• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green Synthesis of Nitrogen-to-Ammonia Fixation: Past,Present, and Future

    2022-07-04 09:14:12JianyunZhengLiJiangYanhongLyuSanPingJiangandShuangyinWang
    Energy & Environmental Materials 2022年2期

    Jianyun Zheng* , Li Jiang, Yanhong Lyu, San Ping Jiang, and Shuangyin Wang

    1. Introduction

    Food and energy security and sustainability are the two most grand challenges facing humankind today across the world.Ammonia(NH3)is one of the most critical ingredients in the food supplier chain as NH3is the essential fertilizer for the agricultural and food production sector.[1,2]Since the discovery of Haber–Bosch(HB)process in 1909,the important process has produced a large proportion of global NH3production over 100 years.[3]The world production of NH3by HB process is over $60 billion annually, and nearly, 80% of the produced NH3is used as the fertilizer in agriculture(see Figure 1).The practical NH3production via HB process enables the global population to nearly quadruple since the rapid implementation of the process in the early 20th century. In the energy field, NH3is currently acknowledged as a promising hydrogen energy carrier because of high volume energy density (13.6 GJ m-3) and easy transportation characteristics (boiling temperature of -33.5 °C).[4]However, to drive the rupture of N≡N and hydrogenation reaction, the HB process involves in high temperature (400–500 °C) and pressure (10–20 MPa) reaction conditions, which accounts for around 1.5% of total global carbon dioxide(CO2) emissions and consumes about 2% of the world’s annual energy supply.[5]Therefore,pursuing an alternative, green, and environmentally efficient process for nitrogen (N2)-to-NH3fixation with renewable energy is very significant for sustainable NH3production.[6–8]

    In view of compatibility with renewable energy source, low product cost and potential scalable production, photocatalytic, electrochemical, photoelectrochemical (PEC), and plasma-driven approaches are recognized as the promising and competitive next-generation NH3synthesis technologies.[9–13]These approaches not only carry out the N2-to-NH3fixation under mild conditions like room temperature and atmospheric pressure but also can be powered by renewable energy source such as sun and wind.[14–16]Generally, the photocatalytic process is directly driven by sunlight to propel the activation and hydrogenation of N2. This type of devices is most simple and low-cost, but shows the low chemical utilization of solar energy.Green electrolytic reaction units for N2reduction reaction(NRR) are powered by solar cells and wind turbines, which usually necessitate use of two encapsulation and support structures. The integrated modularity is the most mature and benefit with high technology readiness,but its cost is also highest.In comparison with photocatalytic and electrochemical method,PEC device is an economically viable solution by combining the catalyst and the solar absorbers into a fully integrated system, which has the considerable chemical utilization of solar energy and acceptable cost. The plasma-based processes can generate highly reactive species to activate N2and facilitate NH3synthesis under atmospheric pressure. Although this approach can obtain high NH3production rate,low selectivity,high energy consumption,and expensive devices limit the application of plasma-driven NRR. Furthermore,in addition to the direct fixation of N2to NH3, an indirect conversion route including oxidation of N2to nitrate and reduction in nitrate to NH3has been implemented by the use of the above approaches.[17–19]

    Indeed,the great prospect has inspired a flurry of research activity to increase the NH3production rate and conversion efficiency of the approaches. Important milestones in the research and development of this emerging field are highlighted in Figure 2.[20–25]The research activities in the green conversion of N2to NH3can be constructively divided into three major groups: 1) the selectivity and adjustment of various catalysts;[26–29]2) the type of electrolyte/solvent system;[22]and 3) the investigation of reaction conditions.[25,30]Recently, much effort and progress have been made in green NH3synthesis using photocatalytic and (photo-)electrochemical approaches, and meanwhile,some questions that the detected NH3is derived from the extraneous contamination rather than N2have arisen among some researchers in this field (Figure 1).[31]Herein, we briefly discuss the past advances and recent critical activities in the area of sustainable N2fixation and subsequently provide a perspective for rational and healthy development of this area.

    2. Selectivity and Adjustment of Catalysts

    Catalysts are the core component of both photocatalytic and (photo-)-electrochemical N2-to-NH3fixation and are absolutely vital for the N2absorption,hydrogenation reaction,and NH3desorption dynamic processes to influence the performance of NRR.[32,33]To date, a series of catalysts have been designed and prepared via various theoretical and experimental routes to carry out sustainable NH3production.Currently,the study of catalysts can primarily concentrate on the types of materials and improvement strategies, including noble metal-based materials,non-noble metal-based materials, nonmetal-based materials, and defect engineering. Ruthenium (Ru),[28]gold (Au),[34]and palladium(Pd)[35]are usually explored in photocatalytic and (photo-)electrochemical NRR under mild conditions (see Figure 3a). For example,Han et al. have reported that a catalyst with diatomic Pd-Cu sites dispersed on N-doped carbon show high activity and selectivity with an NH3formation rate of ~69.2 μg?h-1?mg-1and a faradic efficiency of~24.8%.[35]Non-noble metal-based materials such as Bi, Ti, and Cu have been currently explored as efficient catalysts for photocatalytic and(photo-)electrochemical NRR.An Bi4O5I2catalyst with oxygen vacancy and hydroxyl functional group, which can mimic “π back-donation”behavior by the presence of sufficient vacant orbitals, has been used to enhancing NRR activity in neutral media.[36]This catalyst reaches a splendid faradic efficiency of 32.4%superior to most of the other NRR catalysts in mild conditions.[36]Furthermore,nonmetal-based materials can not only offer good mechanical flexibility and electrical conductivity,but also more importantly,have sufficient catalytic active centers by the introduction of defects.[37]To date,some nonmetal-based materials including conducting polymers and organic carbon-based materials have been explored as catalysts for green NRR.[38]In addition to the use of defect engineering,other enhanced routes such as Li+incorporation,[10]aerophilic-hydrophilic heterostructure,[23]and interface engineering[39]have been investigated for green conversion of N2to NH3under mild conditions. Besides, many of theoretical calculations have also showed that these materials can be major active centers to enhance the N2adsorption, decrease the reaction energy barrier and permit the stabilization of hydrogenated N2species.

    3. Type of Electrolyte/Solvent System

    Jianyun Zheng received his Ph.D.degree in Physical Chemistry from Shanghai Institute of Ceramics,Chinese Academy of Sciences in 2015.From September 2015 to September 2019,he successively worked in Lanzhou Institute of Chemical Physics as an assistant research fellow and Hunan University and Curtin University as a united postdoctoral researcher.Currently,he is an associate professor in the College of Chemistry and Chemical Engineering in Hunan University.His main interests focus on the preparation of semiconductor materials,design,and assembly of photoelectrodes and photoelectrochemical devices,and their performance in photo(electro-)catalysis.

    Li Jiang is currently a graduate student in Hunan University,under the supervision of Prof.Jianyun Zheng and Prof.Shuangyin Wang. Her current research interest is photoelectrochemical nitrogen reduction reaction.

    Yanhong Lyu received her Pd.D. degree in Physical Chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2015.She currently works in Hunan First Normal University as a researcher. Her researches mainly focus on the (photo-)-electrochemistry, nanoscale analysis, and surface engineering of the materials for water splitting and nitrogen reduction.

    San Ping Jiang is a John Curtin Distinguished Professor at the Western Australian School of Mines: Minerals,Energy and Chemical Engineering and Deputy Director of Fuels and Energy Technology Institute, Curtin University,Australia. Dr Jiang obtained his PhD from The City University,London in 1988. Before 2010,Dr. Jiang worked at Nanyang Technological University in Singapore. His research interests encompass fuel cells, water electrolysis, supercapacitors,carbon dioxide reduction, single-atom catalysts, and nanostructured functional materials.

    As important as the catalyst, the electrolyte/solvent system is responsible for sufficient reaction elements or compounds at the solid/liquid interface, efficient conductivity in the overall reaction process, and appropriate pH environment toward targeted production, contributing to outstanding catalytic performance. As mentioned in the section of Catalysts, aqueous electrolytes have drawn attentions of numerous researchers to frequently explore and investigate in green NRR process because of environmental friendliness and rich reserves of water resource. However, a tremendous challenge for the use of aqueous electrolyte is low N2solubility and immediate availability of H+leading to poor NRR selectivity. Thus, an effective way to enhance the NRR performance is changing the electrolyte media, especially ionic liquid.Ionic liquid is a typical non-aqueous electrolyte, which only contains trace of water to offer the proton source and effectively suppresses the H2evolution. Meanwhile, certain ionic liquid can provide a high N2solubility under ambient conditions, as much as 20 times higher than aqueous electrolyte. For instance, MacFarlane group has reported ionic liquids with high N2solubility as electrolytes to obtain a high conversion efficiency of 60% for electrocatalytic NRR on a Fe-based catalyst(Figure 3b).[22]A series of other ionic liquids have been also tested for NRR at room temperature and enhanced the reaction selectivity toward NH3production. The NH3yield rates for NRR are quite low in ionic liquids although high conversion efficiency is achieved.In addition,the ionic liquids are non-green and expensive, not in accordance with the green synthesis requirements.

    Shuangyin Wang received his Ph.D. in 2010 from Nanyang Technological University, Singapore. He was a postdoctoral fellow working with Prof. L.Dai (2010–11) and Prof. A.Manthiram (2011–12). He was a Marie Curie Fellow at the University of Manchester with Prof. K. Novoselov (2012–13).He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are in novel catalysts, defects in various crystals and their application in electrocatalysis.

    4. Investigation of Reaction Conditions

    To further overcome the obstacles of yield rate and conversion efficiency,certain studies have started to control the reaction conditions to change the thermodynamic of NRR.According to Le Chatelier’s principle, the pressurized reaction environment can facilitate the balance toward the NH3production for NRR as a volume-reduced reaction and inhibit the hydrogen evolution owing to a reaction of an increasing volume.[30]In addition, the N2solubility in the electrolytes is directly proportional to the reaction pressure, which can affect the supply and diffusion of N2source. Encouragingly,the recent outstanding research work has revealed that the increased reaction pressure can be beneficial for improving NRR performance,achieving a record-high NH3yield rate of~74.2 μg?h-1?cm-2and a faradaic efficiency of ~20.4%, which exhibit 7.3-and 4.9-fold enhancements than those produced at ambient pressure(Figure 3c).[25]Actually, compared with the improvement of catalysts and electrolytes,the investigation and development of system pressure could be more promising to break the current limitations of NH3yield rate for NRR.

    Figure 1. Schematic diagrams for N2-to-NH3 fixation, including its synthesis methods, current dilemma, and application domain.

    5. Current Dilemma

    Figure 2. Timeline of the key developments in the field of green N2-to-NH3 fixation.

    Figure 3. Short overview of green NRR from three major groups. a) Schematic diagram and NH3 yield rate of electrocatalytic NRR by Ru single. Reproduced from ref. 28 with permission from Elsevier B.V. (Copyright 2019).b) N2 binding energy and NRR performance in the ionic liquids. Adapted from ref. 23 with permission from The Royal Society of Chemistry (Copyright 2017). c) Schematic of the pressurized NRR setup and NH3 yield rate at the different N2 pressures. Panels were reproduced with permission from ref. 25, National Academy of Sciences (Copyright 2020).

    The research field of green NRR still faces various problems in current stage although some achievements have suggested the potential values of this method. The major problem has been discussed as to whether the green N2-to-NH3fixation could be a practical and feasible or fictional and false way. Significant doubt and uncertainty in the NRR research are mainly derived from the various and potential contamination sources.[40]According to the source of contamination, the contamination can be grouped as extra-systematic and intra-systematic contamination.The NH3and labile nitrogen-containing compounds (e.g., NOx)from ambient environment such as the air and rubber gloves are referred to as the extra-systematiccontamination,which can be easily excluded by a closed system and rigorous operation.The intrasystematic contamination present in the catalysts, electrolytes, and feed gas has a significant influence on the true NRR performance.However,such intra-systematic contamination can be identified and eliminated by a series of control experiments and reaction units. Based on the rough calculation, all these contaminations can provide dozens or even hundreds of microgram of NH3production, showing a similar order of magnitude compared with the reported results of green NRR.[41]So far, the NH3yield rate by green NRR process ranges in the value from 1 to 70 μg?h-1?cm-2,which is too low to satisfy the practical production and suppress the interference of contamination. Under the current situation, it is extremely necessary for the researchers to adopt a more cautious attitude to treat all the results of green NRR or contamination. After all, enhancing the accuracy and reliability of the published literatures can be conducive to develop the green synthesis of N2-to-NH3fixation. In addition, the disturbance of contamination only exists in certain conditions and objects and is not of universality. It is confirmed that there is no discernible amount of NH3production detected in many NRR tests by different research groups and reaction methods.In fact,the involved literature reports on the false positives of NRR can be aimed at underlining and eliminating the effect of special contamination. Finally, all of the reported nitrogen-containing contamination can be effectively cleared away via an appropriate reaction unit, a rational experimental process,and a series of useful control experiments to achieve a“genuine” NRR. To improve the current situation of NRR, many of the research groups have proposed several rigorous and complicated protocols on basis of their own experimental routes.[24]Nevertheless, these protocols are too complicated to apply in all of the laboratories,especially for cash-strapped research group, and a complicated experimental process usually involves more experimental steps resulting in the more possibilities to introduce the contamination. In this perspective,we will also describe a facile protocol with a simple reaction unit available for reference purposes in the next section. In a word, the main reason for the difficulty in the NRR or contamination issues is the extremely low NH3yield rate by green methods. Therefore, the top priority of green NRR in future is to increase the yield rate by leaps and bounds.

    Figure 4. Schematic diagrams for increasing the NH3 yield rate, which contributes new opportunities for developing green NRR.

    6. Future Challenge, Strategy, and Prospect

    The major challenges we face in pursuit of practical application of green NRR are the very low NH3production rate with the disturbance of contamination. The low NH3production by green NRR under mild conditions can be attributed to the inherent limitations of reaction process like the rupture of N≡N and low N2solubility.The disturbance of contamination is regarded as the technical puzzles of green NRR in its infancy, which has often happened in creating and exploiting a new reaction or method. When the NH3yield rate still maintains the super low level, the results of NRR not only are difficult to be characterized by the existing NH3detection methods but also are easily affected by the contamination to display the “false positive.” On the other hand, the low NH3production from so-called NRR makes no sense to be reported when the contamination involves in the experiments.

    With respect to the breakthrough of NH3yield rate, there are several points in the NRR system should be considered in priority (see Figure 4). There is no doubt about the significance of the catalysts for NRR, but the routine improvements of the catalysts hardly break through the bottleneck of green NRR. The composite catalysts with different active sites to adsorb, activate, and hydrogenate N2and desorb NH3in series will be the inevitable development direction of NRR, but how to precisely synthesize and characterize the catalysts and testify the tandem and coupling mechanism can be the key points.In comparison with the catalysts, we can pay more attention to the selection and control of methods, electrolytes, and reaction conditions.Current technology for green NRR basically uses a single method,such as photocatalysis or electrocatalysis, which shows a poor NRR efficiency. In fact, utilizing the complementarity between methods, a few efforts on coupling the different methods can effectively enhance the performance of NRR, possibly involving the field enhancement effect and multi-step reaction chains (e.g., electrochemistry-photoelectrochemistry tandem device). On the other hand, developing novel and characteristic electrolytes has drawn the attentions of the researchers. We think that the future electrolytes may be neither single aqueous electrolytes nor ionic liquid electrolytes and can be a kind of mixed electrolytes with multiple phase to integrate the required functions (e.g., the mixture of metal-organic framework (or covalent organic frameworks) to adsorb and dissociate N2and aqueous electrolyte to provide protons). Finally, the reaction conditions like temperature and pressure should be changed to promote the N2-to-NH3fixation in the infancy of green NRR field. As everyone knows, high temperature and pressure can facilitate the NRR toward NH3production. Thus, to dramatically improve the NRR performance, rationally increasing the reaction temperature (e.g., 100 °C) or pressure (e.g.,1 MPa) can be a most fast and effective route, which establishes indepth understanding of green NRR and smart integration of comprehensive theories.

    For the protocol, we firstly emphasize that NRR is carried out in a clean and isolated room at least. The researchers in the NRR process should be careful and patient to well treat all the experimental details. The laboratory rookie for NRR should be accompanied by the master to guide the normative operation. It will be best to usually use a buddy system for NRR, which can enhance the accuracy of the results and reduce the occurrence of false positive. In addition, some facile and advanced experimental conditions and setups can be employed to exclude the disturbance of nitrogen-containing contamination. A series of cells to assemble a gas-tight reaction unit are used to carry out NRR, where each cell can play the different functions including the purification of N2gas, the NRR, the reabsorption of NH3production, and the effect of liquid seal. The rational design of control experiments is vitally important, which can confirm the N source of NH3from N2and check the composition of the catalysts, reaction reagents, and reaction gas to exclude the effect of contamination.

    Exploitation of a sustainable process N2-to-NH3fixation for both agriculture and energy industry can give rise to a massive global impact in the food and energy security and supply field in this century,as done at 100 years ago by Haber–Bosch process. In the face of great social and economic profit, we should keep confidence and strive to fundamental understanding and innovation in the NRR process for NH3production. We enthusiastically recommend the standard operational practices and new reaction modes to pursue such important task. We believe that all positive attempts and comments can make a good contribution to developing the green NRR.

    Acknowledgements

    The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017),the Provincial Natural Science Foundation of Hunan (2016JJ1006, 2020JJ5044, and 2016TP1009),and Australian Research Council(DP180100568 and DP180100731)for financial support of this research.

    Conflict of Interest

    The authors declare no conflict of interest.

    Keywords

    current dilemma, enhanced performances, future challenges, green synthesis,nitrogen-to-ammonia fixation

    Received: March 4, 2021

    Revised: March 22, 2021

    Published online: March 23, 2021

    [1] T. N. Ye, S. W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.

    [2] I. ?Cori′c, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015,526, 96.

    [3] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48,5658.

    [4] L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am.Chem. Soc. 2019, 141, 10677.

    [5] A. J. Mart′?n, T. Shinagawa, J. P′erez-Ram′?rez, Chem 2019, 5, 263.

    [6] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A.Ozin, Joule 2018, 2, 1055.

    [7] R. F. Service, Science 2018, 361, 120.

    [8] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M.Yan, Q. Jiang, X. B. Zhang, Adv. Mater. 2017, 29, 1604799.

    [9] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.

    [10] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am.Chem. Soc. 2017, 139, 9771.

    [11] L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.

    [12] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y.Weng, T. Zhang, Angew. Chem. Int. Edit. 2020, 60, 2554.

    [13] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci.Adv. 2019, 5, eaat5778.

    [14] X. Cui, C. Tang, Q. Zhang, Adv. Energy. Mater. 2016, 8, 1800369.

    [15] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N.Waterhouse, T. Zhang, Adv. Energy. Mater. 2020, 10, 2002199.

    [16] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Z. Qiao, ACS Catal. 2019, 9, 2902.

    [17] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J. A. Martens,Angew. Chem. Int. Edit. 2020, 59, 23825.

    [18] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu,H. Wang, Nat. Energy 2020, 5, 605.

    [19] J. Wang, L. Ling, Z. Deng, W. X. Zhang, Sci. Bull. 2020, 65, 926.

    [20] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652.

    [21] T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Edit. 2016, 55, 3942.

    [22] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017,10, 2516.

    [23] J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H.Zhou, S. P. Jiang, S. Wang, Chem 2019, 5, 1.

    [24] S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M.McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr,M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M.Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I.Chorkendorff, Nature 2019, 570, 504.

    [25] H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Proc Natl Acad Sci USA 2020,117, 29462.

    [26] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang,G. C. Schatz, M. G. Kanatzidis, Proc Natl Acad Sci USA 2016, 113, 5530.

    [27] C. Liu, K. K. Sakimoto, B. C. Col′on, P. A. Silver, D. G. Nocera, Proc Natl Acad Sci USA 2017, 114, 6450.

    [28] H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5,204.

    [29] F. Wang, L. Mao, H. Xie, J. Mao, Small Struct. 2021, 2, 2000075.

    [30] H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Edit.2019, 58, 15541.

    [31] L. Li, C. Tang, D. Yao, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 9,2111.

    [32] L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi, C. J. Li, Angew. Chem. Int. Edit.2017, 56, 8701.

    [33] P. Li, Z. Jin, Z. Fang, G. Yu, Angew. Chem. Int. Edit. 2020, 59, 22610.

    [34] J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang,Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Edit. 2019, 58,18604.

    [35] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J.Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Edit. 2020, 60, 345.

    [36] C. Lv, L. Zhong, Y. Yao, D. Liu, Y. Kong, X. Jin, Z. Fang, W. Xu, C. Yan,K. N. Dinh, M. Shao, L. Song, G. Chen, S. Li, Q. Yan, G. Yu, Chem 2020,6, 2690.

    [37] J. Zheng, Y. Lyu, B. Wu, S. Wang, EnergyChem 2020, 2, 100039.

    [38] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.

    [39] C. Tang, Y. Zheng, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Edit. 2021.https://doi.org/10.1002/anie.202101522

    [40] C. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166.

    [41] J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov, D. R.MacFarlane, ACS Energy Lett. 2020, 5, 2095.

    亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| 国产精品久久电影中文字幕| 日韩亚洲欧美综合| 国产精品精品国产色婷婷| 国产精品无大码| 国产伦精品一区二区三区四那| 久久午夜亚洲精品久久| 在线观看一区二区三区| 国产毛片a区久久久久| 国内久久婷婷六月综合欲色啪| 18禁在线无遮挡免费观看视频| 色吧在线观看| 亚洲高清免费不卡视频| 熟女电影av网| 国产探花在线观看一区二区| 精品人妻熟女av久视频| 亚洲最大成人av| 人人妻人人澡欧美一区二区| 国产精品乱码一区二三区的特点| 国产精品久久电影中文字幕| 中国美女看黄片| 久久综合国产亚洲精品| 久久人人精品亚洲av| 伊人久久精品亚洲午夜| 国产乱人偷精品视频| 亚洲精品456在线播放app| 国产成人精品婷婷| 男女那种视频在线观看| 麻豆精品久久久久久蜜桃| 美女cb高潮喷水在线观看| 91久久精品国产一区二区三区| 日韩人妻高清精品专区| 在线天堂最新版资源| 久久久久久久久久久免费av| 国产精品人妻久久久久久| 桃色一区二区三区在线观看| 欧美性感艳星| 欧美bdsm另类| 91午夜精品亚洲一区二区三区| 婷婷亚洲欧美| 人妻久久中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 男女做爰动态图高潮gif福利片| 亚洲国产高清在线一区二区三| 少妇高潮的动态图| av在线亚洲专区| 国产日韩欧美在线精品| 中出人妻视频一区二区| 热99re8久久精品国产| 日韩高清综合在线| 免费不卡的大黄色大毛片视频在线观看 | 久久精品夜色国产| 综合色丁香网| 嫩草影院精品99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级av片app| 亚洲精品国产av成人精品| 亚洲欧美成人综合另类久久久 | 熟妇人妻久久中文字幕3abv| 一本精品99久久精品77| 性欧美人与动物交配| 免费观看的影片在线观看| 免费搜索国产男女视频| 成人三级黄色视频| av天堂中文字幕网| 亚洲人成网站在线观看播放| 中文字幕制服av| 禁无遮挡网站| 超碰av人人做人人爽久久| 我的女老师完整版在线观看| 大型黄色视频在线免费观看| 老熟妇乱子伦视频在线观看| 老师上课跳d突然被开到最大视频| 51国产日韩欧美| 亚洲国产精品成人综合色| 亚洲精品色激情综合| 亚洲乱码一区二区免费版| 日本成人三级电影网站| 在线国产一区二区在线| 国产精品久久电影中文字幕| 插阴视频在线观看视频| 最近视频中文字幕2019在线8| 久久亚洲精品不卡| 久久99蜜桃精品久久| 日韩欧美在线乱码| 一本久久精品| 亚洲欧美日韩高清专用| 午夜福利视频1000在线观看| 国产精品av视频在线免费观看| 日本熟妇午夜| 欧美日韩国产亚洲二区| 成人高潮视频无遮挡免费网站| 久久久久免费精品人妻一区二区| 亚洲欧美日韩卡通动漫| 国产私拍福利视频在线观看| 草草在线视频免费看| 深夜精品福利| 久久婷婷人人爽人人干人人爱| 久久国产乱子免费精品| 国语自产精品视频在线第100页| 波多野结衣巨乳人妻| 中文字幕久久专区| 在线国产一区二区在线| 日韩欧美在线乱码| 一本精品99久久精品77| 成人亚洲精品av一区二区| 午夜激情福利司机影院| 人妻少妇偷人精品九色| 欧美在线一区亚洲| 欧美成人a在线观看| 亚洲精品久久国产高清桃花| 亚洲va在线va天堂va国产| 国模一区二区三区四区视频| 欧美成人一区二区免费高清观看| 搡老妇女老女人老熟妇| 国产黄a三级三级三级人| 久久精品影院6| a级毛片免费高清观看在线播放| 色哟哟·www| 日韩中字成人| 夫妻性生交免费视频一级片| 两性午夜刺激爽爽歪歪视频在线观看| 日韩成人伦理影院| 日本成人三级电影网站| 看片在线看免费视频| 男女那种视频在线观看| 日本在线视频免费播放| 亚洲久久久久久中文字幕| 国产精品伦人一区二区| 免费在线观看成人毛片| 久久人人爽人人片av| 禁无遮挡网站| 欧美xxxx性猛交bbbb| 毛片女人毛片| 我要搜黄色片| 日韩高清综合在线| 免费观看的影片在线观看| 欧美一区二区亚洲| 亚洲18禁久久av| 一区福利在线观看| 亚洲欧美日韩无卡精品| 日日啪夜夜撸| 国内少妇人妻偷人精品xxx网站| 你懂的网址亚洲精品在线观看 | 国产大屁股一区二区在线视频| 99久国产av精品| 久久精品久久久久久久性| 精品人妻熟女av久视频| 国产老妇伦熟女老妇高清| 日本欧美国产在线视频| 深爱激情五月婷婷| 中文字幕熟女人妻在线| 国产精品女同一区二区软件| 国产高清视频在线观看网站| avwww免费| 中文欧美无线码| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 久久久久久久久大av| 丰满人妻一区二区三区视频av| 国产精品日韩av在线免费观看| 少妇的逼好多水| 久久久久久久午夜电影| 青青草视频在线视频观看| 国模一区二区三区四区视频| 麻豆乱淫一区二区| 成人二区视频| 秋霞在线观看毛片| 国产美女午夜福利| 国产真实乱freesex| 夜夜夜夜夜久久久久| 久久精品国产鲁丝片午夜精品| 国产成人午夜福利电影在线观看| 在线国产一区二区在线| 国产大屁股一区二区在线视频| av黄色大香蕉| 高清在线视频一区二区三区 | 国产精品爽爽va在线观看网站| 亚洲av一区综合| 天天躁日日操中文字幕| 六月丁香七月| 老司机影院成人| 久久午夜亚洲精品久久| 1024手机看黄色片| 亚洲欧美中文字幕日韩二区| 国产91av在线免费观看| 成人一区二区视频在线观看| 尾随美女入室| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影| 国产成人91sexporn| 99在线人妻在线中文字幕| 综合色丁香网| 久久午夜福利片| 国产黄片视频在线免费观看| 日本av手机在线免费观看| 夜夜爽天天搞| 成人无遮挡网站| 给我免费播放毛片高清在线观看| 美女cb高潮喷水在线观看| 能在线免费看毛片的网站| 亚洲欧美中文字幕日韩二区| 国产美女午夜福利| 国产中年淑女户外野战色| 久久精品国产亚洲网站| 久久久久性生活片| 男人狂女人下面高潮的视频| 特大巨黑吊av在线直播| 国内久久婷婷六月综合欲色啪| 国产大屁股一区二区在线视频| 精品久久久久久久久久免费视频| 一个人看的www免费观看视频| 国产免费一级a男人的天堂| 亚州av有码| 亚洲最大成人手机在线| 久久精品国产亚洲av天美| 色综合色国产| eeuss影院久久| 麻豆国产97在线/欧美| 69av精品久久久久久| 又爽又黄a免费视频| 你懂的网址亚洲精品在线观看 | 日韩av不卡免费在线播放| 婷婷六月久久综合丁香| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 中文字幕制服av| 大又大粗又爽又黄少妇毛片口| 人人妻人人看人人澡| av专区在线播放| 国产伦理片在线播放av一区 | 精品一区二区三区人妻视频| 日韩一本色道免费dvd| ponron亚洲| av免费观看日本| 综合色av麻豆| 美女cb高潮喷水在线观看| 国产淫片久久久久久久久| 久久草成人影院| 内地一区二区视频在线| 亚洲精品乱码久久久v下载方式| 高清在线视频一区二区三区 | 91久久精品国产一区二区成人| 久久精品国产亚洲网站| 久久久久久久亚洲中文字幕| 搞女人的毛片| av.在线天堂| 只有这里有精品99| av又黄又爽大尺度在线免费看 | 国产一级毛片七仙女欲春2| 亚洲第一区二区三区不卡| 在线天堂最新版资源| 国产高潮美女av| 精品国产三级普通话版| 国产精品日韩av在线免费观看| 日本一二三区视频观看| 亚洲图色成人| 亚洲欧美成人精品一区二区| 一个人看的www免费观看视频| 永久网站在线| 久久久久久九九精品二区国产| 丰满的人妻完整版| 九九热线精品视视频播放| 国产真实乱freesex| 天堂影院成人在线观看| 大香蕉久久网| 大型黄色视频在线免费观看| 久久婷婷人人爽人人干人人爱| 狂野欧美激情性xxxx在线观看| 99久久精品国产国产毛片| 久久人人爽人人片av| 午夜久久久久精精品| 国产欧美日韩精品一区二区| av.在线天堂| 精品人妻视频免费看| 国产一区二区亚洲精品在线观看| 日韩高清综合在线| 老司机福利观看| 久久精品国产鲁丝片午夜精品| 啦啦啦观看免费观看视频高清| 内射极品少妇av片p| 22中文网久久字幕| 中文精品一卡2卡3卡4更新| 中文字幕熟女人妻在线| 欧美在线一区亚洲| 成人性生交大片免费视频hd| 国产精品永久免费网站| 熟妇人妻久久中文字幕3abv| 国内少妇人妻偷人精品xxx网站| 亚洲av.av天堂| 午夜亚洲福利在线播放| 在现免费观看毛片| 亚洲美女搞黄在线观看| a级一级毛片免费在线观看| 国产一级毛片七仙女欲春2| 毛片一级片免费看久久久久| 天天躁日日操中文字幕| 韩国av在线不卡| 亚洲在线自拍视频| 国产精品国产高清国产av| 大型黄色视频在线免费观看| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区三区| 国产黄片视频在线免费观看| 简卡轻食公司| 国内久久婷婷六月综合欲色啪| 色5月婷婷丁香| 亚洲欧美精品自产自拍| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 亚洲欧美清纯卡通| 中文字幕制服av| kizo精华| 国产高潮美女av| 国产成人91sexporn| 午夜亚洲福利在线播放| 国产麻豆成人av免费视频| 老女人水多毛片| 国产毛片a区久久久久| 蜜臀久久99精品久久宅男| 亚洲国产欧美在线一区| 六月丁香七月| 国产v大片淫在线免费观看| 赤兔流量卡办理| 国产精品综合久久久久久久免费| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 国产亚洲精品久久久com| 亚洲在线自拍视频| 国产精品一区二区性色av| 99久久久亚洲精品蜜臀av| 亚洲精品成人久久久久久| 国产精品国产三级国产av玫瑰| 亚洲五月天丁香| 乱码一卡2卡4卡精品| 不卡一级毛片| 国产男人的电影天堂91| 午夜免费激情av| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 少妇被粗大猛烈的视频| 国产精品久久视频播放| 尤物成人国产欧美一区二区三区| 黄色日韩在线| 男女做爰动态图高潮gif福利片| 成人特级av手机在线观看| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 亚洲欧洲日产国产| 国产日本99.免费观看| 91狼人影院| 亚洲成人精品中文字幕电影| 一个人免费在线观看电影| 性插视频无遮挡在线免费观看| 麻豆av噜噜一区二区三区| 成人一区二区视频在线观看| 高清午夜精品一区二区三区 | 毛片一级片免费看久久久久| 99热全是精品| 可以在线观看毛片的网站| 22中文网久久字幕| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 午夜激情欧美在线| 久久久精品大字幕| 欧美人与善性xxx| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 久久99热这里只有精品18| 舔av片在线| 可以在线观看的亚洲视频| 大又大粗又爽又黄少妇毛片口| 日本成人三级电影网站| 深夜精品福利| 久久精品夜色国产| 又爽又黄a免费视频| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 中文亚洲av片在线观看爽| 波多野结衣高清作品| 人妻少妇偷人精品九色| 亚洲成av人片在线播放无| 亚洲乱码一区二区免费版| 亚洲七黄色美女视频| 成熟少妇高潮喷水视频| 久久久久国产网址| 久久久久久久久大av| 一边摸一边抽搐一进一小说| 国产综合懂色| 亚洲中文字幕一区二区三区有码在线看| 黑人高潮一二区| 在线观看午夜福利视频| 老师上课跳d突然被开到最大视频| 熟女电影av网| 波多野结衣高清作品| 国产真实乱freesex| 波多野结衣巨乳人妻| 最好的美女福利视频网| 亚洲av一区综合| 老司机福利观看| 九九在线视频观看精品| 少妇丰满av| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 欧美又色又爽又黄视频| 精品免费久久久久久久清纯| 在线播放国产精品三级| 亚洲成人av在线免费| 草草在线视频免费看| 卡戴珊不雅视频在线播放| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 日韩av在线大香蕉| 天堂网av新在线| 亚洲高清免费不卡视频| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 久久精品夜色国产| h日本视频在线播放| 又粗又硬又长又爽又黄的视频 | 99久久成人亚洲精品观看| 白带黄色成豆腐渣| 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 国产精品野战在线观看| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添av毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| 免费观看a级毛片全部| 成人无遮挡网站| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 春色校园在线视频观看| 伦精品一区二区三区| 亚洲av免费在线观看| 国产精品伦人一区二区| av在线蜜桃| 免费大片18禁| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 天堂av国产一区二区熟女人妻| 看十八女毛片水多多多| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 日韩,欧美,国产一区二区三区 | 五月伊人婷婷丁香| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 人妻少妇偷人精品九色| 国产精品国产高清国产av| 有码 亚洲区| 欧美高清性xxxxhd video| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区成人| 精品久久久噜噜| 中文字幕av成人在线电影| 两个人视频免费观看高清| 十八禁国产超污无遮挡网站| 午夜福利在线在线| 成人av在线播放网站| 精品不卡国产一区二区三区| 亚洲无线在线观看| 蜜桃久久精品国产亚洲av| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 久久久久久久亚洲中文字幕| 久久99精品国语久久久| videossex国产| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久 | 欧美zozozo另类| 亚洲欧美日韩高清在线视频| 91aial.com中文字幕在线观看| 插阴视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 九九久久精品国产亚洲av麻豆| 可以在线观看的亚洲视频| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 69av精品久久久久久| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 非洲黑人性xxxx精品又粗又长| 欧美最新免费一区二区三区| 亚洲国产欧美人成| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 国产成人影院久久av| 91狼人影院| 中文精品一卡2卡3卡4更新| 亚洲久久久久久中文字幕| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 日韩成人伦理影院| АⅤ资源中文在线天堂| 国产精品永久免费网站| 久久国产乱子免费精品| 美女 人体艺术 gogo| 麻豆久久精品国产亚洲av| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 日本成人三级电影网站| 一区二区三区四区激情视频 | 国产精品一及| 老司机福利观看| 日本色播在线视频| 麻豆av噜噜一区二区三区| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 亚洲不卡免费看| 国产精品,欧美在线| 午夜精品国产一区二区电影 | 观看美女的网站| 国内精品久久久久精免费| 久久久久久久久大av| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 免费看美女性在线毛片视频| 国产欧美日韩精品一区二区| 美女国产视频在线观看| 欧美成人免费av一区二区三区| 日韩精品青青久久久久久| 国产真实乱freesex| 我的老师免费观看完整版| 国产亚洲av嫩草精品影院| 欧美区成人在线视频| 亚洲精品影视一区二区三区av| 黄色一级大片看看| 亚洲七黄色美女视频| 亚洲精华国产精华液的使用体验 | 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 乱系列少妇在线播放| 亚洲成人久久性| 国产亚洲精品av在线| 成人特级av手机在线观看| 免费人成在线观看视频色| 国产高清视频在线观看网站| 久久人妻av系列| 免费电影在线观看免费观看| 观看免费一级毛片| av免费在线看不卡| 久久人妻av系列| 美女黄网站色视频| 亚洲不卡免费看| 成人三级黄色视频| 一级黄片播放器| 久久精品人妻少妇| 秋霞在线观看毛片| 欧美精品一区二区大全| 一级毛片我不卡| 波野结衣二区三区在线| 美女内射精品一级片tv| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 99久久无色码亚洲精品果冻| 少妇高潮的动态图| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 少妇猛男粗大的猛烈进出视频 | 亚洲丝袜综合中文字幕| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 亚洲三级黄色毛片| 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 午夜免费男女啪啪视频观看| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址| 天堂√8在线中文| 欧美潮喷喷水| 麻豆国产97在线/欧美| 国产av麻豆久久久久久久| 97在线视频观看| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 亚洲无线观看免费| 我要搜黄色片| 九草在线视频观看| 卡戴珊不雅视频在线播放| 成年版毛片免费区| 欧美在线一区亚洲| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播放欧美日韩| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜|