 91在线精品国自产拍蜜月| 日韩国内少妇激情av| 国精品久久久久久国模美| 特级一级黄色大片| 中国国产av一级| 久久久久免费精品人妻一区二区| 777米奇影视久久| 免费少妇av软件| 日韩三级伦理在线观看| 丝袜喷水一区| 99久久中文字幕三级久久日本| 国产大屁股一区二区在线视频| 日本wwww免费看| 又爽又黄a免费视频| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 一级毛片 在线播放| 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| 一级毛片aaaaaa免费看小| 色综合站精品国产| 日韩一区二区视频免费看| 亚洲精品色激情综合| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| 国产亚洲最大av| 亚洲性久久影院| av在线播放精品| 亚洲色图av天堂| 能在线免费看毛片的网站| 欧美三级亚洲精品| 高清欧美精品videossex| 日本黄大片高清| 午夜精品在线福利| 国产午夜福利久久久久久| 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 亚洲va在线va天堂va国产| 欧美日韩一区二区视频在线观看视频在线 | 女人被狂操c到高潮| 国产真实伦视频高清在线观看| 免费黄色在线免费观看| 亚洲av中文av极速乱| 非洲黑人性xxxx精品又粗又长| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 日韩精品青青久久久久久| 韩国av在线不卡| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 国产三级在线视频| 久热久热在线精品观看| 精品久久久久久久久亚洲| 成人亚洲精品av一区二区| 亚洲欧美成人综合另类久久久| 别揉我奶头 嗯啊视频| av免费在线看不卡| 久久久久久久亚洲中文字幕| 亚洲av福利一区| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 国产在视频线在精品| 精品午夜福利在线看| 联通29元200g的流量卡| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 久久午夜福利片| 人妻夜夜爽99麻豆av| 一级黄片播放器| av播播在线观看一区| 国产美女午夜福利| 亚洲国产精品sss在线观看| 午夜精品国产一区二区电影 | 免费看不卡的av|