• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hybrid genetic algorithm for the electric vehicle routing problem with time windows

    2022-07-06 05:53:30QixingLiuPengXuYuhuWuTielongShen
    Control Theory and Technology 2022年2期

    Qixing Liu·Peng Xu·Yuhu Wu·Tielong Shen

    Abstract Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.

    Keywords Electric vehicles·Vehicle routing·Battery SoC·Hybrid genetic algorithm

    1 Introduction

    Over the years, the research of logistics and supply chains is increasing. Distribution tasks are usually represented as vehicle routing problems(VRPs).The objective of VRPs is to minimize the total transportation costs of serving a set of customers through some paths starting and ending at the depot.In recent years, many variants of VRP have been proposed to combine the constraints and conditions of the real-world[1].The capacitated VRP(CVRP)[2]and the VRP with time windows (VRPTW) [3]. The CVRP indicates that vehicles have a limited loading capacity, while the VRPTW means that the customers must be serviced within a specified period time. VRPs in different scenarios have also attracted much attention[4,5].To reduce the impact on the environment,an intuitive method is to use less polluting vehicles,such as EVs.The study of this paper belongs to this field.

    EVs are one of the cleanest means of transportation,because they can be powered by sustainable and renewable energy sources [6]. Although in the early years, the high price of batteries and the short driving ranges once delayed the development of EVs.With the increasing battery life and rising fuel cost,EVs have gradually become one of the main research fields in the automotive industry. In some large companies, such as DHL, EVs have been used for urban transportation.

    Most electric VRPs (EVRPs) only consider the energy consumption of paths and charging at the power stations with insufficient energy,without terrain factors.Within our work,we take into account the EVRPTW traveling on the terrain with grades. The EVs need to accelerate to overcome the grade resistance, and their energy consumption intends to increase.Furthermore,the EVs need to reduce the downhill speed such that they can partially recover the kinetic energy lostduringdeceleration,whichiscalledregenerativebraking.Our objective is to minimize the total energy consumption,while a fleet of EVs serves a set of customers.

    The main contributions of this paper are:1)Based on the terrain with grades,we formulate the EVRPTW as a mixed integer programming model.Although the terrain modeling is not accurate enough, it does have a certain practical significance for the study of EVs driving on different slopes.2)A hybrid GA method is proposed to solve the EVRPTW.The addition of the 2-opt algorithm to the traditional GA can improve the equality of solutions.In addition to the contribution made in methodology,this paper mainly aims to propose a problem with practical motivation and design a comprehensive and customized solution to the problem. Extensive numerical studies on test instances demonstrate that the proposed method is very effective.

    This paper is organized as follows.The literature review is in Sect.2.In Sect.3,problem formulation and some definitions are presented. In Sect. 4, we introduce our method for solving the EVRPTW.Simulation results on benchmark sets and the comparison experiments are shown in Sect. 5.The conclusions of this paper are given in Sect.6.

    2 Literature review

    Electric VRP(EVRP)is one of the research hotspots of VRP over the past few years.Linetal.[7]studied a general EVRP and considered the vehicle load effect on battery consumption.The objective was to minimize the total travel cost and energy cost as well as number of EVs.Samueletal.[8]investigated an EVRP with the energy consumption uncertainties.The objective was to determine the minimum cost delivery routes.Liaoetal.[9]also studied the EV shortest travel time path problem.

    From the above discussion,the objective of EVRP is generally minimizing the total travel cost. There are still some variants of EVRP [10]. One of the most important variants is EVRP with time windows(EVRPTW).Guoetal.[11]addressed an EVRP with time windows.The authors considered the driving cost and punishment cost for time windows violation simultaneously.Schneideretal.[12]considered the constraints on vehicles and customer time windows.The aim was to minimize the number of employed vehicles and total travel distance on a flat terrain. Shaoetal. [13] considered the routes, charging plan and driving paths of EVRP. The objective function consists of vehicle fixed cost,travel cost and charging cost.The driving process of EVs in this problem considered the terrain without grades.Frogeretal.[14]studied the EVRP with capacitated charging stations,which was to minimize the total driving,charging and waiting time.

    The solution methods of EVRPTW are usually heuristic approaches[15,16].To solve this proposed problem,we first make a comparison between GA and SA on the test instances using Solomon’s data sets. Based on the simulation results betweenGAandSA,wedevelopahybridGAwhichcombine the GA and 2-opt algorithm.Moreover,numerical simulation results show the better performance of our method.

    To the authors’ knowledge, the topic of this paper, the EVRPTW with terrain grades, has not been studied previously by other researchers.

    3 Problem formulation and definition

    In the EVRPTW,let the depot be located at node 0,the set of customers is denoted byN1={1,...,r},andNorepresents the other nodes along the paths.The set of all nodes is thenN={0}∪N1∪No.The set of all edges is denoted byE?N×Nsuch that an incomplete undirected graphG=(N,E)represents a road network of EVRPTW.Each edgeei j∈Eassociates with an actual distanceLi j.The demand of each customeriis denoted bydi,which needs to be served as soon as possible.Moreover,the time window of each customeriis denoted by [ei,li], whereeiandlirepresent the earliest and latest time to start to service the customeri.The depot also has a time window[e0,l0],indicating that EVs leave the depot no earlier thane0and return no later thanl0.

    In our assumptions, the set of EVs is denoted byK={1,...,k0}. All EVs are assumed to be homogeneous, andQdenotes the loading capacity of each EV,qrepresents the electricity capacity of each EV. In particular, eachkth EV with battery SoC at nodeiis denoted by SoCki.The battery SoC consumed of unit distance is denoted byΔSoC.Therefore,the battery SoC consumed of edgeei jis represented asLi j·ΔSoC.

    As is known to all, the terrain of the road network on a real-world situation is complicated. To be closer to reality,we consider each EV with dynamic of SoC traversing the edgeei j∈Eis as follows:

    whereαi jis the average terrain grade from nodeito nodej.f(αi j)as a function of grade and electricity consumption from nodeito nodej.Let ˉαbe the critical value of average terrain grade.Iff(αi j)>ˉα,which indicates the EV is driving uphill;when thef(αi j)= ˉα,the EV travels on a flat terrain;iff(αi j)<ˉα,the EV is driving downhill.Accordingly,the velocity of EV from nodeito nodejis denoted byv(αi j).

    The decision variablesxi jk(i/=j,ei j∈E) are binary variables that indicate whether thekth EV travels directly from nodeito nodej. If thekth EV travels directly from nodeito nodej,xi jk= 1, and otherwise is 0. We also let a continuous variableyikbe the arrival time at customeriof thekth EV that servesi.The mixed integer programming model for EVRPTW is as follows:

    Fig.1 Flowchart of hybrid GA

    Equation(2)indicates the minimization of total electricity consumption of EVs. Constraints (3) require that each customer is assigned to exactly one EV.Constraints(4)state that to arrive at and leave each customer with the same EV.Constraints(5)ensure that EVs depart from the depot should eventually return to the depot.Constraints(6)guarantee that the vehicle capacity must be respected.Constraints(7)make sure that the number of served EVs should not exceed the maximum number of EVs used at the depot.

    4 A hybrid GA solution method for the EVRPTW

    As a solution method for EVRPTW,we propose a hybrid GA that consists of GA and 2-opt.GA was first proposed by Holland in 1975[17].It is an intelligent optimization algorithm according to the principle of“genetic inheritance”and“natural selection”in the process of biological evolution in nature.When GA is solving combinatorial optimization problem,the feasible solution of the problem forms chromosomes in some way, and some individuals are randomly selected to generate the initial population. Then, the objective function of combinatorial optimization problem is transformed into a fitness function in a certain way, and individuals are selected by calculating the fitness function value of individuals. Finally, individuals are finally selected, crossed,and mutated to produce individuals with higher fitness values. By continuous reproduction, the offsprings are more adaptable to the environment until the desired termination conditions appear. Thus, the optimal solution for the population is formed.

    Fig.2 Practicable chromosome representation

    However,the basic GA has poor local search ability,making it easy to fall into local optima prematurely. Therefore,the 2-opt algorithm as a pair-wise interchange heuristic[18]is added to solve the EVRPTW in this paper so as to improve the quality of the solution.

    Figure 1 presents the flowchart of our method.

    4.1 Chromosome representation

    A solution to the problem is presented by an integer string of lengthn+k0-1,wherenis the number of nodes,k0represents at most the number of EVs used.We use a sampling area as an instance to indicate the encoding process.All paths are encoded together and a practicable chromosome representation is shown in Fig.2.

    In Fig.2,we suppose 3 customers that are black circles;5 nodes along the path which are red circles;at most 1 EV used and the only depot. Then the chromosome can decode one delivery path:0 →5 →4 →7 →3 →1 →6 →2 →8.

    4.2 Fitness function

    Fitness function plays an important role in GA.GA does not rely on external factors in evolutionary search,instead solely on the fitness function. The fitness value is the main factor to describe the performance of individuals.According to the size of fitness value,the survival of the fittest is carried out on individuals.Fitness function is the driving force of GA.

    In general,the larger the fitness value is,the better individuals with higher fitness values are, and the individuals are more likely to be inherited by the next generation. The mapping between the objective function of the optimization problem and the fitness value of individuals.Within this work,the objective function is to minimize the total energy consumption,thus the fitness function is defined as follows:

    4.3 Population initialization

    Constructing appropriate initial solutions can aid the algorithm in quickly reaching optimal solutions. We first randomly select a customerjfrom all customers,wherej∈N1;at the same time,initialize the number of EVs usedk←1;form a sequence of customers[j,j+1,...,n,1,...,j-1].The number of traversal customers isr,add a customerS(i)to some path,here the loading capacity of EVs must be taken into account. If the path satisfies the loading capacity, we should consider the time window constraints and insert it into an appropriate position.If the path does not satisfy the loading capacity of EVs,we store the customers on the current path,then update another EVk+1.

    After constructing the initial solutions,the process is the same as the chromosome representation.As a result,the population initialization can be completed.

    4.4 Selection

    We let roulette be the method of our selection. The purpose of roulette is that the probability of each individual being selected is directly proportional to the fitness value.We denote some individual asvi, then the selection probability of this individual is

    From Eq.(15),we can see that the higher the fitness value of an individual,the greater the selection probability of the corresponding individual.

    Fig.3 Crossover operator

    4.5 Crossover

    The crossover operator in this paper is order-based crossover(OBX).In the first step,we randomly select some positions in parents,the position can be discontinuous,but the two parent(yellow)chromosomes are selected at the same position.Here,we choose the position 2,4,and 6,and take parent 1 as an example,and the process of parent 2 is the same.The next step is to find the selected genes of parent 1 in parent 2,while leaving the positions of other unselected genes unchanged.Finally,put the selected genes in parent 1 into the offspring(green) in order. Another offspring can be obtained in the same way.The process of crossover is shown as Fig.3.

    4.6 Mutation

    In this paper,we adopt mobile mutation as the mutation operator.The mobile mutation is also randomly select a gene,we choose 4; moving one random digit left or right, we move the gene 4 two digits left.The process of mutation is shown in Fig.4.

    4.7 2-opt algorithm

    2-opt algorithm is an exchange-based algorithm, which is one of the local search algorithms.Given a feasible solution,randomly select 2 positions,reverse the selected segment,as long as the operation can reduce the total power consumed by the EV,the 2-opt algorithm will operate repeatedly until it can no longer be updated,and then a local optimal solution will be generated.In our problem,we select 3 and 6,reverse this selected segment,and a new individual is generated;and by comparing the total electricity consumption of the new generated individual with that of the original individual,the smaller one is chosen.The process of the 2-opt algorithm is shown in Fig.5.

    Fig.4 Mutation operator

    Fig.5 Process of 2-opt algorithm

    5 Numerical simulation results

    In light of the above our method procedure,the hybrid GA is implemented using Matlab 2016.In this section,we use three size instances VRP10,VRP30,VRP50,which are captured in the Solomon’s data sets(https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/). VRP10 represents that the number of nodes is 10,which contains the nodes of customers and the nodes along the path.VRP30 and VRP50 are represented in the same way.Each size instance we give the comparison simulation results of GA,SA and the hybrid GA.

    Before the numerical simulation,we first consider Eq.(1),for simplify,letf(αi j)= 1+αi jbe a linear function,andˉα=1.The black arrows and red arrows represent the grades of uphill and downhill,respectively.In hybrid GA,the maximum iteration is set to 100,the number of EVs at the depot is set to 3,the probability of crossover is 0.95,the probability of mutation is 0.05,and the electricity capacity of each EV is 50kWh.

    Fig.6 Distribution of each node and the given terrain grades

    Fig.7 Simulation results of small size instances from c101 to c103

    Fig.9 Simulation results of large size instances from c101 to c103

    Figure6 shows the distribution of each node in VRP30,and by using a segment as an example to indicate the average terraingrades,other terrains areset inthesameway.Thenode customer we set are 2,5,8,14,15,18,22,25,27.Figures 7,8 and 9 show that three size instances simulated using three Solomon’s data sets from c101 to c103 can be achieved by our method.

    In Fig.7,the small size instance contains 10 nodes,where node 2, 3, 8 are customers. Three data sets from c101 to c103 give the optimal delivery scheme only needs one EV.Figure8 shows the optimal schemes of medium size instance with three data sets from c101 to c103.It can be observed that the optimal schemes need three EVs and different data sets because of different delivery routes according to the settings of data sets. Figure9 illustrates the large size instance with three size instances from c101 to c103.The node customer we set are 2,5,8,14,15,18,22,25,27,31,35,40,41,45,and 49.With the increase of nodes,the number of EVs usedby the optimal delivery schemes becomes greater, and the optimal delivery routes become more complex.

    Table 1 Comparison results between GA, SA and Hybrid GA with seven data sets of VRP10

    From Tables 1,2 and 3,the simulation results from small size instances to large size instances are given, each size instance contains the results of seven data sets. Column 1 gives the three methods,column 2 to 8 shows the test results from data set c101 to c107,two decimal places are reserved for each test result,and the unit of test results is kWh.

    Table 2 Comparison results between GA,SA and Hybrid GA with seven data sets of VRP30

    Table 3 Comparison results between GA,SA and Hybrid GA with seven data sets of VRP50

    In Table 1, we can see that each method is able to solve the small size of our problem.Furthermore,each test result is extremely close to our proposed approach,which is slightly better.

    Table 2 shows the test results of medium size instances.The simulation results indicate that the results of SA seem not so good,and the results of GA are much better than SA.However, the results of our method are still slightly better than GA.From the numerical results,our approach improves the results of SA by over 70% and the results of GA are improved by about 30%on average.

    ThetestresultsoflargesizeinstancesareshowninTable3.We can see that when the number of iterations of SA is 100,the results of some data sets cannot run out(INF in Table 3),i.e., some problem constraints are not satisfied. Only when the number of iterations is large(such as 700),can appropriate results be run out.Compared with the 100 iterations of the previous small and medium size instances,when the number of nodes of SA is larger,the solution time becomes longer and the solution quality is not so good.Although the test results of GA are better than those of SA, the improvement of the results is not significant.Our method shows its superiority in large size instances.The results of SA are improved by about 78%,and the results of GA are improved by about 56%on average.

    It can be seen that when the number of nodes is larger,our method presents better solution quality.Compared with the simulation results of SA and GA, the performance of our method improves more and more with the increase of the number of nodes, which reflects the advantages of our method.

    6 Conclusions

    In this paper, we present a new vehicle routing problem to determine consumption-optimal paths for EVs. We formulate the problem as a mixed integer programming model with customer time windows,loading capacity of EVs and terrain grades are incorporated to represent the real-world requirements.

    We develop a hybrid GA algorithm that incorporates a 2-opt algorithm into GA for improving the performance of solutions.In numerical simulation results,we first use three Solomon’s data sets to verify our method, and construct a comparison simulation results between SA,GA and hybrid GA.With the increase of node number,the simulation results illustrate that our method has a better performance of the solution.

    Thus,our method seems able to successfully apply to the routing decisions for EVs employed in real-world delivery operations.Thiscanalsosupportthespreadingofgreenlogistics practices.

    Acknowledgements The authors would like to acknowledge the Toyota Motor Corporation for supports in this work.

    免费少妇av软件| 少妇被粗大猛烈的视频| av一本久久久久| 久久国内精品自在自线图片| 老女人水多毛片| 久久久久久久久久久免费av| 欧美日韩精品成人综合77777| 国产精品欧美亚洲77777| 高清欧美精品videossex| 亚洲精品中文字幕在线视频| 一个人看视频在线观看www免费| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 日韩一区二区三区影片| 精品一区二区三卡| 国产成人精品久久久久久| 精品国产一区二区久久| 美女福利国产在线| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 少妇丰满av| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 少妇精品久久久久久久| 久久久久久久久久人人人人人人| 色吧在线观看| 欧美日韩av久久| 国产免费又黄又爽又色| 高清午夜精品一区二区三区| 久久久久久久久大av| 大片免费播放器 马上看| 久久久久久久国产电影| 亚洲经典国产精华液单| 久久热精品热| 亚洲精品视频女| 免费观看a级毛片全部| 日韩中文字幕视频在线看片| 亚洲精品乱久久久久久| 99热网站在线观看| 一级毛片 在线播放| 亚洲av男天堂| 有码 亚洲区| 亚洲色图综合在线观看| 国产成人a∨麻豆精品| 国产黄色视频一区二区在线观看| 亚洲精品456在线播放app| av在线app专区| 久久久久久久亚洲中文字幕| 精品人妻在线不人妻| 人人妻人人爽人人添夜夜欢视频| videosex国产| 男女啪啪激烈高潮av片| 一区二区av电影网| 亚洲综合色网址| 国语对白做爰xxxⅹ性视频网站| 亚洲少妇的诱惑av| 老司机影院毛片| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 一级毛片 在线播放| 插阴视频在线观看视频| 国产色婷婷99| 边亲边吃奶的免费视频| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| av专区在线播放| 天天操日日干夜夜撸| 国产男人的电影天堂91| 在线免费观看不下载黄p国产| 18+在线观看网站| 建设人人有责人人尽责人人享有的| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 免费久久久久久久精品成人欧美视频 | 免费观看av网站的网址| 亚洲内射少妇av| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 美女视频免费永久观看网站| 岛国毛片在线播放| 99热网站在线观看| 水蜜桃什么品种好| 在线精品无人区一区二区三| 一区在线观看完整版| 日日摸夜夜添夜夜爱| 欧美成人午夜免费资源| 高清黄色对白视频在线免费看| 日韩av免费高清视频| 丝袜脚勾引网站| av视频免费观看在线观看| 最新的欧美精品一区二区| 9色porny在线观看| av黄色大香蕉| 男女啪啪激烈高潮av片| 久久 成人 亚洲| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av| 99久久中文字幕三级久久日本| 夜夜骑夜夜射夜夜干| 国产成人精品一,二区| 天天操日日干夜夜撸| 久久久精品94久久精品| 中文字幕制服av| 欧美最新免费一区二区三区| 午夜久久久在线观看| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 久久久久久久久大av| av不卡在线播放| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级| 高清毛片免费看| 国产av码专区亚洲av| 国产一区亚洲一区在线观看| 一边摸一边做爽爽视频免费| 欧美激情国产日韩精品一区| 色吧在线观看| 青春草国产在线视频| 亚洲精品美女久久av网站| 99热国产这里只有精品6| 啦啦啦视频在线资源免费观看| 亚洲精品一区蜜桃| 寂寞人妻少妇视频99o| 97超视频在线观看视频| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 日日撸夜夜添| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 国产亚洲最大av| 香蕉精品网在线| 久久国产精品大桥未久av| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 大香蕉久久网| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 国产高清国产精品国产三级| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲 | 亚洲综合色网址| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩电影二区| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 老司机影院毛片| 久久久国产一区二区| 久久人人爽人人片av| 国产成人精品福利久久| √禁漫天堂资源中文www| 嘟嘟电影网在线观看| 色网站视频免费| 亚洲欧洲日产国产| 久久精品国产鲁丝片午夜精品| 成人毛片60女人毛片免费| 9色porny在线观看| 日韩视频在线欧美| 亚洲美女视频黄频| 国产精品国产三级国产专区5o| 欧美激情极品国产一区二区三区 | av不卡在线播放| 亚洲精品一二三| 最新中文字幕久久久久| 少妇 在线观看| 欧美97在线视频| av有码第一页| 亚洲精品视频女| 啦啦啦在线观看免费高清www| 一本大道久久a久久精品| 国产精品蜜桃在线观看| 国产色婷婷99| 亚洲av二区三区四区| 亚洲精品自拍成人| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 亚洲国产精品国产精品| 黄色一级大片看看| 男人操女人黄网站| 久久综合国产亚洲精品| 最近的中文字幕免费完整| 成年女人在线观看亚洲视频| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 热re99久久国产66热| 免费黄网站久久成人精品| 久久99一区二区三区| 9色porny在线观看| 国产日韩欧美在线精品| 精品国产一区二区久久| 成人二区视频| 一级,二级,三级黄色视频| 男女国产视频网站| 99热6这里只有精品| 人妻 亚洲 视频| freevideosex欧美| 热99国产精品久久久久久7| 少妇猛男粗大的猛烈进出视频| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 亚洲四区av| 女的被弄到高潮叫床怎么办| 免费观看无遮挡的男女| 秋霞在线观看毛片| 国产色婷婷99| 婷婷色麻豆天堂久久| 午夜久久久在线观看| a级毛片黄视频| 国产在线一区二区三区精| 国产在线视频一区二区| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 国产精品不卡视频一区二区| 91精品三级在线观看| 熟女人妻精品中文字幕| 精品人妻在线不人妻| av有码第一页| 黑人高潮一二区| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 国产永久视频网站| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 黄色欧美视频在线观看| 男人操女人黄网站| 亚洲四区av| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 精品久久久精品久久久| 久久精品国产亚洲av天美| 亚洲成人av在线免费| 观看av在线不卡| 久久综合国产亚洲精品| 亚洲成人一二三区av| 国产精品一区二区三区四区免费观看| 菩萨蛮人人尽说江南好唐韦庄| 插阴视频在线观看视频| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 妹子高潮喷水视频| av有码第一页| 成人国语在线视频| 亚洲国产精品成人久久小说| kizo精华| 一区在线观看完整版| 午夜福利视频精品| 丁香六月天网| 日本-黄色视频高清免费观看| 中文欧美无线码| 久久99一区二区三区| 免费久久久久久久精品成人欧美视频 | 永久免费av网站大全| 少妇的逼好多水| 国产精品久久久久成人av| 国产亚洲一区二区精品| 在线观看一区二区三区激情| 大陆偷拍与自拍| 亚洲av男天堂| 五月天丁香电影| 少妇被粗大的猛进出69影院 | 在线天堂最新版资源| 免费久久久久久久精品成人欧美视频 | 亚洲欧洲日产国产| 在线观看www视频免费| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 国产成人aa在线观看| 国产成人精品福利久久| 免费不卡的大黄色大毛片视频在线观看| 下体分泌物呈黄色| 伊人久久精品亚洲午夜| 亚洲av男天堂| 简卡轻食公司| 久久亚洲国产成人精品v| 99热国产这里只有精品6| 久久久久精品性色| 熟女av电影| 国产午夜精品久久久久久一区二区三区| av国产精品久久久久影院| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 国产乱来视频区| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| 国产毛片在线视频| 一区二区av电影网| 在线 av 中文字幕| 赤兔流量卡办理| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 国产午夜精品久久久久久一区二区三区| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 能在线免费看毛片的网站| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 欧美人与善性xxx| 搡老乐熟女国产| 午夜免费观看性视频| 日韩中文字幕视频在线看片| 精品久久久噜噜| 亚洲综合色惰| 新久久久久国产一级毛片| 少妇丰满av| 飞空精品影院首页| 最黄视频免费看| 亚洲av综合色区一区| 最新的欧美精品一区二区| 国产 精品1| 满18在线观看网站| 2021少妇久久久久久久久久久| 色网站视频免费| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 国产精品不卡视频一区二区| 黑人欧美特级aaaaaa片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费观看av网站的网址| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 大片免费播放器 马上看| 精品酒店卫生间| av国产精品久久久久影院| 精品少妇黑人巨大在线播放| 黄色怎么调成土黄色| 亚洲久久久国产精品| 成人漫画全彩无遮挡| 18+在线观看网站| 激情五月婷婷亚洲| 日韩成人伦理影院| 校园人妻丝袜中文字幕| 国产精品一区二区三区四区免费观看| av网站免费在线观看视频| 国产精品久久久久成人av| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 亚洲成人av在线免费| 国产免费一区二区三区四区乱码| 色网站视频免费| 一区二区三区免费毛片| 插逼视频在线观看| 国产亚洲精品久久久com| av.在线天堂| 免费观看的影片在线观看| 插逼视频在线观看| 女性被躁到高潮视频| 国产成人精品无人区| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线| 99久久精品国产国产毛片| 免费观看av网站的网址| a 毛片基地| 熟女电影av网| 日本欧美国产在线视频| 男的添女的下面高潮视频| 欧美日韩av久久| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 亚洲国产欧美日韩在线播放| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 极品人妻少妇av视频| 极品少妇高潮喷水抽搐| 大码成人一级视频| 夜夜爽夜夜爽视频| 亚洲精品国产色婷婷电影| 国产不卡av网站在线观看| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 久久国产精品大桥未久av| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久电影| 老司机影院成人| 人成视频在线观看免费观看| 51国产日韩欧美| 久久久午夜欧美精品| 国产亚洲一区二区精品| 日韩伦理黄色片| 欧美成人午夜免费资源| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 99热国产这里只有精品6| 18禁观看日本| 久久久久久久久大av| 国产一区有黄有色的免费视频| 久久久久视频综合| 一区二区日韩欧美中文字幕 | 免费观看性生交大片5| 免费大片黄手机在线观看| 少妇猛男粗大的猛烈进出视频| 成人免费观看视频高清| 99九九在线精品视频| 国产av码专区亚洲av| 热99国产精品久久久久久7| 美女大奶头黄色视频| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 久久精品久久久久久久性| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 热99久久久久精品小说推荐| 久久99热这里只频精品6学生| 女性生殖器流出的白浆| 一本久久精品| 久久热精品热| 国产一级毛片在线| 亚洲伊人久久精品综合| av在线app专区| 日韩一本色道免费dvd| 能在线免费看毛片的网站| 九草在线视频观看| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| 国产精品免费大片| 亚洲欧美日韩另类电影网站| 2021少妇久久久久久久久久久| 久久狼人影院| 男人操女人黄网站| 老司机影院成人| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 涩涩av久久男人的天堂| 一区在线观看完整版| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 亚洲国产精品专区欧美| 久热久热在线精品观看| 精品久久久久久电影网| 国产亚洲一区二区精品| 国产国语露脸激情在线看| 久久久国产欧美日韩av| 国产亚洲最大av| 亚洲在久久综合| 成人无遮挡网站| 在线看a的网站| 人妻系列 视频| 欧美日韩精品成人综合77777| 国产日韩欧美亚洲二区| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 99久久综合免费| 日本免费在线观看一区| 99热6这里只有精品| 男人操女人黄网站| av在线老鸭窝| 国国产精品蜜臀av免费| 日本黄色日本黄色录像| 国内精品宾馆在线| 蜜臀久久99精品久久宅男| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片| 国产精品人妻久久久久久| 啦啦啦视频在线资源免费观看| 在线天堂最新版资源| 少妇人妻精品综合一区二区| 又大又黄又爽视频免费| 国产免费又黄又爽又色| 人人妻人人添人人爽欧美一区卜| 欧美日韩综合久久久久久| 熟女人妻精品中文字幕| 少妇丰满av| 午夜影院在线不卡| 9色porny在线观看| 国产男女超爽视频在线观看| 国产精品一区www在线观看| 日本av免费视频播放| 久久精品国产鲁丝片午夜精品| 九色成人免费人妻av| 麻豆成人av视频| 日韩欧美精品免费久久| 亚洲精品视频女| 在线亚洲精品国产二区图片欧美 | 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频| 精品一区二区三卡| 最近中文字幕高清免费大全6| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 美女国产视频在线观看| 国产又色又爽无遮挡免| 国产精品久久久久久av不卡| 久久免费观看电影| 免费黄网站久久成人精品| 亚洲av福利一区| 精品少妇黑人巨大在线播放| 日韩免费高清中文字幕av| 国产极品天堂在线| 国产乱人偷精品视频| 精品久久久久久久久av| 大香蕉久久网| 水蜜桃什么品种好| 国产极品粉嫩免费观看在线 | 女人精品久久久久毛片| 国产精品人妻久久久久久| 18禁在线无遮挡免费观看视频| 男的添女的下面高潮视频| 中文字幕制服av| 在线观看三级黄色| 免费看光身美女| av不卡在线播放| 久久99蜜桃精品久久| 免费黄频网站在线观看国产| 一级二级三级毛片免费看| 色网站视频免费| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 国产精品国产av在线观看| 一区二区三区免费毛片| 视频在线观看一区二区三区| 亚洲少妇的诱惑av| 美女xxoo啪啪120秒动态图| 欧美最新免费一区二区三区| 国产日韩欧美视频二区| av免费在线看不卡| 久久av网站| av不卡在线播放| 日本色播在线视频| 黄色欧美视频在线观看| 免费观看无遮挡的男女| 久久免费观看电影| 老熟女久久久| av天堂久久9| 国产精品久久久久久久电影| 日本色播在线视频| 欧美97在线视频| av在线播放精品| 母亲3免费完整高清在线观看 | 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 中文字幕人妻丝袜制服| 香蕉精品网在线| 国产国拍精品亚洲av在线观看| 少妇高潮的动态图| 亚洲欧美日韩另类电影网站| 99热网站在线观看| 国产精品99久久久久久久久| 男人爽女人下面视频在线观看| 欧美人与性动交α欧美精品济南到 | 欧美另类一区| 看十八女毛片水多多多| 国产精品国产三级国产专区5o| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| av福利片在线| 国产精品国产av在线观看| 国产在视频线精品| 欧美日韩视频精品一区| 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 婷婷色麻豆天堂久久| tube8黄色片| xxxhd国产人妻xxx| 久久久久久久久久久久大奶| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 夜夜看夜夜爽夜夜摸| 婷婷色av中文字幕| 男女边吃奶边做爰视频| 美女脱内裤让男人舔精品视频| 日本黄色片子视频| 少妇的逼好多水| 亚洲成人av在线免费| 热re99久久精品国产66热6| 亚洲综合色网址| 人人妻人人澡人人爽人人夜夜| 亚洲精品成人av观看孕妇| 日韩中文字幕视频在线看片| 国产精品.久久久| 亚洲精品第二区| 国产一区亚洲一区在线观看| 国产白丝娇喘喷水9色精品| 99热全是精品| 啦啦啦在线观看免费高清www| 国产精品一区二区在线观看99| 韩国av在线不卡| 中文精品一卡2卡3卡4更新| 亚洲经典国产精华液单| 99热这里只有是精品在线观看| 亚洲综合色网址| 久久国产精品大桥未久av| 啦啦啦啦在线视频资源| 日本猛色少妇xxxxx猛交久久| 人体艺术视频欧美日本| 嘟嘟电影网在线观看| 狂野欧美激情性xxxx在线观看|