• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green Synthesis of Nitrogen-to-Ammonia Fixation: Past,Present, and Future

    2022-07-04 09:14:12JianyunZhengLiJiangYanhongLyuSanPingJiangandShuangyinWang
    Energy & Environmental Materials 2022年2期

    Jianyun Zheng* , Li Jiang, Yanhong Lyu, San Ping Jiang, and Shuangyin Wang

    1. Introduction

    Food and energy security and sustainability are the two most grand challenges facing humankind today across the world.Ammonia(NH3)is one of the most critical ingredients in the food supplier chain as NH3is the essential fertilizer for the agricultural and food production sector.[1,2]Since the discovery of Haber–Bosch(HB)process in 1909,the important process has produced a large proportion of global NH3production over 100 years.[3]The world production of NH3by HB process is over $60 billion annually, and nearly, 80% of the produced NH3is used as the fertilizer in agriculture(see Figure 1).The practical NH3production via HB process enables the global population to nearly quadruple since the rapid implementation of the process in the early 20th century. In the energy field, NH3is currently acknowledged as a promising hydrogen energy carrier because of high volume energy density (13.6 GJ m-3) and easy transportation characteristics (boiling temperature of -33.5 °C).[4]However, to drive the rupture of N≡N and hydrogenation reaction, the HB process involves in high temperature (400–500 °C) and pressure (10–20 MPa) reaction conditions, which accounts for around 1.5% of total global carbon dioxide(CO2) emissions and consumes about 2% of the world’s annual energy supply.[5]Therefore,pursuing an alternative, green, and environmentally efficient process for nitrogen (N2)-to-NH3fixation with renewable energy is very significant for sustainable NH3production.[6–8]

    In view of compatibility with renewable energy source, low product cost and potential scalable production, photocatalytic, electrochemical, photoelectrochemical (PEC), and plasma-driven approaches are recognized as the promising and competitive next-generation NH3synthesis technologies.[9–13]These approaches not only carry out the N2-to-NH3fixation under mild conditions like room temperature and atmospheric pressure but also can be powered by renewable energy source such as sun and wind.[14–16]Generally, the photocatalytic process is directly driven by sunlight to propel the activation and hydrogenation of N2. This type of devices is most simple and low-cost, but shows the low chemical utilization of solar energy.Green electrolytic reaction units for N2reduction reaction(NRR) are powered by solar cells and wind turbines, which usually necessitate use of two encapsulation and support structures. The integrated modularity is the most mature and benefit with high technology readiness,but its cost is also highest.In comparison with photocatalytic and electrochemical method,PEC device is an economically viable solution by combining the catalyst and the solar absorbers into a fully integrated system, which has the considerable chemical utilization of solar energy and acceptable cost. The plasma-based processes can generate highly reactive species to activate N2and facilitate NH3synthesis under atmospheric pressure. Although this approach can obtain high NH3production rate,low selectivity,high energy consumption,and expensive devices limit the application of plasma-driven NRR. Furthermore,in addition to the direct fixation of N2to NH3, an indirect conversion route including oxidation of N2to nitrate and reduction in nitrate to NH3has been implemented by the use of the above approaches.[17–19]

    Indeed,the great prospect has inspired a flurry of research activity to increase the NH3production rate and conversion efficiency of the approaches. Important milestones in the research and development of this emerging field are highlighted in Figure 2.[20–25]The research activities in the green conversion of N2to NH3can be constructively divided into three major groups: 1) the selectivity and adjustment of various catalysts;[26–29]2) the type of electrolyte/solvent system;[22]and 3) the investigation of reaction conditions.[25,30]Recently, much effort and progress have been made in green NH3synthesis using photocatalytic and (photo-)electrochemical approaches, and meanwhile,some questions that the detected NH3is derived from the extraneous contamination rather than N2have arisen among some researchers in this field (Figure 1).[31]Herein, we briefly discuss the past advances and recent critical activities in the area of sustainable N2fixation and subsequently provide a perspective for rational and healthy development of this area.

    2. Selectivity and Adjustment of Catalysts

    Catalysts are the core component of both photocatalytic and (photo-)-electrochemical N2-to-NH3fixation and are absolutely vital for the N2absorption,hydrogenation reaction,and NH3desorption dynamic processes to influence the performance of NRR.[32,33]To date, a series of catalysts have been designed and prepared via various theoretical and experimental routes to carry out sustainable NH3production.Currently,the study of catalysts can primarily concentrate on the types of materials and improvement strategies, including noble metal-based materials,non-noble metal-based materials, nonmetal-based materials, and defect engineering. Ruthenium (Ru),[28]gold (Au),[34]and palladium(Pd)[35]are usually explored in photocatalytic and (photo-)electrochemical NRR under mild conditions (see Figure 3a). For example,Han et al. have reported that a catalyst with diatomic Pd-Cu sites dispersed on N-doped carbon show high activity and selectivity with an NH3formation rate of ~69.2 μg?h-1?mg-1and a faradic efficiency of~24.8%.[35]Non-noble metal-based materials such as Bi, Ti, and Cu have been currently explored as efficient catalysts for photocatalytic and(photo-)electrochemical NRR.An Bi4O5I2catalyst with oxygen vacancy and hydroxyl functional group, which can mimic “π back-donation”behavior by the presence of sufficient vacant orbitals, has been used to enhancing NRR activity in neutral media.[36]This catalyst reaches a splendid faradic efficiency of 32.4%superior to most of the other NRR catalysts in mild conditions.[36]Furthermore,nonmetal-based materials can not only offer good mechanical flexibility and electrical conductivity,but also more importantly,have sufficient catalytic active centers by the introduction of defects.[37]To date,some nonmetal-based materials including conducting polymers and organic carbon-based materials have been explored as catalysts for green NRR.[38]In addition to the use of defect engineering,other enhanced routes such as Li+incorporation,[10]aerophilic-hydrophilic heterostructure,[23]and interface engineering[39]have been investigated for green conversion of N2to NH3under mild conditions. Besides, many of theoretical calculations have also showed that these materials can be major active centers to enhance the N2adsorption, decrease the reaction energy barrier and permit the stabilization of hydrogenated N2species.

    3. Type of Electrolyte/Solvent System

    Jianyun Zheng received his Ph.D.degree in Physical Chemistry from Shanghai Institute of Ceramics,Chinese Academy of Sciences in 2015.From September 2015 to September 2019,he successively worked in Lanzhou Institute of Chemical Physics as an assistant research fellow and Hunan University and Curtin University as a united postdoctoral researcher.Currently,he is an associate professor in the College of Chemistry and Chemical Engineering in Hunan University.His main interests focus on the preparation of semiconductor materials,design,and assembly of photoelectrodes and photoelectrochemical devices,and their performance in photo(electro-)catalysis.

    Li Jiang is currently a graduate student in Hunan University,under the supervision of Prof.Jianyun Zheng and Prof.Shuangyin Wang. Her current research interest is photoelectrochemical nitrogen reduction reaction.

    Yanhong Lyu received her Pd.D. degree in Physical Chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2015.She currently works in Hunan First Normal University as a researcher. Her researches mainly focus on the (photo-)-electrochemistry, nanoscale analysis, and surface engineering of the materials for water splitting and nitrogen reduction.

    San Ping Jiang is a John Curtin Distinguished Professor at the Western Australian School of Mines: Minerals,Energy and Chemical Engineering and Deputy Director of Fuels and Energy Technology Institute, Curtin University,Australia. Dr Jiang obtained his PhD from The City University,London in 1988. Before 2010,Dr. Jiang worked at Nanyang Technological University in Singapore. His research interests encompass fuel cells, water electrolysis, supercapacitors,carbon dioxide reduction, single-atom catalysts, and nanostructured functional materials.

    As important as the catalyst, the electrolyte/solvent system is responsible for sufficient reaction elements or compounds at the solid/liquid interface, efficient conductivity in the overall reaction process, and appropriate pH environment toward targeted production, contributing to outstanding catalytic performance. As mentioned in the section of Catalysts, aqueous electrolytes have drawn attentions of numerous researchers to frequently explore and investigate in green NRR process because of environmental friendliness and rich reserves of water resource. However, a tremendous challenge for the use of aqueous electrolyte is low N2solubility and immediate availability of H+leading to poor NRR selectivity. Thus, an effective way to enhance the NRR performance is changing the electrolyte media, especially ionic liquid.Ionic liquid is a typical non-aqueous electrolyte, which only contains trace of water to offer the proton source and effectively suppresses the H2evolution. Meanwhile, certain ionic liquid can provide a high N2solubility under ambient conditions, as much as 20 times higher than aqueous electrolyte. For instance, MacFarlane group has reported ionic liquids with high N2solubility as electrolytes to obtain a high conversion efficiency of 60% for electrocatalytic NRR on a Fe-based catalyst(Figure 3b).[22]A series of other ionic liquids have been also tested for NRR at room temperature and enhanced the reaction selectivity toward NH3production. The NH3yield rates for NRR are quite low in ionic liquids although high conversion efficiency is achieved.In addition,the ionic liquids are non-green and expensive, not in accordance with the green synthesis requirements.

    Shuangyin Wang received his Ph.D. in 2010 from Nanyang Technological University, Singapore. He was a postdoctoral fellow working with Prof. L.Dai (2010–11) and Prof. A.Manthiram (2011–12). He was a Marie Curie Fellow at the University of Manchester with Prof. K. Novoselov (2012–13).He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are in novel catalysts, defects in various crystals and their application in electrocatalysis.

    4. Investigation of Reaction Conditions

    To further overcome the obstacles of yield rate and conversion efficiency,certain studies have started to control the reaction conditions to change the thermodynamic of NRR.According to Le Chatelier’s principle, the pressurized reaction environment can facilitate the balance toward the NH3production for NRR as a volume-reduced reaction and inhibit the hydrogen evolution owing to a reaction of an increasing volume.[30]In addition, the N2solubility in the electrolytes is directly proportional to the reaction pressure, which can affect the supply and diffusion of N2source. Encouragingly,the recent outstanding research work has revealed that the increased reaction pressure can be beneficial for improving NRR performance,achieving a record-high NH3yield rate of~74.2 μg?h-1?cm-2and a faradaic efficiency of ~20.4%, which exhibit 7.3-and 4.9-fold enhancements than those produced at ambient pressure(Figure 3c).[25]Actually, compared with the improvement of catalysts and electrolytes,the investigation and development of system pressure could be more promising to break the current limitations of NH3yield rate for NRR.

    Figure 1. Schematic diagrams for N2-to-NH3 fixation, including its synthesis methods, current dilemma, and application domain.

    5. Current Dilemma

    Figure 2. Timeline of the key developments in the field of green N2-to-NH3 fixation.

    Figure 3. Short overview of green NRR from three major groups. a) Schematic diagram and NH3 yield rate of electrocatalytic NRR by Ru single. Reproduced from ref. 28 with permission from Elsevier B.V. (Copyright 2019).b) N2 binding energy and NRR performance in the ionic liquids. Adapted from ref. 23 with permission from The Royal Society of Chemistry (Copyright 2017). c) Schematic of the pressurized NRR setup and NH3 yield rate at the different N2 pressures. Panels were reproduced with permission from ref. 25, National Academy of Sciences (Copyright 2020).

    The research field of green NRR still faces various problems in current stage although some achievements have suggested the potential values of this method. The major problem has been discussed as to whether the green N2-to-NH3fixation could be a practical and feasible or fictional and false way. Significant doubt and uncertainty in the NRR research are mainly derived from the various and potential contamination sources.[40]According to the source of contamination, the contamination can be grouped as extra-systematic and intra-systematic contamination.The NH3and labile nitrogen-containing compounds (e.g., NOx)from ambient environment such as the air and rubber gloves are referred to as the extra-systematiccontamination,which can be easily excluded by a closed system and rigorous operation.The intrasystematic contamination present in the catalysts, electrolytes, and feed gas has a significant influence on the true NRR performance.However,such intra-systematic contamination can be identified and eliminated by a series of control experiments and reaction units. Based on the rough calculation, all these contaminations can provide dozens or even hundreds of microgram of NH3production, showing a similar order of magnitude compared with the reported results of green NRR.[41]So far, the NH3yield rate by green NRR process ranges in the value from 1 to 70 μg?h-1?cm-2,which is too low to satisfy the practical production and suppress the interference of contamination. Under the current situation, it is extremely necessary for the researchers to adopt a more cautious attitude to treat all the results of green NRR or contamination. After all, enhancing the accuracy and reliability of the published literatures can be conducive to develop the green synthesis of N2-to-NH3fixation. In addition, the disturbance of contamination only exists in certain conditions and objects and is not of universality. It is confirmed that there is no discernible amount of NH3production detected in many NRR tests by different research groups and reaction methods.In fact,the involved literature reports on the false positives of NRR can be aimed at underlining and eliminating the effect of special contamination. Finally, all of the reported nitrogen-containing contamination can be effectively cleared away via an appropriate reaction unit, a rational experimental process,and a series of useful control experiments to achieve a“genuine” NRR. To improve the current situation of NRR, many of the research groups have proposed several rigorous and complicated protocols on basis of their own experimental routes.[24]Nevertheless, these protocols are too complicated to apply in all of the laboratories,especially for cash-strapped research group, and a complicated experimental process usually involves more experimental steps resulting in the more possibilities to introduce the contamination. In this perspective,we will also describe a facile protocol with a simple reaction unit available for reference purposes in the next section. In a word, the main reason for the difficulty in the NRR or contamination issues is the extremely low NH3yield rate by green methods. Therefore, the top priority of green NRR in future is to increase the yield rate by leaps and bounds.

    Figure 4. Schematic diagrams for increasing the NH3 yield rate, which contributes new opportunities for developing green NRR.

    6. Future Challenge, Strategy, and Prospect

    The major challenges we face in pursuit of practical application of green NRR are the very low NH3production rate with the disturbance of contamination. The low NH3production by green NRR under mild conditions can be attributed to the inherent limitations of reaction process like the rupture of N≡N and low N2solubility.The disturbance of contamination is regarded as the technical puzzles of green NRR in its infancy, which has often happened in creating and exploiting a new reaction or method. When the NH3yield rate still maintains the super low level, the results of NRR not only are difficult to be characterized by the existing NH3detection methods but also are easily affected by the contamination to display the “false positive.” On the other hand, the low NH3production from so-called NRR makes no sense to be reported when the contamination involves in the experiments.

    With respect to the breakthrough of NH3yield rate, there are several points in the NRR system should be considered in priority (see Figure 4). There is no doubt about the significance of the catalysts for NRR, but the routine improvements of the catalysts hardly break through the bottleneck of green NRR. The composite catalysts with different active sites to adsorb, activate, and hydrogenate N2and desorb NH3in series will be the inevitable development direction of NRR, but how to precisely synthesize and characterize the catalysts and testify the tandem and coupling mechanism can be the key points.In comparison with the catalysts, we can pay more attention to the selection and control of methods, electrolytes, and reaction conditions.Current technology for green NRR basically uses a single method,such as photocatalysis or electrocatalysis, which shows a poor NRR efficiency. In fact, utilizing the complementarity between methods, a few efforts on coupling the different methods can effectively enhance the performance of NRR, possibly involving the field enhancement effect and multi-step reaction chains (e.g., electrochemistry-photoelectrochemistry tandem device). On the other hand, developing novel and characteristic electrolytes has drawn the attentions of the researchers. We think that the future electrolytes may be neither single aqueous electrolytes nor ionic liquid electrolytes and can be a kind of mixed electrolytes with multiple phase to integrate the required functions (e.g., the mixture of metal-organic framework (or covalent organic frameworks) to adsorb and dissociate N2and aqueous electrolyte to provide protons). Finally, the reaction conditions like temperature and pressure should be changed to promote the N2-to-NH3fixation in the infancy of green NRR field. As everyone knows, high temperature and pressure can facilitate the NRR toward NH3production. Thus, to dramatically improve the NRR performance, rationally increasing the reaction temperature (e.g., 100 °C) or pressure (e.g.,1 MPa) can be a most fast and effective route, which establishes indepth understanding of green NRR and smart integration of comprehensive theories.

    For the protocol, we firstly emphasize that NRR is carried out in a clean and isolated room at least. The researchers in the NRR process should be careful and patient to well treat all the experimental details. The laboratory rookie for NRR should be accompanied by the master to guide the normative operation. It will be best to usually use a buddy system for NRR, which can enhance the accuracy of the results and reduce the occurrence of false positive. In addition, some facile and advanced experimental conditions and setups can be employed to exclude the disturbance of nitrogen-containing contamination. A series of cells to assemble a gas-tight reaction unit are used to carry out NRR, where each cell can play the different functions including the purification of N2gas, the NRR, the reabsorption of NH3production, and the effect of liquid seal. The rational design of control experiments is vitally important, which can confirm the N source of NH3from N2and check the composition of the catalysts, reaction reagents, and reaction gas to exclude the effect of contamination.

    Exploitation of a sustainable process N2-to-NH3fixation for both agriculture and energy industry can give rise to a massive global impact in the food and energy security and supply field in this century,as done at 100 years ago by Haber–Bosch process. In the face of great social and economic profit, we should keep confidence and strive to fundamental understanding and innovation in the NRR process for NH3production. We enthusiastically recommend the standard operational practices and new reaction modes to pursue such important task. We believe that all positive attempts and comments can make a good contribution to developing the green NRR.

    Acknowledgements

    The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017),the Provincial Natural Science Foundation of Hunan (2016JJ1006, 2020JJ5044, and 2016TP1009),and Australian Research Council(DP180100568 and DP180100731)for financial support of this research.

    Conflict of Interest

    The authors declare no conflict of interest.

    Keywords

    current dilemma, enhanced performances, future challenges, green synthesis,nitrogen-to-ammonia fixation

    Received: March 4, 2021

    Revised: March 22, 2021

    Published online: March 23, 2021

    [1] T. N. Ye, S. W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.

    [2] I. ?Cori′c, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015,526, 96.

    [3] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48,5658.

    [4] L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am.Chem. Soc. 2019, 141, 10677.

    [5] A. J. Mart′?n, T. Shinagawa, J. P′erez-Ram′?rez, Chem 2019, 5, 263.

    [6] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A.Ozin, Joule 2018, 2, 1055.

    [7] R. F. Service, Science 2018, 361, 120.

    [8] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M.Yan, Q. Jiang, X. B. Zhang, Adv. Mater. 2017, 29, 1604799.

    [9] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.

    [10] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am.Chem. Soc. 2017, 139, 9771.

    [11] L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.

    [12] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y.Weng, T. Zhang, Angew. Chem. Int. Edit. 2020, 60, 2554.

    [13] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci.Adv. 2019, 5, eaat5778.

    [14] X. Cui, C. Tang, Q. Zhang, Adv. Energy. Mater. 2016, 8, 1800369.

    [15] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N.Waterhouse, T. Zhang, Adv. Energy. Mater. 2020, 10, 2002199.

    [16] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Z. Qiao, ACS Catal. 2019, 9, 2902.

    [17] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J. A. Martens,Angew. Chem. Int. Edit. 2020, 59, 23825.

    [18] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu,H. Wang, Nat. Energy 2020, 5, 605.

    [19] J. Wang, L. Ling, Z. Deng, W. X. Zhang, Sci. Bull. 2020, 65, 926.

    [20] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652.

    [21] T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Edit. 2016, 55, 3942.

    [22] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017,10, 2516.

    [23] J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H.Zhou, S. P. Jiang, S. Wang, Chem 2019, 5, 1.

    [24] S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M.McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr,M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M.Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I.Chorkendorff, Nature 2019, 570, 504.

    [25] H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Proc Natl Acad Sci USA 2020,117, 29462.

    [26] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang,G. C. Schatz, M. G. Kanatzidis, Proc Natl Acad Sci USA 2016, 113, 5530.

    [27] C. Liu, K. K. Sakimoto, B. C. Col′on, P. A. Silver, D. G. Nocera, Proc Natl Acad Sci USA 2017, 114, 6450.

    [28] H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5,204.

    [29] F. Wang, L. Mao, H. Xie, J. Mao, Small Struct. 2021, 2, 2000075.

    [30] H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Edit.2019, 58, 15541.

    [31] L. Li, C. Tang, D. Yao, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 9,2111.

    [32] L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi, C. J. Li, Angew. Chem. Int. Edit.2017, 56, 8701.

    [33] P. Li, Z. Jin, Z. Fang, G. Yu, Angew. Chem. Int. Edit. 2020, 59, 22610.

    [34] J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang,Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Edit. 2019, 58,18604.

    [35] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J.Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Edit. 2020, 60, 345.

    [36] C. Lv, L. Zhong, Y. Yao, D. Liu, Y. Kong, X. Jin, Z. Fang, W. Xu, C. Yan,K. N. Dinh, M. Shao, L. Song, G. Chen, S. Li, Q. Yan, G. Yu, Chem 2020,6, 2690.

    [37] J. Zheng, Y. Lyu, B. Wu, S. Wang, EnergyChem 2020, 2, 100039.

    [38] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.

    [39] C. Tang, Y. Zheng, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Edit. 2021.https://doi.org/10.1002/anie.202101522

    [40] C. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166.

    [41] J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov, D. R.MacFarlane, ACS Energy Lett. 2020, 5, 2095.

    男人的好看免费观看在线视频 | 欧美色欧美亚洲另类二区| 久久精品国产99精品国产亚洲性色| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品99久久99久久久不卡| 久久香蕉激情| 国产一卡二卡三卡精品| 99国产极品粉嫩在线观看| 韩国av一区二区三区四区| 亚洲国产欧美一区二区综合| 久久中文看片网| 在线观看免费视频日本深夜| 成人三级做爰电影| 亚洲精品粉嫩美女一区| 每晚都被弄得嗷嗷叫到高潮| 观看免费一级毛片| 一进一出抽搐动态| 国产亚洲精品久久久久5区| 欧美又色又爽又黄视频| 一本综合久久免费| 校园春色视频在线观看| 好男人在线观看高清免费视频 | 97超级碰碰碰精品色视频在线观看| 中文字幕人妻丝袜一区二区| 日韩中文字幕欧美一区二区| 亚洲av片天天在线观看| 国产亚洲欧美98| 色精品久久人妻99蜜桃| 国产精品久久久人人做人人爽| 777久久人妻少妇嫩草av网站| 日本一本二区三区精品| 宅男免费午夜| 国内少妇人妻偷人精品xxx网站 | 精品久久蜜臀av无| 黄色片一级片一级黄色片| 精品久久久久久,| 亚洲一区中文字幕在线| 日韩欧美国产在线观看| 欧美人与性动交α欧美精品济南到| 久久久精品欧美日韩精品| 国产爱豆传媒在线观看 | 成人18禁高潮啪啪吃奶动态图| 99在线视频只有这里精品首页| 亚洲人成77777在线视频| 国产男靠女视频免费网站| 白带黄色成豆腐渣| 我的亚洲天堂| 欧美色视频一区免费| 亚洲精品美女久久av网站| 男人舔女人的私密视频| 国产激情欧美一区二区| 中文字幕人妻熟女乱码| 露出奶头的视频| 成人永久免费在线观看视频| 亚洲欧美精品综合久久99| www.www免费av| 日韩三级视频一区二区三区| 日本五十路高清| 欧美国产精品va在线观看不卡| 亚洲午夜精品一区,二区,三区| 丰满人妻熟妇乱又伦精品不卡| 成年人黄色毛片网站| 嫩草影院精品99| 国产91精品成人一区二区三区| 欧美+亚洲+日韩+国产| 变态另类成人亚洲欧美熟女| 国产亚洲精品综合一区在线观看 | 免费女性裸体啪啪无遮挡网站| 在线永久观看黄色视频| 麻豆成人av在线观看| 亚洲人成网站高清观看| 桃色一区二区三区在线观看| 日本免费a在线| 亚洲第一青青草原| 又黄又粗又硬又大视频| 国产成人啪精品午夜网站| 欧美色视频一区免费| 国产精品 国内视频| 观看免费一级毛片| 久久久久久大精品| 男人舔奶头视频| 可以在线观看毛片的网站| 精品久久久久久久久久免费视频| 精品日产1卡2卡| 欧美日韩一级在线毛片| 国产成人精品久久二区二区91| 88av欧美| 精品久久久久久,| 欧美一区二区精品小视频在线| 欧美日韩精品网址| 啦啦啦韩国在线观看视频| 色av中文字幕| 热99re8久久精品国产| 久久性视频一级片| 亚洲一码二码三码区别大吗| a级毛片a级免费在线| 岛国视频午夜一区免费看| 久久精品夜夜夜夜夜久久蜜豆 | 特大巨黑吊av在线直播 | 久久久久久久久中文| 天堂影院成人在线观看| 国产精品亚洲av一区麻豆| 制服诱惑二区| 两个人视频免费观看高清| 日韩欧美一区视频在线观看| 精品国产超薄肉色丝袜足j| 熟妇人妻久久中文字幕3abv| 国产又黄又爽又无遮挡在线| 夜夜夜夜夜久久久久| 俺也久久电影网| 大香蕉久久成人网| 嫁个100分男人电影在线观看| 久久久久久久午夜电影| 亚洲第一av免费看| 色在线成人网| 12—13女人毛片做爰片一| 亚洲一区二区三区不卡视频| 国产精品永久免费网站| 亚洲精品中文字幕一二三四区| 久久精品国产清高在天天线| 9191精品国产免费久久| √禁漫天堂资源中文www| 国产v大片淫在线免费观看| 青草久久国产| 岛国视频午夜一区免费看| 日韩欧美一区二区三区在线观看| 老司机靠b影院| 真人做人爱边吃奶动态| 国产精品野战在线观看| 老司机午夜福利在线观看视频| 两个人视频免费观看高清| 免费一级毛片在线播放高清视频| 黑丝袜美女国产一区| 久久中文看片网| 自线自在国产av| 亚洲国产日韩欧美精品在线观看 | 我的亚洲天堂| 麻豆成人午夜福利视频| 国产av不卡久久| 亚洲精品在线观看二区| 又黄又爽又免费观看的视频| 久久人妻福利社区极品人妻图片| 亚洲自拍偷在线| 欧美日韩精品网址| 一卡2卡三卡四卡精品乱码亚洲| 嫁个100分男人电影在线观看| 亚洲精品粉嫩美女一区| 亚洲精品在线美女| 亚洲 欧美一区二区三区| 最新在线观看一区二区三区| 美女高潮到喷水免费观看| 亚洲第一av免费看| 在线观看www视频免费| 午夜日韩欧美国产| 久久久久精品国产欧美久久久| 人人妻人人澡人人看| 亚洲av电影在线进入| 最近在线观看免费完整版| 成人国产一区最新在线观看| 午夜激情av网站| 夜夜躁狠狠躁天天躁| 久久久精品国产亚洲av高清涩受| 99热只有精品国产| 欧美+亚洲+日韩+国产| 99久久99久久久精品蜜桃| 国内久久婷婷六月综合欲色啪| 午夜精品在线福利| a级毛片a级免费在线| 国产精品久久久久久精品电影 | 黄网站色视频无遮挡免费观看| 最近最新免费中文字幕在线| 国产主播在线观看一区二区| 岛国在线观看网站| 91老司机精品| 午夜精品在线福利| a在线观看视频网站| 国产伦人伦偷精品视频| 一二三四社区在线视频社区8| av中文乱码字幕在线| 亚洲一区二区三区色噜噜| 亚洲人成网站在线播放欧美日韩| 免费观看精品视频网站| 麻豆国产av国片精品| 国产精品九九99| 日本 av在线| 免费无遮挡裸体视频| 黄片播放在线免费| bbb黄色大片| 亚洲欧美一区二区三区黑人| 国产精品久久久久久精品电影 | 伦理电影免费视频| 最近最新免费中文字幕在线| 日韩欧美三级三区| 少妇 在线观看| 淫妇啪啪啪对白视频| a在线观看视频网站| 色综合亚洲欧美另类图片| 在线观看www视频免费| 成人欧美大片| 90打野战视频偷拍视频| 亚洲av电影在线进入| 亚洲国产毛片av蜜桃av| 亚洲自偷自拍图片 自拍| 成熟少妇高潮喷水视频| tocl精华| 99国产精品一区二区蜜桃av| 久久香蕉国产精品| 日韩欧美一区二区三区在线观看| 欧美日本亚洲视频在线播放| 老汉色∧v一级毛片| 美国免费a级毛片| 国产高清videossex| 最近最新中文字幕大全电影3 | 国产精品久久久久久人妻精品电影| 一区二区日韩欧美中文字幕| 999久久久国产精品视频| 亚洲人成网站在线播放欧美日韩| 香蕉久久夜色| 高潮久久久久久久久久久不卡| 日韩欧美国产在线观看| 国产精品永久免费网站| 精品午夜福利视频在线观看一区| 男人的好看免费观看在线视频 | 久久国产亚洲av麻豆专区| 国产视频内射| 国产三级黄色录像| 母亲3免费完整高清在线观看| 亚洲精品粉嫩美女一区| 一二三四社区在线视频社区8| 欧美一级a爱片免费观看看 | 动漫黄色视频在线观看| 好看av亚洲va欧美ⅴa在| 亚洲 欧美一区二区三区| 国产又黄又爽又无遮挡在线| 久久人人精品亚洲av| 不卡av一区二区三区| 日韩大尺度精品在线看网址| 精品午夜福利视频在线观看一区| 中文字幕人妻熟女乱码| 亚洲五月天丁香| 哪里可以看免费的av片| 在线观看一区二区三区| 国产男靠女视频免费网站| 免费在线观看影片大全网站| 大型黄色视频在线免费观看| 中文字幕精品免费在线观看视频| 亚洲欧美日韩高清在线视频| 久久热在线av| 亚洲黑人精品在线| 亚洲第一青青草原| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 久久婷婷人人爽人人干人人爱| 99re在线观看精品视频| 88av欧美| 国产私拍福利视频在线观看| 欧美午夜高清在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品美女久久av网站| 国产伦人伦偷精品视频| 99国产综合亚洲精品| 听说在线观看完整版免费高清| 啦啦啦免费观看视频1| 免费在线观看影片大全网站| 亚洲av五月六月丁香网| 亚洲精品国产区一区二| 麻豆成人av在线观看| 欧美三级亚洲精品| 最好的美女福利视频网| 美女大奶头视频| 99re在线观看精品视频| 久久精品影院6| 久久香蕉国产精品| 亚洲男人天堂网一区| 18禁国产床啪视频网站| av在线播放免费不卡| 97人妻精品一区二区三区麻豆 | 一边摸一边做爽爽视频免费| 成人国产综合亚洲| 免费无遮挡裸体视频| 757午夜福利合集在线观看| 国产精品99久久99久久久不卡| 婷婷亚洲欧美| 精品福利观看| 精品少妇一区二区三区视频日本电影| 日韩欧美 国产精品| 亚洲中文字幕日韩| 夜夜看夜夜爽夜夜摸| 少妇 在线观看| 777久久人妻少妇嫩草av网站| 成人国产综合亚洲| 亚洲专区国产一区二区| 久久香蕉精品热| 黑人巨大精品欧美一区二区mp4| 麻豆成人av在线观看| 麻豆成人av在线观看| 激情在线观看视频在线高清| 黄网站色视频无遮挡免费观看| 久久久久久人人人人人| 婷婷精品国产亚洲av在线| 亚洲精品在线观看二区| 一区二区日韩欧美中文字幕| 香蕉av资源在线| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 淫秽高清视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲国产精品成人综合色| 18禁裸乳无遮挡免费网站照片 | 俄罗斯特黄特色一大片| 亚洲av电影在线进入| 午夜免费激情av| 国产成人一区二区三区免费视频网站| 免费在线观看亚洲国产| 很黄的视频免费| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 国产在线精品亚洲第一网站| 脱女人内裤的视频| 久久久久免费精品人妻一区二区 | 国产成人啪精品午夜网站| 国产激情久久老熟女| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 精品国内亚洲2022精品成人| 免费观看精品视频网站| 免费一级毛片在线播放高清视频| 欧美黄色片欧美黄色片| 午夜免费成人在线视频| 亚洲国产精品999在线| 男女下面进入的视频免费午夜 | 妹子高潮喷水视频| 欧美日韩精品网址| 白带黄色成豆腐渣| 国产亚洲精品久久久久久毛片| 亚洲精品中文字幕在线视频| 久久欧美精品欧美久久欧美| 久久亚洲精品不卡| 男人舔女人下体高潮全视频| 免费av毛片视频| 欧美黑人精品巨大| 美女午夜性视频免费| 日韩精品免费视频一区二区三区| 黄色女人牲交| avwww免费| 精品国产美女av久久久久小说| 午夜a级毛片| 91麻豆精品激情在线观看国产| 19禁男女啪啪无遮挡网站| 午夜亚洲福利在线播放| 国产精品 国内视频| 中国美女看黄片| 操出白浆在线播放| 97超级碰碰碰精品色视频在线观看| 国产激情久久老熟女| 欧美色视频一区免费| 精品免费久久久久久久清纯| 18美女黄网站色大片免费观看| 少妇的丰满在线观看| 欧美国产日韩亚洲一区| 久久久久久久久免费视频了| 黄色a级毛片大全视频| 日韩大尺度精品在线看网址| 男男h啪啪无遮挡| 久久久久免费精品人妻一区二区 | 亚洲一码二码三码区别大吗| 国内毛片毛片毛片毛片毛片| 欧美zozozo另类| 免费电影在线观看免费观看| www日本黄色视频网| 中文字幕人妻丝袜一区二区| 啦啦啦 在线观看视频| 一个人免费在线观看的高清视频| 亚洲av成人av| 国产成人精品久久二区二区91| 午夜精品久久久久久毛片777| 国产97色在线日韩免费| 久久热在线av| 亚洲专区字幕在线| 黄网站色视频无遮挡免费观看| 97碰自拍视频| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线| 精品乱码久久久久久99久播| 99在线人妻在线中文字幕| 国产黄色小视频在线观看| 禁无遮挡网站| 国产成人一区二区三区免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 欧美久久黑人一区二区| 一本大道久久a久久精品| 夜夜看夜夜爽夜夜摸| 韩国精品一区二区三区| 国产免费av片在线观看野外av| 在线免费观看的www视频| АⅤ资源中文在线天堂| 国产黄色小视频在线观看| 18美女黄网站色大片免费观看| 国产成人av教育| 午夜久久久在线观看| 亚洲av中文字字幕乱码综合 | 不卡一级毛片| 午夜视频精品福利| av在线播放免费不卡| 亚洲精品一区av在线观看| 久热这里只有精品99| 国产精品日韩av在线免费观看| 亚洲无线在线观看| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 99久久综合精品五月天人人| 50天的宝宝边吃奶边哭怎么回事| 中文资源天堂在线| 欧美精品亚洲一区二区| 午夜视频精品福利| 成人av一区二区三区在线看| 欧美+亚洲+日韩+国产| 国产蜜桃级精品一区二区三区| 视频区欧美日本亚洲| 最近最新免费中文字幕在线| 人妻久久中文字幕网| 老司机在亚洲福利影院| 日韩免费av在线播放| 99精品欧美一区二区三区四区| 搡老妇女老女人老熟妇| 午夜精品在线福利| 婷婷丁香在线五月| 精品久久久久久久人妻蜜臀av| 熟女电影av网| 18禁观看日本| 国内揄拍国产精品人妻在线 | 夜夜爽天天搞| 18禁黄网站禁片午夜丰满| 正在播放国产对白刺激| 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 国产伦人伦偷精品视频| 很黄的视频免费| 日本在线视频免费播放| 熟妇人妻久久中文字幕3abv| 国产精品综合久久久久久久免费| 丰满的人妻完整版| 亚洲av熟女| 性欧美人与动物交配| 久久国产亚洲av麻豆专区| 女同久久另类99精品国产91| 午夜福利18| 免费在线观看完整版高清| 视频区欧美日本亚洲| 日韩精品中文字幕看吧| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 久久 成人 亚洲| 成人永久免费在线观看视频| 国产精品99久久99久久久不卡| 欧美不卡视频在线免费观看 | 亚洲性夜色夜夜综合| 日韩有码中文字幕| 久久 成人 亚洲| 妹子高潮喷水视频| 1024香蕉在线观看| 欧美成狂野欧美在线观看| 久久伊人香网站| 国产亚洲精品综合一区在线观看 | 免费看十八禁软件| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 麻豆成人av在线观看| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 亚洲欧洲精品一区二区精品久久久| 婷婷精品国产亚洲av| 国产欧美日韩一区二区三| 免费搜索国产男女视频| 国产亚洲欧美精品永久| 国产一级毛片七仙女欲春2 | 亚洲国产精品成人综合色| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 国产亚洲精品第一综合不卡| 亚洲狠狠婷婷综合久久图片| 国产色视频综合| 中文字幕久久专区| 老司机靠b影院| 成人国产一区最新在线观看| 一进一出好大好爽视频| 中亚洲国语对白在线视频| 久久久国产成人精品二区| 成人精品一区二区免费| 91字幕亚洲| 国产一区二区激情短视频| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 国产精品99久久99久久久不卡| 亚洲熟女毛片儿| 国产av一区二区精品久久| 夜夜爽天天搞| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 18禁黄网站禁片免费观看直播| 国产av又大| 婷婷精品国产亚洲av| 精品国产乱码久久久久久男人| 免费在线观看日本一区| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 怎么达到女性高潮| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 男人舔奶头视频| 国产91精品成人一区二区三区| 亚洲,欧美精品.| 免费看十八禁软件| 久久人妻av系列| 欧美成人午夜精品| 国产蜜桃级精品一区二区三区| 亚洲国产欧洲综合997久久, | 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 又大又爽又粗| 制服人妻中文乱码| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品欧美日韩精品| 人人妻人人澡人人看| 性欧美人与动物交配| 人人妻人人看人人澡| 亚洲精品在线观看二区| 亚洲av日韩精品久久久久久密| 欧美日韩福利视频一区二区| 看黄色毛片网站| 久久久久亚洲av毛片大全| 久久中文字幕人妻熟女| 欧美日韩一级在线毛片| 一区二区三区国产精品乱码| 亚洲av五月六月丁香网| 国产不卡一卡二| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 一本大道久久a久久精品| 亚洲第一av免费看| 51午夜福利影视在线观看| 免费看日本二区| 少妇 在线观看| 成人三级黄色视频| 国产成人精品久久二区二区91| 亚洲av电影不卡..在线观看| 少妇 在线观看| 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 制服丝袜大香蕉在线| 久久久久国产一级毛片高清牌| 亚洲精品一卡2卡三卡4卡5卡| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 黄网站色视频无遮挡免费观看| 亚洲熟妇熟女久久| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 亚洲无线在线观看| 久久久久国产一级毛片高清牌| 熟女电影av网| 国产精品,欧美在线| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 哪里可以看免费的av片| 午夜免费激情av| 久久 成人 亚洲| 国产主播在线观看一区二区| 青草久久国产| 成人永久免费在线观看视频| 日韩欧美三级三区| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 国产黄a三级三级三级人| 成人国语在线视频| 亚洲成人免费电影在线观看| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 俺也久久电影网| 亚洲自偷自拍图片 自拍| 午夜免费观看网址| e午夜精品久久久久久久| 白带黄色成豆腐渣| 色播亚洲综合网| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产免费av片在线观看野外av| 非洲黑人性xxxx精品又粗又长| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密| 国产亚洲欧美精品永久| 国产爱豆传媒在线观看 | 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久|