• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hybrid genetic algorithm for the electric vehicle routing problem with time windows

    2022-07-06 05:53:30QixingLiuPengXuYuhuWuTielongShen
    Control Theory and Technology 2022年2期

    Qixing Liu·Peng Xu·Yuhu Wu·Tielong Shen

    Abstract Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.

    Keywords Electric vehicles·Vehicle routing·Battery SoC·Hybrid genetic algorithm

    1 Introduction

    Over the years, the research of logistics and supply chains is increasing. Distribution tasks are usually represented as vehicle routing problems(VRPs).The objective of VRPs is to minimize the total transportation costs of serving a set of customers through some paths starting and ending at the depot.In recent years, many variants of VRP have been proposed to combine the constraints and conditions of the real-world[1].The capacitated VRP(CVRP)[2]and the VRP with time windows (VRPTW) [3]. The CVRP indicates that vehicles have a limited loading capacity, while the VRPTW means that the customers must be serviced within a specified period time. VRPs in different scenarios have also attracted much attention[4,5].To reduce the impact on the environment,an intuitive method is to use less polluting vehicles,such as EVs.The study of this paper belongs to this field.

    EVs are one of the cleanest means of transportation,because they can be powered by sustainable and renewable energy sources [6]. Although in the early years, the high price of batteries and the short driving ranges once delayed the development of EVs.With the increasing battery life and rising fuel cost,EVs have gradually become one of the main research fields in the automotive industry. In some large companies, such as DHL, EVs have been used for urban transportation.

    Most electric VRPs (EVRPs) only consider the energy consumption of paths and charging at the power stations with insufficient energy,without terrain factors.Within our work,we take into account the EVRPTW traveling on the terrain with grades. The EVs need to accelerate to overcome the grade resistance, and their energy consumption intends to increase.Furthermore,the EVs need to reduce the downhill speed such that they can partially recover the kinetic energy lostduringdeceleration,whichiscalledregenerativebraking.Our objective is to minimize the total energy consumption,while a fleet of EVs serves a set of customers.

    The main contributions of this paper are:1)Based on the terrain with grades,we formulate the EVRPTW as a mixed integer programming model.Although the terrain modeling is not accurate enough, it does have a certain practical significance for the study of EVs driving on different slopes.2)A hybrid GA method is proposed to solve the EVRPTW.The addition of the 2-opt algorithm to the traditional GA can improve the equality of solutions.In addition to the contribution made in methodology,this paper mainly aims to propose a problem with practical motivation and design a comprehensive and customized solution to the problem. Extensive numerical studies on test instances demonstrate that the proposed method is very effective.

    This paper is organized as follows.The literature review is in Sect.2.In Sect.3,problem formulation and some definitions are presented. In Sect. 4, we introduce our method for solving the EVRPTW.Simulation results on benchmark sets and the comparison experiments are shown in Sect. 5.The conclusions of this paper are given in Sect.6.

    2 Literature review

    Electric VRP(EVRP)is one of the research hotspots of VRP over the past few years.Linetal.[7]studied a general EVRP and considered the vehicle load effect on battery consumption.The objective was to minimize the total travel cost and energy cost as well as number of EVs.Samueletal.[8]investigated an EVRP with the energy consumption uncertainties.The objective was to determine the minimum cost delivery routes.Liaoetal.[9]also studied the EV shortest travel time path problem.

    From the above discussion,the objective of EVRP is generally minimizing the total travel cost. There are still some variants of EVRP [10]. One of the most important variants is EVRP with time windows(EVRPTW).Guoetal.[11]addressed an EVRP with time windows.The authors considered the driving cost and punishment cost for time windows violation simultaneously.Schneideretal.[12]considered the constraints on vehicles and customer time windows.The aim was to minimize the number of employed vehicles and total travel distance on a flat terrain. Shaoetal. [13] considered the routes, charging plan and driving paths of EVRP. The objective function consists of vehicle fixed cost,travel cost and charging cost.The driving process of EVs in this problem considered the terrain without grades.Frogeretal.[14]studied the EVRP with capacitated charging stations,which was to minimize the total driving,charging and waiting time.

    The solution methods of EVRPTW are usually heuristic approaches[15,16].To solve this proposed problem,we first make a comparison between GA and SA on the test instances using Solomon’s data sets. Based on the simulation results betweenGAandSA,wedevelopahybridGAwhichcombine the GA and 2-opt algorithm.Moreover,numerical simulation results show the better performance of our method.

    To the authors’ knowledge, the topic of this paper, the EVRPTW with terrain grades, has not been studied previously by other researchers.

    3 Problem formulation and definition

    In the EVRPTW,let the depot be located at node 0,the set of customers is denoted byN1={1,...,r},andNorepresents the other nodes along the paths.The set of all nodes is thenN={0}∪N1∪No.The set of all edges is denoted byE?N×Nsuch that an incomplete undirected graphG=(N,E)represents a road network of EVRPTW.Each edgeei j∈Eassociates with an actual distanceLi j.The demand of each customeriis denoted bydi,which needs to be served as soon as possible.Moreover,the time window of each customeriis denoted by [ei,li], whereeiandlirepresent the earliest and latest time to start to service the customeri.The depot also has a time window[e0,l0],indicating that EVs leave the depot no earlier thane0and return no later thanl0.

    In our assumptions, the set of EVs is denoted byK={1,...,k0}. All EVs are assumed to be homogeneous, andQdenotes the loading capacity of each EV,qrepresents the electricity capacity of each EV. In particular, eachkth EV with battery SoC at nodeiis denoted by SoCki.The battery SoC consumed of unit distance is denoted byΔSoC.Therefore,the battery SoC consumed of edgeei jis represented asLi j·ΔSoC.

    As is known to all, the terrain of the road network on a real-world situation is complicated. To be closer to reality,we consider each EV with dynamic of SoC traversing the edgeei j∈Eis as follows:

    whereαi jis the average terrain grade from nodeito nodej.f(αi j)as a function of grade and electricity consumption from nodeito nodej.Let ˉαbe the critical value of average terrain grade.Iff(αi j)>ˉα,which indicates the EV is driving uphill;when thef(αi j)= ˉα,the EV travels on a flat terrain;iff(αi j)<ˉα,the EV is driving downhill.Accordingly,the velocity of EV from nodeito nodejis denoted byv(αi j).

    The decision variablesxi jk(i/=j,ei j∈E) are binary variables that indicate whether thekth EV travels directly from nodeito nodej. If thekth EV travels directly from nodeito nodej,xi jk= 1, and otherwise is 0. We also let a continuous variableyikbe the arrival time at customeriof thekth EV that servesi.The mixed integer programming model for EVRPTW is as follows:

    Fig.1 Flowchart of hybrid GA

    Equation(2)indicates the minimization of total electricity consumption of EVs. Constraints (3) require that each customer is assigned to exactly one EV.Constraints(4)state that to arrive at and leave each customer with the same EV.Constraints(5)ensure that EVs depart from the depot should eventually return to the depot.Constraints(6)guarantee that the vehicle capacity must be respected.Constraints(7)make sure that the number of served EVs should not exceed the maximum number of EVs used at the depot.

    4 A hybrid GA solution method for the EVRPTW

    As a solution method for EVRPTW,we propose a hybrid GA that consists of GA and 2-opt.GA was first proposed by Holland in 1975[17].It is an intelligent optimization algorithm according to the principle of“genetic inheritance”and“natural selection”in the process of biological evolution in nature.When GA is solving combinatorial optimization problem,the feasible solution of the problem forms chromosomes in some way, and some individuals are randomly selected to generate the initial population. Then, the objective function of combinatorial optimization problem is transformed into a fitness function in a certain way, and individuals are selected by calculating the fitness function value of individuals. Finally, individuals are finally selected, crossed,and mutated to produce individuals with higher fitness values. By continuous reproduction, the offsprings are more adaptable to the environment until the desired termination conditions appear. Thus, the optimal solution for the population is formed.

    Fig.2 Practicable chromosome representation

    However,the basic GA has poor local search ability,making it easy to fall into local optima prematurely. Therefore,the 2-opt algorithm as a pair-wise interchange heuristic[18]is added to solve the EVRPTW in this paper so as to improve the quality of the solution.

    Figure 1 presents the flowchart of our method.

    4.1 Chromosome representation

    A solution to the problem is presented by an integer string of lengthn+k0-1,wherenis the number of nodes,k0represents at most the number of EVs used.We use a sampling area as an instance to indicate the encoding process.All paths are encoded together and a practicable chromosome representation is shown in Fig.2.

    In Fig.2,we suppose 3 customers that are black circles;5 nodes along the path which are red circles;at most 1 EV used and the only depot. Then the chromosome can decode one delivery path:0 →5 →4 →7 →3 →1 →6 →2 →8.

    4.2 Fitness function

    Fitness function plays an important role in GA.GA does not rely on external factors in evolutionary search,instead solely on the fitness function. The fitness value is the main factor to describe the performance of individuals.According to the size of fitness value,the survival of the fittest is carried out on individuals.Fitness function is the driving force of GA.

    In general,the larger the fitness value is,the better individuals with higher fitness values are, and the individuals are more likely to be inherited by the next generation. The mapping between the objective function of the optimization problem and the fitness value of individuals.Within this work,the objective function is to minimize the total energy consumption,thus the fitness function is defined as follows:

    4.3 Population initialization

    Constructing appropriate initial solutions can aid the algorithm in quickly reaching optimal solutions. We first randomly select a customerjfrom all customers,wherej∈N1;at the same time,initialize the number of EVs usedk←1;form a sequence of customers[j,j+1,...,n,1,...,j-1].The number of traversal customers isr,add a customerS(i)to some path,here the loading capacity of EVs must be taken into account. If the path satisfies the loading capacity, we should consider the time window constraints and insert it into an appropriate position.If the path does not satisfy the loading capacity of EVs,we store the customers on the current path,then update another EVk+1.

    After constructing the initial solutions,the process is the same as the chromosome representation.As a result,the population initialization can be completed.

    4.4 Selection

    We let roulette be the method of our selection. The purpose of roulette is that the probability of each individual being selected is directly proportional to the fitness value.We denote some individual asvi, then the selection probability of this individual is

    From Eq.(15),we can see that the higher the fitness value of an individual,the greater the selection probability of the corresponding individual.

    Fig.3 Crossover operator

    4.5 Crossover

    The crossover operator in this paper is order-based crossover(OBX).In the first step,we randomly select some positions in parents,the position can be discontinuous,but the two parent(yellow)chromosomes are selected at the same position.Here,we choose the position 2,4,and 6,and take parent 1 as an example,and the process of parent 2 is the same.The next step is to find the selected genes of parent 1 in parent 2,while leaving the positions of other unselected genes unchanged.Finally,put the selected genes in parent 1 into the offspring(green) in order. Another offspring can be obtained in the same way.The process of crossover is shown as Fig.3.

    4.6 Mutation

    In this paper,we adopt mobile mutation as the mutation operator.The mobile mutation is also randomly select a gene,we choose 4; moving one random digit left or right, we move the gene 4 two digits left.The process of mutation is shown in Fig.4.

    4.7 2-opt algorithm

    2-opt algorithm is an exchange-based algorithm, which is one of the local search algorithms.Given a feasible solution,randomly select 2 positions,reverse the selected segment,as long as the operation can reduce the total power consumed by the EV,the 2-opt algorithm will operate repeatedly until it can no longer be updated,and then a local optimal solution will be generated.In our problem,we select 3 and 6,reverse this selected segment,and a new individual is generated;and by comparing the total electricity consumption of the new generated individual with that of the original individual,the smaller one is chosen.The process of the 2-opt algorithm is shown in Fig.5.

    Fig.4 Mutation operator

    Fig.5 Process of 2-opt algorithm

    5 Numerical simulation results

    In light of the above our method procedure,the hybrid GA is implemented using Matlab 2016.In this section,we use three size instances VRP10,VRP30,VRP50,which are captured in the Solomon’s data sets(https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/). VRP10 represents that the number of nodes is 10,which contains the nodes of customers and the nodes along the path.VRP30 and VRP50 are represented in the same way.Each size instance we give the comparison simulation results of GA,SA and the hybrid GA.

    Before the numerical simulation,we first consider Eq.(1),for simplify,letf(αi j)= 1+αi jbe a linear function,andˉα=1.The black arrows and red arrows represent the grades of uphill and downhill,respectively.In hybrid GA,the maximum iteration is set to 100,the number of EVs at the depot is set to 3,the probability of crossover is 0.95,the probability of mutation is 0.05,and the electricity capacity of each EV is 50kWh.

    Fig.6 Distribution of each node and the given terrain grades

    Fig.7 Simulation results of small size instances from c101 to c103

    Fig.9 Simulation results of large size instances from c101 to c103

    Figure6 shows the distribution of each node in VRP30,and by using a segment as an example to indicate the average terraingrades,other terrains areset inthesameway.Thenode customer we set are 2,5,8,14,15,18,22,25,27.Figures 7,8 and 9 show that three size instances simulated using three Solomon’s data sets from c101 to c103 can be achieved by our method.

    In Fig.7,the small size instance contains 10 nodes,where node 2, 3, 8 are customers. Three data sets from c101 to c103 give the optimal delivery scheme only needs one EV.Figure8 shows the optimal schemes of medium size instance with three data sets from c101 to c103.It can be observed that the optimal schemes need three EVs and different data sets because of different delivery routes according to the settings of data sets. Figure9 illustrates the large size instance with three size instances from c101 to c103.The node customer we set are 2,5,8,14,15,18,22,25,27,31,35,40,41,45,and 49.With the increase of nodes,the number of EVs usedby the optimal delivery schemes becomes greater, and the optimal delivery routes become more complex.

    Table 1 Comparison results between GA, SA and Hybrid GA with seven data sets of VRP10

    From Tables 1,2 and 3,the simulation results from small size instances to large size instances are given, each size instance contains the results of seven data sets. Column 1 gives the three methods,column 2 to 8 shows the test results from data set c101 to c107,two decimal places are reserved for each test result,and the unit of test results is kWh.

    Table 2 Comparison results between GA,SA and Hybrid GA with seven data sets of VRP30

    Table 3 Comparison results between GA,SA and Hybrid GA with seven data sets of VRP50

    In Table 1, we can see that each method is able to solve the small size of our problem.Furthermore,each test result is extremely close to our proposed approach,which is slightly better.

    Table 2 shows the test results of medium size instances.The simulation results indicate that the results of SA seem not so good,and the results of GA are much better than SA.However, the results of our method are still slightly better than GA.From the numerical results,our approach improves the results of SA by over 70% and the results of GA are improved by about 30%on average.

    ThetestresultsoflargesizeinstancesareshowninTable3.We can see that when the number of iterations of SA is 100,the results of some data sets cannot run out(INF in Table 3),i.e., some problem constraints are not satisfied. Only when the number of iterations is large(such as 700),can appropriate results be run out.Compared with the 100 iterations of the previous small and medium size instances,when the number of nodes of SA is larger,the solution time becomes longer and the solution quality is not so good.Although the test results of GA are better than those of SA, the improvement of the results is not significant.Our method shows its superiority in large size instances.The results of SA are improved by about 78%,and the results of GA are improved by about 56%on average.

    It can be seen that when the number of nodes is larger,our method presents better solution quality.Compared with the simulation results of SA and GA, the performance of our method improves more and more with the increase of the number of nodes, which reflects the advantages of our method.

    6 Conclusions

    In this paper, we present a new vehicle routing problem to determine consumption-optimal paths for EVs. We formulate the problem as a mixed integer programming model with customer time windows,loading capacity of EVs and terrain grades are incorporated to represent the real-world requirements.

    We develop a hybrid GA algorithm that incorporates a 2-opt algorithm into GA for improving the performance of solutions.In numerical simulation results,we first use three Solomon’s data sets to verify our method, and construct a comparison simulation results between SA,GA and hybrid GA.With the increase of node number,the simulation results illustrate that our method has a better performance of the solution.

    Thus,our method seems able to successfully apply to the routing decisions for EVs employed in real-world delivery operations.Thiscanalsosupportthespreadingofgreenlogistics practices.

    Acknowledgements The authors would like to acknowledge the Toyota Motor Corporation for supports in this work.

    最近视频中文字幕2019在线8| 看十八女毛片水多多多| 1024手机看黄色片| 哪里可以看免费的av片| 久久久久久九九精品二区国产| 天堂av国产一区二区熟女人妻| 国产精品伦人一区二区| 日日干狠狠操夜夜爽| 九色成人免费人妻av| 亚洲精品成人久久久久久| 日本黄色视频三级网站网址| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 欧美zozozo另类| 国产精品无大码| 久久久久国产网址| 久久久精品大字幕| 欧美丝袜亚洲另类| 欧美性感艳星| 亚洲欧美精品专区久久| 看免费成人av毛片| 午夜精品国产一区二区电影 | 成人一区二区视频在线观看| 一级黄片播放器| 18禁在线播放成人免费| 菩萨蛮人人尽说江南好唐韦庄 | 尤物成人国产欧美一区二区三区| 久久午夜亚洲精品久久| 深爱激情五月婷婷| 日韩欧美一区二区三区在线观看| 日韩人妻高清精品专区| 看免费成人av毛片| 欧美一级a爱片免费观看看| 又爽又黄无遮挡网站| 亚洲欧美清纯卡通| 亚洲精品色激情综合| av天堂在线播放| 伦精品一区二区三区| 99热这里只有是精品在线观看| 亚洲av成人av| 亚洲欧洲国产日韩| 91久久精品电影网| 色5月婷婷丁香| 国产精品久久电影中文字幕| 麻豆国产av国片精品| 天堂√8在线中文| 国产午夜精品一二区理论片| 国模一区二区三区四区视频| 国产成年人精品一区二区| 日韩国内少妇激情av| 国产精品美女特级片免费视频播放器| 日日撸夜夜添| 亚洲精品乱码久久久久久按摩| 不卡视频在线观看欧美| av专区在线播放| 尤物成人国产欧美一区二区三区| 99久国产av精品| 午夜老司机福利剧场| 亚洲精品国产成人久久av| 一区福利在线观看| 免费看a级黄色片| 日本-黄色视频高清免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av电影不卡..在线观看| 国产亚洲5aaaaa淫片| 亚洲,欧美,日韩| 级片在线观看| 日韩亚洲欧美综合| 亚洲国产欧洲综合997久久,| 此物有八面人人有两片| 伦理电影大哥的女人| 国产高清三级在线| 午夜老司机福利剧场| 超碰av人人做人人爽久久| 国产私拍福利视频在线观看| 一区二区三区高清视频在线| 大又大粗又爽又黄少妇毛片口| 欧美成人精品欧美一级黄| 成人av在线播放网站| 国产视频首页在线观看| 国产伦精品一区二区三区视频9| 2021天堂中文幕一二区在线观| ponron亚洲| 久久久久久久久中文| 99久久人妻综合| 蜜桃亚洲精品一区二区三区| 久久人人爽人人片av| 国产精品美女特级片免费视频播放器| 欧美性猛交黑人性爽| 免费不卡的大黄色大毛片视频在线观看 | 成人午夜精彩视频在线观看| 春色校园在线视频观看| 最近中文字幕高清免费大全6| 国产精品日韩av在线免费观看| www日本黄色视频网| 亚洲精品自拍成人| 精品不卡国产一区二区三区| 亚洲欧美成人精品一区二区| 日韩一区二区视频免费看| 中文字幕人妻熟人妻熟丝袜美| 女人被狂操c到高潮| 日韩一区二区三区影片| 成人av在线播放网站| 亚洲精品影视一区二区三区av| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 日韩三级伦理在线观看| 丰满的人妻完整版| 久久亚洲精品不卡| 男女下面进入的视频免费午夜| 久久久成人免费电影| 久久人人精品亚洲av| 亚洲精品自拍成人| 成人毛片60女人毛片免费| 我的老师免费观看完整版| 国产老妇女一区| 亚洲最大成人中文| av在线亚洲专区| 赤兔流量卡办理| 欧美最黄视频在线播放免费| 日韩欧美国产在线观看| 99久久成人亚洲精品观看| 成熟少妇高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 美女 人体艺术 gogo| 最近的中文字幕免费完整| 久久九九热精品免费| 99久久精品国产国产毛片| 中国美女看黄片| 免费搜索国产男女视频| 免费搜索国产男女视频| 丝袜美腿在线中文| 69人妻影院| 色播亚洲综合网| 两个人视频免费观看高清| 一区二区三区四区激情视频 | 日韩欧美国产在线观看| av黄色大香蕉| 久久精品国产亚洲av天美| 成人亚洲精品av一区二区| 中文字幕久久专区| 国产综合懂色| 天堂影院成人在线观看| 别揉我奶头 嗯啊视频| 中出人妻视频一区二区| 青春草国产在线视频 | 国产又黄又爽又无遮挡在线| 精品人妻一区二区三区麻豆| 人妻久久中文字幕网| 免费黄网站久久成人精品| 中文字幕精品亚洲无线码一区| 午夜激情福利司机影院| 秋霞在线观看毛片| 欧美xxxx性猛交bbbb| 悠悠久久av| 91狼人影院| 伊人久久精品亚洲午夜| 岛国毛片在线播放| 欧美激情久久久久久爽电影| 欧美日韩国产亚洲二区| 日韩成人伦理影院| 一个人看视频在线观看www免费| 国产精品人妻久久久久久| 亚洲人成网站在线观看播放| 天堂av国产一区二区熟女人妻| 国产午夜精品一二区理论片| 亚洲国产日韩欧美精品在线观看| 亚洲性久久影院| 欧美+日韩+精品| 不卡视频在线观看欧美| 伦理电影大哥的女人| 国产伦一二天堂av在线观看| 精品少妇黑人巨大在线播放 | 日韩欧美在线乱码| 中文字幕久久专区| 久久这里有精品视频免费| a级一级毛片免费在线观看| 国产伦理片在线播放av一区 | 寂寞人妻少妇视频99o| 久久热精品热| 最好的美女福利视频网| 精品久久久久久久久亚洲| 色综合亚洲欧美另类图片| 国产高清视频在线观看网站| 成人漫画全彩无遮挡| 日日干狠狠操夜夜爽| 最新中文字幕久久久久| av国产免费在线观看| 久久亚洲精品不卡| 男女做爰动态图高潮gif福利片| 男女做爰动态图高潮gif福利片| 国产精品,欧美在线| 亚洲综合色惰| 亚洲精品色激情综合| 国产一区二区在线av高清观看| 亚洲无线在线观看| 18禁在线播放成人免费| 欧美zozozo另类| 一边摸一边抽搐一进一小说| 精品欧美国产一区二区三| av女优亚洲男人天堂| 国产成人aa在线观看| 又爽又黄无遮挡网站| 久久精品国产亚洲av天美| 老女人水多毛片| 天堂av国产一区二区熟女人妻| 久久久久久久久久成人| .国产精品久久| 我的老师免费观看完整版| 国产av在哪里看| 热99在线观看视频| 国产国拍精品亚洲av在线观看| 听说在线观看完整版免费高清| 欧美一区二区亚洲| 欧美激情在线99| 性色avwww在线观看| 一进一出抽搐动态| 中文字幕精品亚洲无线码一区| 国产精品蜜桃在线观看 | 国内精品一区二区在线观看| 变态另类成人亚洲欧美熟女| 两个人的视频大全免费| 中文欧美无线码| 亚洲综合色惰| 久久久久久大精品| 夜夜爽天天搞| 久久九九热精品免费| 亚洲成a人片在线一区二区| 校园春色视频在线观看| 国产精品麻豆人妻色哟哟久久 | 天堂√8在线中文| 一级毛片久久久久久久久女| 最后的刺客免费高清国语| 久久精品夜色国产| 午夜福利成人在线免费观看| 免费观看精品视频网站| 尾随美女入室| 在线天堂最新版资源| 久久99精品国语久久久| 亚洲综合色惰| 青春草亚洲视频在线观看| 人妻久久中文字幕网| 亚洲av熟女| 亚洲欧美日韩高清专用| 特大巨黑吊av在线直播| 国内精品久久久久精免费| 色5月婷婷丁香| 欧美三级亚洲精品| 欧美日韩在线观看h| 国产一区亚洲一区在线观看| 国产黄色小视频在线观看| 在现免费观看毛片| 桃色一区二区三区在线观看| 国产久久久一区二区三区| 欧美极品一区二区三区四区| 久久精品国产亚洲av天美| 小蜜桃在线观看免费完整版高清| 国产黄片美女视频| 亚洲自拍偷在线| 亚洲精品色激情综合| 精品免费久久久久久久清纯| 99在线视频只有这里精品首页| 蜜桃久久精品国产亚洲av| 成人午夜精彩视频在线观看| 九九在线视频观看精品| 久久人人精品亚洲av| 国产精品一区二区三区四区久久| 国产成人a∨麻豆精品| 麻豆国产av国片精品| 欧美高清性xxxxhd video| 欧美一级a爱片免费观看看| 看免费成人av毛片| 久久久久久九九精品二区国产| 日韩欧美一区二区三区在线观看| 99九九线精品视频在线观看视频| 亚洲精品国产av成人精品| 极品教师在线视频| 可以在线观看毛片的网站| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 国产精品免费一区二区三区在线| 欧美性猛交╳xxx乱大交人| 国产亚洲精品久久久com| 女的被弄到高潮叫床怎么办| 国产精品野战在线观看| 人体艺术视频欧美日本| av国产免费在线观看| 国产精品日韩av在线免费观看| av卡一久久| 又爽又黄无遮挡网站| 国产伦精品一区二区三区四那| 男女啪啪激烈高潮av片| 五月玫瑰六月丁香| 青青草视频在线视频观看| 久久综合国产亚洲精品| 一本久久中文字幕| 如何舔出高潮| 在线播放无遮挡| 一区二区三区高清视频在线| 丰满的人妻完整版| 岛国在线免费视频观看| 在现免费观看毛片| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久久电影| 亚洲欧美日韩无卡精品| 美女xxoo啪啪120秒动态图| 人妻少妇偷人精品九色| 国产亚洲av片在线观看秒播厂 | 午夜福利在线观看免费完整高清在 | 中文精品一卡2卡3卡4更新| 精品久久久久久久末码| 国产一级毛片在线| 久久久欧美国产精品| 欧美又色又爽又黄视频| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 99久久人妻综合| 少妇熟女aⅴ在线视频| 日本五十路高清| 国产一区二区激情短视频| 日韩欧美精品免费久久| 成人二区视频| 日韩成人伦理影院| 欧美又色又爽又黄视频| 九色成人免费人妻av| 国产亚洲av嫩草精品影院| 99久久人妻综合| 亚洲国产精品合色在线| 蜜臀久久99精品久久宅男| 国产一区二区亚洲精品在线观看| 久久午夜亚洲精品久久| 国产大屁股一区二区在线视频| 国产精品.久久久| 看非洲黑人一级黄片| 激情 狠狠 欧美| 一本一本综合久久| 十八禁国产超污无遮挡网站| 岛国毛片在线播放| 一个人看的www免费观看视频| 久久99精品国语久久久| 久久国产乱子免费精品| 九九热线精品视视频播放| 国产人妻一区二区三区在| 中文字幕久久专区| 亚洲欧美精品自产自拍| 亚洲精品色激情综合| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 人妻制服诱惑在线中文字幕| 国产午夜精品久久久久久一区二区三区| АⅤ资源中文在线天堂| 搡老妇女老女人老熟妇| 少妇熟女欧美另类| 亚洲成av人片在线播放无| 欧美+亚洲+日韩+国产| 国产av不卡久久| 久久九九热精品免费| 国产av一区在线观看免费| 波野结衣二区三区在线| 草草在线视频免费看| av卡一久久| 在线播放国产精品三级| 欧美不卡视频在线免费观看| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 嘟嘟电影网在线观看| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| 一夜夜www| 精品日产1卡2卡| 少妇高潮的动态图| eeuss影院久久| 亚洲av第一区精品v没综合| 成人性生交大片免费视频hd| 成人综合一区亚洲| 国产精品综合久久久久久久免费| 亚洲内射少妇av| 一进一出抽搐动态| 久久久久久久久中文| 免费看a级黄色片| 久久综合国产亚洲精品| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 色噜噜av男人的天堂激情| 亚洲va在线va天堂va国产| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 免费在线观看成人毛片| 国产伦一二天堂av在线观看| 日本色播在线视频| 夜夜爽天天搞| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 有码 亚洲区| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 国产成年人精品一区二区| 亚洲欧美中文字幕日韩二区| 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 国产精品蜜桃在线观看 | 国产极品天堂在线| 中国国产av一级| 国产精品蜜桃在线观看 | 亚洲欧洲国产日韩| 男插女下体视频免费在线播放| 成人综合一区亚洲| 久久欧美精品欧美久久欧美| 我要搜黄色片| 日本三级黄在线观看| 亚洲第一区二区三区不卡| 亚洲av成人av| 一级黄片播放器| 一级黄色大片毛片| 久久中文看片网| 欧美zozozo另类| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 3wmmmm亚洲av在线观看| 日韩欧美精品免费久久| 成人综合一区亚洲| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 久久久久久久久久久丰满| 麻豆久久精品国产亚洲av| 国产视频首页在线观看| 熟女人妻精品中文字幕| 国产乱人偷精品视频| 12—13女人毛片做爰片一| 成人漫画全彩无遮挡| 国内久久婷婷六月综合欲色啪| 天堂中文最新版在线下载 | 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频 | 日韩大尺度精品在线看网址| 日本五十路高清| 91久久精品国产一区二区成人| 十八禁国产超污无遮挡网站| 大型黄色视频在线免费观看| 免费看美女性在线毛片视频| 久久精品国产亚洲av天美| av在线蜜桃| 少妇裸体淫交视频免费看高清| 亚洲第一电影网av| 22中文网久久字幕| 欧美在线一区亚洲| 丝袜喷水一区| 亚洲真实伦在线观看| 嫩草影院入口| 成人欧美大片| 少妇被粗大猛烈的视频| 国产成人影院久久av| 久久久欧美国产精品| 久久亚洲精品不卡| 亚洲欧美精品专区久久| 日韩成人av中文字幕在线观看| 午夜久久久久精精品| 久久欧美精品欧美久久欧美| 一区二区三区四区激情视频 | 欧美日韩在线观看h| 99久久无色码亚洲精品果冻| 欧美最黄视频在线播放免费| 成人三级黄色视频| 国内精品宾馆在线| 91狼人影院| 99热只有精品国产| 成人性生交大片免费视频hd| 岛国毛片在线播放| 精品久久久久久久久av| 久久草成人影院| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 国产综合懂色| 久久久午夜欧美精品| 一级毛片我不卡| 成人午夜精彩视频在线观看| 国产不卡一卡二| 熟女人妻精品中文字幕| 亚洲色图av天堂| 亚洲欧洲日产国产| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 国产一区二区三区av在线 | 亚洲经典国产精华液单| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 久久精品人妻少妇| 美女黄网站色视频| 91精品国产九色| 一进一出抽搐gif免费好疼| 免费搜索国产男女视频| 日韩一区二区视频免费看| 午夜a级毛片| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 免费大片18禁| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 人妻少妇偷人精品九色| 国产精品一区二区在线观看99 | 久99久视频精品免费| 伦理电影大哥的女人| 成人特级av手机在线观看| 亚洲第一电影网av| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 特级一级黄色大片| 99在线人妻在线中文字幕| 亚洲图色成人| av在线观看视频网站免费| 日本一二三区视频观看| 黄色配什么色好看| 久久久精品欧美日韩精品| 老师上课跳d突然被开到最大视频| 国产午夜精品久久久久久一区二区三区| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 欧美性感艳星| 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| 1024手机看黄色片| 国产精品一区二区在线观看99 | 亚洲va在线va天堂va国产| 伦精品一区二区三区| 国产精品三级大全| 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 国产精品综合久久久久久久免费| 在线观看午夜福利视频| 看免费成人av毛片| 亚洲成色77777| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区视频9| 永久网站在线| 女人精品久久久久毛片| 一区二区av电影网| 久久青草综合色| 少妇人妻精品综合一区二区| 久久久久久久亚洲中文字幕| 插逼视频在线观看| 精品一区二区免费观看| 人妻人人澡人人爽人人| 免费少妇av软件| 人人妻人人澡人人爽人人夜夜| 国产国语露脸激情在线看| 91精品伊人久久大香线蕉| 久久久久国产精品人妻一区二区| 夜夜爽夜夜爽视频| 亚洲成人av在线免费| 女人精品久久久久毛片| 老司机亚洲免费影院| 亚洲精华国产精华液的使用体验| 视频在线观看一区二区三区| 色哟哟·www| 春色校园在线视频观看| 精品久久久噜噜| 人妻夜夜爽99麻豆av| √禁漫天堂资源中文www| 男人爽女人下面视频在线观看| 欧美激情 高清一区二区三区| 蜜臀久久99精品久久宅男| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 亚洲中文av在线| 久久久国产一区二区| 欧美成人精品欧美一级黄| 久久久久国产网址| 国产亚洲欧美精品永久| 亚洲精品国产av成人精品| av在线app专区| 你懂的网址亚洲精品在线观看| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 高清午夜精品一区二区三区| 久久久国产一区二区| 狂野欧美激情性bbbbbb| 赤兔流量卡办理| 最黄视频免费看| 毛片一级片免费看久久久久| 欧美 日韩 精品 国产| .国产精品久久| 97在线视频观看| 韩国高清视频一区二区三区| 国产在线免费精品| 97在线视频观看| 丝袜在线中文字幕| 十八禁网站网址无遮挡| 亚洲伊人久久精品综合| 一级毛片我不卡| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱| 久久人人爽av亚洲精品天堂| 久热久热在线精品观看| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 夫妻性生交免费视频一级片| 国产男人的电影天堂91| 久久久久国产精品人妻一区二区| 国产精品99久久久久久久久| 久久久久久伊人网av| 在线观看免费高清a一片| 精品视频人人做人人爽| 久久久久久久久久久久大奶| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 观看美女的网站| 少妇精品久久久久久久|