• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activating Inert Sites in Cobalt Silicate Hydroxides for Oxygen Evolution through Atomically Doping

    2022-07-04 09:13:58JiexinZhuLixueXiaWenxuanYangRuohanYuWeiZhangWenLuoYuhangDaiWeiWeiLiangZhouYanZhaoandLiqiangMai
    Energy & Environmental Materials 2022年2期

    Jiexin Zhu, Lixue Xia, Wenxuan Yang, Ruohan Yu, Wei Zhang, Wen Luo, Yuhang Dai,Wei Wei, Liang Zhou , Yan Zhao* , and Liqiang Mai*

    1. Introduction

    Water splitting includes two half-reactions, hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),in which the OER is regarded as the bottleneck for its sluggish kinetics.[1–7]An efficient electrocatalyst is crucial to accelerate the reaction rate. In spite of superior performance achieved by precious metal-based catalysts, their massive applications are unpractical because of the scarcity.[8–11]Non-precious metal catalysts, such as perovskite,[12–15]spinel,[16–18]and hydroxide[19–22]provide new opportunities for OER, among which the NiFe(oxy)hydroxide[21]has been regarded as the benchmark catalysts in alkaline electrolyte.Metal silicate hydroxides,an emerging family of earth-abundant twodimensional materials which share a similar layered structure with oxyhydroxides, have been considered as competitive electrocatalysts toward OER.[23–27]The unique [SiO4] tetrahedron layer introduces the formation of an additional hydrogen bond to stabilize OOH*intermediate which makes silicate hydroxides an excellent OER performance.

    However, metal silicate hydroxides usually exhibit limited active sites owing to the poor electron transfer ability. Like oxyhydroxides,introducing hetero-metal element in metal silicate hydroxides may effectively enhance catalytic activity. Qiu et al. reported a synergetic coaxial nanocable structure with excellent OER activity by growing Ni-Co silicate hydroxide nanosheets on multi-walled carbon nanotubes.[23]Kim et al.[26]introduced a Co-Fe binary silicate hydroxide with additional active sites by disturbing the local environment of oxygen and the optimal sample with 40 at.% Fe delivered an overpotential of 329 mV.Morphology and crystal structure have been considered as the origin of the enhanced catalytic activity of silicate hydroxides in these studies. However, electrocatalysis usually involves the adsorption of reactants to the surface of catalysts and the electron transfer between catalysts and reactants.[28–32]It remains unclear how hetero-metal doping modifies the electronic structure of metal silicate hydroxides and alters the adsorption behavior. Besides, it is also unknown that what kind of doping state(either in solid solution or phase segregated islands)is beneficial for the activity,and what is the optimal doping amount.Answering the questions above is of great significane to the development of metal silicate hydroxide-based OER electrocatalysts.

    Here,we report an atomically doping strategy to boost the OER performance of metal silicate hydroxides using cobalt silicate hydroxide nanosheets(CSHNs)as a paradigm.Different amounts of Fe have been doped into the CSHNs,and at an appropriate doping amount(6 at.%),the doped Fe can be stabilized in a solid-solution state with homogeneous dispersion. Synchrotron study and theoretical calculations reveal that the incorporation of Fe introduces a slight electron transfer from Fe to Co,resulting in an optimal Co 3d and Fe 3d electronic occupation and adsorption capacity to oxygen intermediates. Such atomically dispersed Fe-doping activates Co inert sites and endows the Fe-doped CSHNs(FCSHNs) an optimal overpotential of 293 mV at 10 mA cm-2and a Tafel slope of 47.2 mV dec-1. Further computation reveals that the electronic interaction in the Co-O-Fe units improves the absorption capacity to oxygen intermediate and reduces the OER overpotential.

    2. Results and Discussion

    2.1. Characterization of CSHNs and FCSHNs

    The CSHNs and FCSHNs are synthesized directly by a one-step hydrothermal method,and the samples prepared at Fe/Co feed ratios of 0, 0.03, 0.06, and 0.10, are named as CSHNs, FCSHNs-3, FCSHNs-6,and FCSHNs-10, respectively. The Fe/Co atomic ratios are determined by inductively coupled plasma-optical emission spectrometer (ICPOES), and the values agree well with the Fe/Co feeding ratios (Figure S1). All the CSHNs and FCSHNs samples show an ultrathin nanosheet morphology with negligible difference (Figure 1a and Figure S2). The nanosheets range in width from 50 to 100 nm and they interconnect with each other. A typical high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and the corresponding energy dispersive X-ray (EDX) elemental mappings manifest that the Fe was uniformly distributed in the FCSHNs-6 (Figure S3). To further confirm the elemental distributions, STEM-electron energy-loss spectroscopy (STEM-EELS) was conducted. The EELS element mappings and Fe L-edge and Co L-edge spectra together verify the homogeneous doping of Fe in the FCSHNs-6 (Figure 1b–d). Specifically, the three line-scan spectra manifest low and semblable Fe L-edge intensities, demonstrating the highly atomistic dispersion of Fe. Based on the above characterizations,a cobalt silicate hydroxide structure with atomic Fe doping is proposed (Figure 1e). Previous reports revealed the low crystallinity of metal silicate hydroxides.[24]Similarly, the CSHNs and FCSHNs show relatively low crystallinity as confirmed by X-ray diffraction (XRD, Figure S4). High-resolution TEM (HRTEM,Figure S5a) and selected area electron diffraction (SAED, Figure S5b)demonstrate that the FCSHNs-6 possesses local ordering but lacks longrange ordering. The Fourier-transform infrared (FT-IR, Figure S6)spectra provide evidence on the local structure of CSHNs and FCSHNs.[33–34]Atomic force microscopy (AFM, Figure S7) images show that the thickness of CSHNs and FCSHNs ranges from a few nanometers to dozens of nanometers.From HAADF-STEM images(Figure S8), both single-layer nanosheets (indicated by red arrows) and multi-layer nanosheets can be found. Even for the multi-layer nanosheets,their thickness is generally<10 nm.

    Figure 1. a) TEM image of FCSHNs-6; b) HAADF-STEM image of FCSHNs-6; c) EELS elemental mappings of Co and Fe corresponding to the rectangular area in b; d) Fe L-edge and Co L-edge EELS spectra record from b (the numbers from 1 to 3 in d correspond to the numbers from 1 to 3 in b); e) crystal structure of FCSHNs-6; f) FT k3χ(R) Co K-edge EXAFS and h) normalized Co K-edge XANES spectra for CSHNs, FCSHNs-6, Co foil, CoO, and Co3O4; g) FT k3χ(R) Fe K-edge EXAFS and i) normalized Fe K-edge XANES spectra for FCSHNs-6, Fe foil, FePc, and Fe2O3 (inset in i: fitted oxidation states of Fe).

    Figure 2. a) Temperature dependent magnetization under H = 2 kOe and the temperature dependent inverse susceptibilities of the CSHNs and FCSHNs. The solid lines are the fitting results by using the Curie–Weiss law:χ = C/(T-Θ)above 150 K(C,Curie constant;Θ,Curie–Weiss temperature);b)Co L-edge;c)Fe Ledge XANES spectra of CSHNs,FCSHNs-3,FCSHNs-6,and FCSHNs-10;and d)charge density difference of CSHNs,FCSHNs-3,FCSHNs-6,and FCSHNs-10.The red color means high charge density difference,while blue means low charge density difference.

    To give an in-depth understanding of the coordination and electronic structure of CSHNs and FCSHNs,X-ray absorption fine structure spectroscopy (XAFS), temperature-dependent magnetic susceptibility(M-T), and X-ray photoelectron spectroscopy (XPS) were performed.As displayed in Figure S9, the Co K-edge extended XAFS (EXAFS) k2χ(k) oscillation curves of CSHNs and FCSHNs-6 show an approximate oscillation amplitude, implying the analogical coordination environment of Co. The Fourier-transform EXAFS (FT-EXAFS) curves for CSHNs and FCSHNs-6 show noticeable Co-O(1.57°A for CSHNs and 1.64°A for FCSHNs-6) and Co-Co/Fe (2.73°A) coordination (Figure 1f). The peaks at 1.41°A and 2.58°A for FCSHNs-6 in Figure 1g can be assigned to the first shell Fe-O and the nearest Fe-Co/Fe coordination, respectively. Noteworthy, the peak intensity of Fe-Co/Fe coordination is much weaker than that of Co-Co/Fe, verifying the existence of atomically dispersed Fe atoms in FCSHNs-6. The X-ray absorption near-edge structure (XANES) curves of both CSHNs and FCSHNs display a white line intensity lower than CoO (Figure 1h),indicating that the average valence states of Co for CSHNs and FCSHNs-6 are lower than +2, and the FCSHNs-6 possesses the lowest valence state for Co. As shown in Figure 1i, the adsorption edge of FCSHNs-6 shifts toward higher energy relative to the FePc, corresponding to the increase of Fe valence state. By fitting the adsorption edge, the average oxidation state of Fe in FCSHNs-6 is 2.48 and it suggests that the Fe can act as an electron donor.

    Figure 3. a) CV curves; b) Comparison of the overpotential at 10 mA cm-2 and TOF at η = 300 mV of different catalysts; c) Tafel plots of different catalysts derived from CV;, d) Δj = ja-jc at 1.175 V versus RHE as a function of the scan rate to evaluate Cdl; e) Long-term stability of CSHNs and FCSHNs-6 at j = 10 mA cm-2 for 24 h; and f) Comparison of overpotential at different current densities for various bimetal catalysts.

    Figure 2a shows typical susceptibilities obey the paramagnetic Curie–Weiss law above 150 K and the fitting results (Figure S10) of effective magnetic moment(μeff)unravel the number of unfilled d orbitals.[35]It is indicated that the FCSHNs-6 contains the most unpaired electrons while CSHNs involve the least, which may be caused by the electronic interaction between Co and Fe species. More in-depth electron transfer analysis can be obtained through XPS and metal L-edge XANES. Compared to the CSHNs, the Co 2p binding energies of FCSHNs-3 and FCSHNs-6 are shifted to lower values, while that of FCSHNs-10 is shifted to a higher value (Figure S11). The Co L-edge XANES (Figure 2b) illustrates that the intensity reduces with the doping up to 6 at.%, and increases for FCSHNs-10. The Fe L-edge XANES(Figure 2c) spectra reveal the emergence of unfilled t2gorbitals for FCSHNs-3 and FCSHNs-6. From the XPS and XANES results, one can know that the electron transfers from Fe t2gorbitals to Co egorbitals in FCSHNs-3 and FCSHNs-6, while the electron transfer process is reversed for FCSHNs-10.[36]Moreover, the charge density difference(Figure 2d) was performed using density functional theory (DFT) calculations and it is revealed that the fluxion orientation of electrons changes with Fe doping. For FCSHNs-3 and FCSHNs-6, the Fe atoms exhibit a decreased charge density, meaning that part of the electrons are relayed from Fe to Co. However, when the doping content is increased to 10 at.%,the distribution becomes compact,suggesting the Fe atoms are converted into electron acceptors.The DFT calculations on charge density agree well with the XPS and XANES results. Combining the spectral and computational results,it is speculated that the Fe exists in the form of atomically doping in FCSHNs-3 and FCSHNs-6. The computational crystal model (Figure S12) indicates the metal-oxygen bond length is shortened in FCSHNs-3 and FCSHNs-6, and thus improves the electronic interaction,which matches well with the variation of Co–O coordination in Co K-edge EXAFS. These observations suggest that low-dose doping is more beneficial to increasing the charge density of Co species.

    2.2. Electrocatalytic Properties of CSHNs and FCSHNs Towards OER

    The OER activity was studied in 1.0 M KOH using rotating disk electrode (RDE) without IR correction. The trace iron impurities in electrolyte were removed by suspending the Ni(OH)2powder. The cyclic voltammetry(CV)profiles in Figure 3a show that all the catalysts exhibit competitive OER performance. The CSHNs require an overpotential of 367 mV for reaching a specific current density of 10 mA cm-2,which decrease to 339 mV for FCSHNs-3,293 mV for FCSHNs-6,and 335 mV for FCSHNs-10(Figure 3b).The FCSHNs-6 shows the lowest overpotential and even surpasses some NiFe oxyhydroxide catalysts,[37]meaning that the electron transfer plays a key role in facilitating the adsorption capacity to intermediate. It should be noted that the redox peaks which are often observed for transition metal hydroxides and oxyhydroxides in the interval between 1.3 and 1.4 V are not detected.[20,38]This phenomenon implies that there is no change in structure and chemical state for metal silicate hydroxide during electrocatalysis. The turnover frequency (TOF,Figure 3b, and Figure S13) of FCSHNs-6 at η = 300 mV (0.033 s-1) is over three times as much as CSHNs (0.0095 s-1). Figure 3c illustrates that the Tafel slope of FCSHNs-6 is 47.2 mV dec-1, lower than 75.1 mV dec-1for CSHNs, 66.0 mV dec-1for FCSHNs-3, and 66.2 mV dec-1for FCSHNs-10. The comparatively high TOF and low Tafel slope of FCSHNs-6 manifest that 6 at.% of the atomically dispersed Fe doping can bestow the optimal electronic structure for oxygen adsorption. According to previous reports, optimal OER performances can be achieved when the number of electrons in egorbital of a transition metal is about 1.2 for perovskites[12–13]and spinels.[39]Therefore,it is reasonable to postulate that the optimal OER activity of FCSHNs-6 is stem from the transfer of oligarchic electrons from the Fe t2gorbital to the Co egorbital, resulting in the increase of electrons on the Co egorbital to around 1.2.

    Figure 4. Partial density of states of Co 3d-band a), Co 3d eg-band b), and Fe 3d t2g-band c) of the catalysts; d) Schematic representation of the electronic coupling between Co and Fe; e) The free energy diagram of OER on the CSHNs and FCSHNs-6; f) The structure for the *OOH formation step of CSHNs and FCSHNs-6. The ball represents different elements. Silver: Co; Brown: Fe; Blue: Si; Green: Oxygen from absorbed intermediates; Red: Oxygen; Pink: H.

    CV tests(Figure S14)at various scan rates were used to estimate the electrochemical surface areas (ECSA). The FCSHNs-6 provides a larger double-layer capacitance (Cdl) than the other catalysts (Figure 3d),which offers the information regarding more active sites induced by the Fe incorporation. The internal charge-transfer resistance (Rct) was determined using electrochemical impedance spectroscopy (EIS) at the overpotential of 300 mV (Figure S15). The Rctvalues are 37.3, 13.2,3.95, and 6.37 Ω for the CSHNs-0, FCSHNs-3, FCSHNs-6, and FCSHNs-10, respectively. It is speculated that partial relatively inert Co sites are activated by the nearest neighbor Fe, accounting for the increase of active sites and remarkable charge-transfer ability of FCSHNs-6,and thus the excellent intrinsic OER activity.We then study the catalytic stability,both the CSHNs and FCSHNs-6 exhibit high activity after 24 h of testing, proving the excellent stability of the samples(Figure 3e). Compared with earlier reports on bimetallic oxide and hydroxide catalysts,the CSHNs and FCSHNs catalysts show competitive OER performance in terms of overpotential and Tafel slope (Figure 3f and Table S1).

    2.3. Correlation Between the Electronic Structure and OER activity

    We further investigated the density of states (DOS, Figure 4a and Figure S16) to furnish more insight into the electronic structure of FCSHNs catalysts.Obviously,the FCSHNs-3 and FCSHNs-6 carry lower DOS of energy,implying an enhanced ability to accept electrons.Meanwhile, the FCSHNs-6 has the highest states in the region close to the Fermi level (Figure S17). Additionally, in the region above the Fermi level,the states of Co 3d egorbital decrease until a Fe doping amount of 6 at.% and then increase on further doping (Figure 4b). The states of Fe 3d t2gorbital show the unfilled state for FCSHNs-3 and FCSHNs-6,and disappear as the further increase of dopant (Figure 4c). The variation of states mean that the electron transfer occurs mainly between Co egorbitals and Fe t2gorbitals.

    The Co-O-Co and Co-O-Fe unit was applied to analyze the electronic interaction between Co and Fe in FCSHNs (Figure 4d).Specifically, electron-electron repulsion is the dominated interaction between Co and bridging O because of the fully occupied Co t2gorbitals. Moreover, the behavior of π-donation is absent and the π*-antibonding orbitals are fully occupied, which weaken the bond strength of Co-O. In contrast, the valence electronic configuration of Fe2.48+in FCSHNs-6 is 3d5.48, meaning that there are unpaired electrons in Fe t2gorbitals. This property will trigger the π-donation effect and decrease the number of electrons in π*-antibonding orbitals, which enhance the Fe-O covalency and the structural stability. For FCSHNs-3 and FCSHNs-10, the more electrons in Fe t2gorbitals impair the Fe-O bond and thus weaken the OER performance. The reaction pathways and the corresponding Gibbs free energy were calculated to evaluate OER activity. As displayed in Figure 4e, both the CSHNs and FCSHNs undergo a typical four-electron OER reaction. Because of the enhanced Fe-O covalency, the rate-determining step for FCSHNs-6 is the formation of *OO and O2desorption with a ΔG of 0.38 eV, while that of CSHNs is the formation of *OOH with a ΔG of 0.82 eV as the attenuated Co-O covalency. The structural model for each step is plotted in Figures S18 and S19. Noted that in the step of *OOH formation (Figure 4f), there is an additional hydrogen bond between the H of *OOH and the terminal O site for FCSHNs-6,indicating that the FCSHNs-6 has a strong capacity to stabilize the*OOH intermediate.Based on the above discussions,it can be concluded that the introduction of Co-O-Fe units improves the absorption capacity to oxygen intermediate.

    To investigate the structural transformation, we conducted the insitu Raman test for CSHNs and FCSHNs-6. As shown in Figure S20,the samples show the distinct bridge symmetric stretching vibrations of Si–O–Si in the range of 400 – 800 cm–1.[40–41]Specifically, the peak around 690 cm–1in FCSHNs-6 display a broader peak than that of CSHNs, which may be ascribed to the existence of silica tetrahedron bonded with Fe–O. At the potential from 1.1 to 1.6 V, the peaks of vs(Si–O–Si) in CSHNs and FCSHNs-6 all show negligible change in terms of width and strength,meaning that the metal silicate hydroxides can maintain the structural stability under OER conditions. Moreover,the TEM images shown in Figure S21 of CSHNs and FCSHNs-6 after OER test also show negligible change in morphology, and the aggravated aggregation of nanosheets may be caused by the additional nafion binder.The corresponding EDS mappings of FCSHNs-6 exhibit the uniform Fe doping in Co units,indicating that no leaching behavior of Fe proceeds during OER test.

    3. Conclusion

    In conclusion, a series of Fe-doped cobalt silicate hydroxide has been designed for OER, and the effects on Fe-doping have been systematically studied. By doping an optimal Fe amount (6 at.%), the obtained FCSHNs-6 features an atomically Fe dispersion and significantly enhanced OER activity compared to CSHNs. With partial electrons transferred from Fe to Co, relatively inert Co sites are activated and bears an optimal electronic occupation for the adsorption of oxygen intermediate. Theoretical calculations reveal that the introduction of Co-O-Fe units enhances the M-O covalency and the ability to stabilize *OOH intermediate for FCSHNs-6 and changes the ratedetermining step. Obviously, the electronic interaction introduced by doping atomically dispersed Fe plays a significant role in boosting the OER performance. This work provides insights into engineering electronic structure and tailoring the local coordination environments of metal silicate hydroxide electrocatalysts for OER. This concept can be extended to the exploration of high-performance bimetallic or trimetallic silicate hydroxide electrocatalysts.

    Acknowledgements

    J.Z., L.X., and W.Y. contributed equally to this work. This work was supported by the National Key Research and Development Program of China(2020YFA0715004),National Natural Science Foundation of China(51832004), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003), the Fundamental Research Funds for the Central Universities(195101005, 2020-CL-A1-28, 2020Ⅲ004GX). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF), and 1W1B station in Beijing Synchrotron Radiation Facility (BSRF) for XAFS measurement. This S/TEM work was performed at the Nanostructure Research Center(NRC),which is supported by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,and the State Key Laboratory of Silicate Materials for Architectures(all the laboratories are at Wuhan University of Technology).

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Informationis available from the Wiley Online Library or from the author.

    Keywords

    atomically doping, electrochemistry, electron transfer, metal silicate hydroxides, oxygen evolution

    Received: April 23, 2021

    Revised: May 8, 2021

    Published online: May 12, 2021

    [1] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C.Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z.Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 1.

    [2] X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F.P. G. de Arquer, M. Liu, C. T. Dinh, T. Regier, J. J. Dynes, S. He, H. L. Xin,H.Peng,D.Prendergast,X.Du,E.H.Sargent,Nat.Chem.2018,10,149.

    [3] S. Anantharaj, S. R. Ede, K. Karthick, S. S. Sankar, K. Sangeetha, P. E.Karthik, S. Kundu, Energ. Environ. Sci. 2018, 11, 744.

    [4] S. Liu, H. Cheng, K. Xu, H. Ding, J. Zhou, B. Liu, W. Chu, C. Wu, Y. Xie,ACS Energy Lett. 2018, 4, 423.

    [5] Z. Zhuang, Y. Li, J. Huang, Z. Li, K. Zhao, Y. Zhao, L. Xu, L. Zhou, L. V.Moskaleva, L. Mai, Sci. Bull. 2019, 64, 617.

    [6] C. Zhao, J. Liu, J. Wang, D. Ren, J. Yu, X. Chen, B. Li, Q. Zhang, Adv.Mater. 2021, 15, 2008606.

    [7] Y. Yao, Z. Zhang, L. Jiao, Energ. Environ. Mater. 2021. https://doi.org/10.1002/eem2.12198

    [8] R. R. Rao, M. J. Kolb, N. B. Halck, A. F. Pedersen, A. Mehta, H. You, K.A. Stoerzinger, Z. Feng, H. A. Hansen, H. Zhou, L. Giordano, J. Rossmeisl,T. Vegge, I. Chorkendorff, I. E. L. Stephens, Y. Shao-Horn, Energ. Environ.Sci. 2017, 10, 2626.

    [9] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem.Lett. 2012, 3, 399.

    [10] Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X.Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y.Wang, X. Zheng, J. Dong, C. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.Li, P. Strasser, Y. Wu, Y. Li, Nat. Catal. 2019, 2, 304.

    [11] B. Huang, Y. Ma, Z. Xiong, Z. Xiao, P. Wu, P. Jiang, M. Liang, Energ. Environ. Mater. 2020. https://doi.org/10.1002/eem2.12150

    [12] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn,Science 2011, 334, 1383.

    [13] Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu,C. Wu, Y. Xie, Chem 2017, 3, 812.

    [14] J. Yu, R. Ran, Y. Zhong, W. Zhou, M. Ni, Z. Shao, Energ. Environ. Mater.2020,3,121.

    [15] T. Shen, L. Spillane, J. Vavra, T. H. M. Pham, J. Peng, Y. Shao-Horn, V.Tileli, J. Am. Chem. Soc. 2020, 142, 15876.

    [16] Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X.Wang, H. Zhang, Z. J. Xu, Adv. Mater. 2018, 30, 1802912.

    [17] T. Wu, S. Sun, J. Song, S. Xi, Y. Du, C. Bo, W. A. Sasangka, H. Liao, C. L.Gan, G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat.Catal. 2019, 2, 763.

    [18] X. Zhao, Y. Huang, C. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L.Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J.Am. Chem. Soc. 2020, 142, 12097.

    [19] Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang,Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.

    [20] D. Y. Chung, P. P. Lopes, P. F. B. D. Martins, H. He, T. Kawaguchi, P.Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R.Stamenkovic, N. Markovic, Nat. Energy 2020, 5, 222.

    [21] M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, S. W. Boettcher, Chem.Mater. 2015, 27, 7549.

    [22] C. Zhao, B. Li, M. Zhao, J. Liu, L. Zhao, X. Chen, Q. Zhang, Energ. Environ. Sci. 2020, 13, 1711.

    [23] C. Qiu, J. Jiang, L. Ai, A. C. S. Appl, Mater. Inter. 2016, 8, 945.

    [24] J. S. Kim, I. Park, E. S. Jeong, K. Jin, W. M. Seong, G. Yoon, H. Kim, B.Kim, K. T. Nam, K. Kang, Adv. Mater. 2017, 29, 1606893.

    [25] C. Qiu, L. Ai, J. Jiang, A. C. S. Sustain, Chem. Eng. 2018, 6, 4492.

    [26] B. Kim, J. S. Kim, H. Kim, I. Park, W. M. Seong, K. Kang, J. Mater. Chem.A 2019, 7, 18380.

    [27] J. Zhu, S. Li, Z. Zhuang, S. Gao, X. Hong, X. Pan, R. Yu, L. Zhou, L. V.Moskaleva, L. Mai, Energ. Environ. Mater. 2020. https://doi.org/10.1002/eem2.12155

    [28] S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, J. Zeng,Nat. Commun. 2016, 7, 11510.

    [29] J. O. M. Bockris, T. Otagawa, J. Electrochem. Soc. 1984, 131, 290.

    [30] J. Rossmeisl, A. Logadottir, J. K. N?rskov, Chem. Phys. 2005, 319, 178.

    [31] J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. N?rskov, J. Electroanal.Chem. 2007, 607, 83.

    [32] Z. Wang, M. Jin, L. Zhang, A. Wang, J. Feng, J. Energy Chem. 2021, 53,260.

    [33] R. Trujillano, J.-F. Lambert, C. Louis, J. Phys. Chem. C 2008, 112, 18551.

    [34] M. A. Melo Jr, C. Airoldi, Dalton T. 2010, 39, 10217.

    [35] Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng,W. Chen, L. Mai, S. Guo, Adv. Mater. 2018, 30, 1803220.

    [36] J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zhao, J. Li,W. Yan, M. Wang, Nat. Commun. 2018, 9, 1.

    [37] M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier,F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452.

    [38] Z. K. Goldsmith, A. K. Harshan, J. B. Gerken, M. V¨or¨os, G. Galli,S. S. Stahl, S. Hammes-Schiffer, P. Natl, Acad. Sci. USA 2017, 114,3050.

    [39] C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, Z. J. Xu, Adv.Mater. 2017, 29, 1606800.

    [40] R. L. Frost, S. Bahfenne, J. ?Cejka, J. Sejkora, J. Pl′a?sil, S. J. Palmer, J. Raman Spectrosc. 2010, 41, 814.

    [41] A. Wang, J. J. Freeman, B. L. Jolliff, J. Raman Spectrosc. 2015, 46, 829.

    日本a在线网址| 亚洲自拍偷在线| 日韩欧美国产在线观看| 国产精品久久视频播放| 国产蜜桃级精品一区二区三区| 国产精品99久久99久久久不卡| 色综合欧美亚洲国产小说| videosex国产| 老熟妇仑乱视频hdxx| 久久午夜综合久久蜜桃| 两个人视频免费观看高清| 久久国产精品男人的天堂亚洲| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| 亚洲aⅴ乱码一区二区在线播放 | 成人永久免费在线观看视频| 欧美久久黑人一区二区| 成年女人毛片免费观看观看9| 免费在线观看亚洲国产| av福利片在线| 在线观看午夜福利视频| 香蕉丝袜av| 久久久久久久久久黄片| 午夜福利欧美成人| 黄色 视频免费看| 亚洲成人免费电影在线观看| 老司机在亚洲福利影院| 成人永久免费在线观看视频| 亚洲一区二区三区不卡视频| 啦啦啦观看免费观看视频高清| 欧美成人免费av一区二区三区| 老司机午夜十八禁免费视频| 黄片大片在线免费观看| 丝袜美腿诱惑在线| 日本精品一区二区三区蜜桃| 精品国产一区二区三区四区第35| 国产成人欧美| 日本黄色视频三级网站网址| 手机成人av网站| 在线观看舔阴道视频| 精品一区二区三区av网在线观看| 桃色一区二区三区在线观看| 日韩av在线大香蕉| 免费高清在线观看日韩| 99热只有精品国产| 国产精品久久久久久精品电影 | 啪啪无遮挡十八禁网站| 国产亚洲欧美在线一区二区| 久久婷婷人人爽人人干人人爱| 天天躁狠狠躁夜夜躁狠狠躁| av免费在线观看网站| 老司机靠b影院| 国产亚洲精品av在线| 精品久久久久久成人av| 国产视频内射| 免费搜索国产男女视频| 亚洲七黄色美女视频| 变态另类丝袜制服| 国产精品久久久人人做人人爽| 久久久久久人人人人人| 精品少妇一区二区三区视频日本电影| 成年版毛片免费区| 亚洲欧美日韩高清在线视频| 亚洲国产精品久久男人天堂| 精品午夜福利视频在线观看一区| 操出白浆在线播放| 黄片大片在线免费观看| 1024手机看黄色片| 亚洲熟妇中文字幕五十中出| 宅男免费午夜| 久久精品aⅴ一区二区三区四区| 男人舔奶头视频| 国产亚洲精品久久久久久毛片| 人人澡人人妻人| 91大片在线观看| 91麻豆av在线| 欧美中文日本在线观看视频| 最近在线观看免费完整版| 两性夫妻黄色片| 男女床上黄色一级片免费看| 久久精品夜夜夜夜夜久久蜜豆 | 91av网站免费观看| 一区福利在线观看| 无遮挡黄片免费观看| 婷婷精品国产亚洲av| 欧美国产日韩亚洲一区| 制服人妻中文乱码| 好男人在线观看高清免费视频 | 色尼玛亚洲综合影院| 欧美乱妇无乱码| 国产亚洲精品久久久久5区| 国产av不卡久久| 美女高潮喷水抽搐中文字幕| 亚洲熟女毛片儿| 少妇熟女aⅴ在线视频| 国产伦在线观看视频一区| e午夜精品久久久久久久| 国产国语露脸激情在线看| 亚洲五月天丁香| 叶爱在线成人免费视频播放| 美女免费视频网站| 亚洲av成人不卡在线观看播放网| 少妇熟女aⅴ在线视频| 成人精品一区二区免费| 国产精品一区二区免费欧美| 亚洲国产中文字幕在线视频| 两人在一起打扑克的视频| 99久久精品国产亚洲精品| 夜夜爽天天搞| 叶爱在线成人免费视频播放| 美女午夜性视频免费| 男人舔女人下体高潮全视频| 最好的美女福利视频网| 日韩欧美 国产精品| 亚洲精品在线美女| 亚洲欧美精品综合一区二区三区| 亚洲最大成人中文| 久久久久久久久中文| 淫妇啪啪啪对白视频| 可以免费在线观看a视频的电影网站| 亚洲av熟女| 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费| 久久这里只有精品19| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲狠狠婷婷综合久久图片| 美女高潮喷水抽搐中文字幕| 亚洲精品色激情综合| 国产精品久久久人人做人人爽| 此物有八面人人有两片| 亚洲精品在线美女| 欧美日本亚洲视频在线播放| 亚洲色图av天堂| 成人永久免费在线观看视频| 国产精品野战在线观看| 日日爽夜夜爽网站| 久久伊人香网站| 国产精品 欧美亚洲| 国产一卡二卡三卡精品| 麻豆久久精品国产亚洲av| 成人av一区二区三区在线看| 亚洲第一av免费看| 老熟妇仑乱视频hdxx| 国产爱豆传媒在线观看 | 最新在线观看一区二区三区| aaaaa片日本免费| 成人国语在线视频| 午夜成年电影在线免费观看| 伦理电影免费视频| 欧美大码av| 夜夜躁狠狠躁天天躁| 中文字幕av电影在线播放| 欧美一级a爱片免费观看看 | 一本一本综合久久| avwww免费| 日本五十路高清| 美女大奶头视频| 午夜影院日韩av| 久久精品aⅴ一区二区三区四区| av欧美777| 午夜a级毛片| 亚洲精品一区av在线观看| 亚洲国产高清在线一区二区三 | 欧美乱色亚洲激情| 国产99久久九九免费精品| 午夜免费鲁丝| 啦啦啦观看免费观看视频高清| 窝窝影院91人妻| 精品国产国语对白av| 国语自产精品视频在线第100页| 国产熟女xx| 亚洲色图av天堂| 国产精品99久久99久久久不卡| 成年版毛片免费区| 欧美国产日韩亚洲一区| 老司机福利观看| 欧美zozozo另类| 国产成人精品久久二区二区91| av在线播放免费不卡| 12—13女人毛片做爰片一| 97人妻精品一区二区三区麻豆 | 男人舔女人的私密视频| 亚洲熟女毛片儿| 亚洲 国产 在线| 亚洲自拍偷在线| 少妇 在线观看| 欧美日韩黄片免| 日本五十路高清| 99久久久亚洲精品蜜臀av| 韩国精品一区二区三区| 欧美日本亚洲视频在线播放| 男人舔奶头视频| 久久精品人妻少妇| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 久久久国产欧美日韩av| 两个人免费观看高清视频| 欧美激情高清一区二区三区| 精品久久久久久久末码| 两个人视频免费观看高清| 精品久久久久久久末码| 久99久视频精品免费| av片东京热男人的天堂| 午夜成年电影在线免费观看| 人妻丰满熟妇av一区二区三区| 久久婷婷成人综合色麻豆| av有码第一页| 桃红色精品国产亚洲av| 午夜激情福利司机影院| 桃色一区二区三区在线观看| 亚洲avbb在线观看| 成人亚洲精品av一区二区| 亚洲天堂国产精品一区在线| 热re99久久国产66热| 亚洲最大成人中文| 嫩草影视91久久| 国产精品久久久久久亚洲av鲁大| 亚洲第一av免费看| 午夜免费观看网址| a级毛片a级免费在线| 国产欧美日韩一区二区精品| 男人操女人黄网站| 国产视频内射| 精品久久久久久久久久免费视频| 熟妇人妻久久中文字幕3abv| 欧美成人午夜精品| 亚洲精品在线观看二区| 精华霜和精华液先用哪个| 国产精品久久久人人做人人爽| 日韩欧美免费精品| 亚洲国产精品成人综合色| 黄频高清免费视频| 最近在线观看免费完整版| 国产激情久久老熟女| 50天的宝宝边吃奶边哭怎么回事| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 欧美 日韩 在线 免费| 12—13女人毛片做爰片一| 大型黄色视频在线免费观看| 国产成人系列免费观看| 91麻豆精品激情在线观看国产| 亚洲第一青青草原| 搡老妇女老女人老熟妇| 国产国语露脸激情在线看| 性欧美人与动物交配| 在线播放国产精品三级| 成人精品一区二区免费| www日本在线高清视频| 女同久久另类99精品国产91| av中文乱码字幕在线| 一进一出好大好爽视频| 午夜福利免费观看在线| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 欧美日韩亚洲国产一区二区在线观看| aaaaa片日本免费| 校园春色视频在线观看| 最近最新中文字幕大全电影3 | 在线观看免费午夜福利视频| 美女扒开内裤让男人捅视频| 久9热在线精品视频| 成人国语在线视频| 日日爽夜夜爽网站| 国产视频一区二区在线看| 好男人电影高清在线观看| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 日本 欧美在线| 久久久精品国产亚洲av高清涩受| 亚洲第一欧美日韩一区二区三区| 国产aⅴ精品一区二区三区波| www日本在线高清视频| 国产亚洲精品久久久久久毛片| 12—13女人毛片做爰片一| 国内揄拍国产精品人妻在线 | 黑丝袜美女国产一区| 成人手机av| 欧美一级毛片孕妇| 高潮久久久久久久久久久不卡| 亚洲专区国产一区二区| 午夜影院日韩av| 18禁国产床啪视频网站| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 99久久综合精品五月天人人| 国产激情欧美一区二区| 国产亚洲精品久久久久久毛片| 国内揄拍国产精品人妻在线 | 满18在线观看网站| 午夜激情福利司机影院| 成人18禁在线播放| 男女那种视频在线观看| 国产免费男女视频| 黄色成人免费大全| 久久婷婷人人爽人人干人人爱| 亚洲av电影在线进入| 久9热在线精品视频| 色尼玛亚洲综合影院| 又黄又粗又硬又大视频| 丝袜在线中文字幕| 国产精品综合久久久久久久免费| 亚洲成人精品中文字幕电影| 90打野战视频偷拍视频| a在线观看视频网站| 最新在线观看一区二区三区| netflix在线观看网站| 欧美+亚洲+日韩+国产| 国产一区二区在线av高清观看| 亚洲狠狠婷婷综合久久图片| 久久久久九九精品影院| 久久久久精品国产欧美久久久| 女性被躁到高潮视频| 午夜视频精品福利| 在线免费观看的www视频| 欧美黑人巨大hd| 成年人黄色毛片网站| av片东京热男人的天堂| 一级毛片精品| 在线十欧美十亚洲十日本专区| 欧美在线黄色| a级毛片a级免费在线| 亚洲av熟女| 国产成人一区二区三区免费视频网站| 精品一区二区三区av网在线观看| 色婷婷久久久亚洲欧美| 久久人人精品亚洲av| or卡值多少钱| 欧美成狂野欧美在线观看| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 国产成人系列免费观看| 搡老妇女老女人老熟妇| 两人在一起打扑克的视频| 一本大道久久a久久精品| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 国产激情久久老熟女| 免费无遮挡裸体视频| av欧美777| 香蕉丝袜av| aaaaa片日本免费| 无限看片的www在线观看| 91av网站免费观看| 给我免费播放毛片高清在线观看| 国产高清videossex| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| 精品久久久久久成人av| 日本黄色视频三级网站网址| 波多野结衣高清作品| 男人操女人黄网站| 国产激情偷乱视频一区二区| 身体一侧抽搐| 国产真人三级小视频在线观看| 性色av乱码一区二区三区2| 特大巨黑吊av在线直播 | 成人三级黄色视频| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 欧美日韩精品网址| 99re在线观看精品视频| 黄片大片在线免费观看| 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 两个人免费观看高清视频| 久久香蕉激情| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 亚洲色图 男人天堂 中文字幕| 国产精品野战在线观看| 国产成人系列免费观看| 国产精品久久视频播放| 人人妻人人看人人澡| 啦啦啦免费观看视频1| 在线观看午夜福利视频| 看免费av毛片| 亚洲精品在线观看二区| 国产成人精品无人区| 欧美大码av| 国产精品综合久久久久久久免费| 国产精品自产拍在线观看55亚洲| √禁漫天堂资源中文www| 亚洲 国产 在线| 亚洲九九香蕉| 国产成人啪精品午夜网站| 99久久久亚洲精品蜜臀av| 免费女性裸体啪啪无遮挡网站| 91老司机精品| 一级a爱片免费观看的视频| 久久精品成人免费网站| 日日夜夜操网爽| 日本 av在线| 黄片大片在线免费观看| 国产精品亚洲美女久久久| 日韩三级视频一区二区三区| e午夜精品久久久久久久| 亚洲国产欧美日韩在线播放| cao死你这个sao货| 亚洲专区字幕在线| videosex国产| 午夜久久久久精精品| 自线自在国产av| av视频在线观看入口| 91大片在线观看| 嫩草影视91久久| 久久久久久久精品吃奶| 久久热在线av| 999久久久国产精品视频| 国产高清有码在线观看视频 | 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放 | 99热这里只有精品一区 | 男人舔女人下体高潮全视频| 一级片免费观看大全| 国产又黄又爽又无遮挡在线| 12—13女人毛片做爰片一| 搡老妇女老女人老熟妇| 欧美久久黑人一区二区| 亚洲 国产 在线| 日本a在线网址| 日本一本二区三区精品| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 欧美久久黑人一区二区| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 9191精品国产免费久久| 一a级毛片在线观看| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 成在线人永久免费视频| 精品国产超薄肉色丝袜足j| 久久香蕉国产精品| www.精华液| 日韩免费av在线播放| 嫩草影院精品99| 一本精品99久久精品77| 啦啦啦免费观看视频1| 免费在线观看成人毛片| 欧美+亚洲+日韩+国产| 成人手机av| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 免费观看精品视频网站| 午夜福利一区二区在线看| 99精品久久久久人妻精品| 一区二区三区激情视频| 欧美性猛交╳xxx乱大交人| 亚洲欧洲精品一区二区精品久久久| 成人国产一区最新在线观看| 免费搜索国产男女视频| 日韩大尺度精品在线看网址| 久久久国产欧美日韩av| 久久性视频一级片| 熟妇人妻久久中文字幕3abv| 哪里可以看免费的av片| 两人在一起打扑克的视频| 一边摸一边做爽爽视频免费| 满18在线观看网站| 黑人操中国人逼视频| 神马国产精品三级电影在线观看 | 亚洲自拍偷在线| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 好男人电影高清在线观看| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 久久久水蜜桃国产精品网| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 国产精品 国内视频| 色综合婷婷激情| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| √禁漫天堂资源中文www| 精品人妻1区二区| 午夜精品久久久久久毛片777| 亚洲午夜精品一区,二区,三区| 琪琪午夜伦伦电影理论片6080| 成人18禁在线播放| 午夜免费成人在线视频| 免费看十八禁软件| 香蕉久久夜色| 哪里可以看免费的av片| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 18美女黄网站色大片免费观看| 亚洲专区字幕在线| 亚洲成av片中文字幕在线观看| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 99精品在免费线老司机午夜| 宅男免费午夜| 亚洲男人的天堂狠狠| 91成人精品电影| 欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久 | 丰满的人妻完整版| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 午夜精品在线福利| 日韩国内少妇激情av| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 精品国产一区二区三区四区第35| 精品一区二区三区四区五区乱码| 精品一区二区三区视频在线观看免费| 一夜夜www| 香蕉久久夜色| 久久久久久久午夜电影| 日日爽夜夜爽网站| 欧美黄色片欧美黄色片| 国产精品 欧美亚洲| 午夜福利18| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 色精品久久人妻99蜜桃| 亚洲一区中文字幕在线| 欧美日韩乱码在线| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 成人一区二区视频在线观看| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 丁香欧美五月| 久久久久久亚洲精品国产蜜桃av| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 久久精品91蜜桃| a在线观看视频网站| 一级黄色大片毛片| 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 亚洲国产看品久久| 国产v大片淫在线免费观看| 久久人人精品亚洲av| av片东京热男人的天堂| 午夜免费成人在线视频| 国产亚洲欧美98| 男女午夜视频在线观看| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 日韩高清综合在线| 777久久人妻少妇嫩草av网站| 精品免费久久久久久久清纯| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 亚洲九九香蕉| 91九色精品人成在线观看| 欧美性猛交╳xxx乱大交人| 精品国产国语对白av| videosex国产| 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区| 国产1区2区3区精品| 色综合站精品国产| 热re99久久国产66热| 丝袜美腿诱惑在线| 中文字幕精品免费在线观看视频| 国产一区二区三区在线臀色熟女| 国产熟女xx| 国产精品av久久久久免费| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清 | 久久久久国内视频| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 亚洲三区欧美一区| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频 | 在线观看66精品国产| 在线观看午夜福利视频| 久久国产精品影院| 国产亚洲av嫩草精品影院| 老司机靠b影院| 非洲黑人性xxxx精品又粗又长| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 99re在线观看精品视频| 国产片内射在线| 男女床上黄色一级片免费看| 国产1区2区3区精品| 久久久精品欧美日韩精品| 搞女人的毛片| 啪啪无遮挡十八禁网站| 一级a爱视频在线免费观看| 免费看十八禁软件| 久久久久久免费高清国产稀缺|