• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green Synthesis of Nitrogen-to-Ammonia Fixation: Past,Present, and Future

    2022-07-04 09:14:12JianyunZhengLiJiangYanhongLyuSanPingJiangandShuangyinWang
    Energy & Environmental Materials 2022年2期

    Jianyun Zheng* , Li Jiang, Yanhong Lyu, San Ping Jiang, and Shuangyin Wang

    1. Introduction

    Food and energy security and sustainability are the two most grand challenges facing humankind today across the world.Ammonia(NH3)is one of the most critical ingredients in the food supplier chain as NH3is the essential fertilizer for the agricultural and food production sector.[1,2]Since the discovery of Haber–Bosch(HB)process in 1909,the important process has produced a large proportion of global NH3production over 100 years.[3]The world production of NH3by HB process is over $60 billion annually, and nearly, 80% of the produced NH3is used as the fertilizer in agriculture(see Figure 1).The practical NH3production via HB process enables the global population to nearly quadruple since the rapid implementation of the process in the early 20th century. In the energy field, NH3is currently acknowledged as a promising hydrogen energy carrier because of high volume energy density (13.6 GJ m-3) and easy transportation characteristics (boiling temperature of -33.5 °C).[4]However, to drive the rupture of N≡N and hydrogenation reaction, the HB process involves in high temperature (400–500 °C) and pressure (10–20 MPa) reaction conditions, which accounts for around 1.5% of total global carbon dioxide(CO2) emissions and consumes about 2% of the world’s annual energy supply.[5]Therefore,pursuing an alternative, green, and environmentally efficient process for nitrogen (N2)-to-NH3fixation with renewable energy is very significant for sustainable NH3production.[6–8]

    In view of compatibility with renewable energy source, low product cost and potential scalable production, photocatalytic, electrochemical, photoelectrochemical (PEC), and plasma-driven approaches are recognized as the promising and competitive next-generation NH3synthesis technologies.[9–13]These approaches not only carry out the N2-to-NH3fixation under mild conditions like room temperature and atmospheric pressure but also can be powered by renewable energy source such as sun and wind.[14–16]Generally, the photocatalytic process is directly driven by sunlight to propel the activation and hydrogenation of N2. This type of devices is most simple and low-cost, but shows the low chemical utilization of solar energy.Green electrolytic reaction units for N2reduction reaction(NRR) are powered by solar cells and wind turbines, which usually necessitate use of two encapsulation and support structures. The integrated modularity is the most mature and benefit with high technology readiness,but its cost is also highest.In comparison with photocatalytic and electrochemical method,PEC device is an economically viable solution by combining the catalyst and the solar absorbers into a fully integrated system, which has the considerable chemical utilization of solar energy and acceptable cost. The plasma-based processes can generate highly reactive species to activate N2and facilitate NH3synthesis under atmospheric pressure. Although this approach can obtain high NH3production rate,low selectivity,high energy consumption,and expensive devices limit the application of plasma-driven NRR. Furthermore,in addition to the direct fixation of N2to NH3, an indirect conversion route including oxidation of N2to nitrate and reduction in nitrate to NH3has been implemented by the use of the above approaches.[17–19]

    Indeed,the great prospect has inspired a flurry of research activity to increase the NH3production rate and conversion efficiency of the approaches. Important milestones in the research and development of this emerging field are highlighted in Figure 2.[20–25]The research activities in the green conversion of N2to NH3can be constructively divided into three major groups: 1) the selectivity and adjustment of various catalysts;[26–29]2) the type of electrolyte/solvent system;[22]and 3) the investigation of reaction conditions.[25,30]Recently, much effort and progress have been made in green NH3synthesis using photocatalytic and (photo-)electrochemical approaches, and meanwhile,some questions that the detected NH3is derived from the extraneous contamination rather than N2have arisen among some researchers in this field (Figure 1).[31]Herein, we briefly discuss the past advances and recent critical activities in the area of sustainable N2fixation and subsequently provide a perspective for rational and healthy development of this area.

    2. Selectivity and Adjustment of Catalysts

    Catalysts are the core component of both photocatalytic and (photo-)-electrochemical N2-to-NH3fixation and are absolutely vital for the N2absorption,hydrogenation reaction,and NH3desorption dynamic processes to influence the performance of NRR.[32,33]To date, a series of catalysts have been designed and prepared via various theoretical and experimental routes to carry out sustainable NH3production.Currently,the study of catalysts can primarily concentrate on the types of materials and improvement strategies, including noble metal-based materials,non-noble metal-based materials, nonmetal-based materials, and defect engineering. Ruthenium (Ru),[28]gold (Au),[34]and palladium(Pd)[35]are usually explored in photocatalytic and (photo-)electrochemical NRR under mild conditions (see Figure 3a). For example,Han et al. have reported that a catalyst with diatomic Pd-Cu sites dispersed on N-doped carbon show high activity and selectivity with an NH3formation rate of ~69.2 μg?h-1?mg-1and a faradic efficiency of~24.8%.[35]Non-noble metal-based materials such as Bi, Ti, and Cu have been currently explored as efficient catalysts for photocatalytic and(photo-)electrochemical NRR.An Bi4O5I2catalyst with oxygen vacancy and hydroxyl functional group, which can mimic “π back-donation”behavior by the presence of sufficient vacant orbitals, has been used to enhancing NRR activity in neutral media.[36]This catalyst reaches a splendid faradic efficiency of 32.4%superior to most of the other NRR catalysts in mild conditions.[36]Furthermore,nonmetal-based materials can not only offer good mechanical flexibility and electrical conductivity,but also more importantly,have sufficient catalytic active centers by the introduction of defects.[37]To date,some nonmetal-based materials including conducting polymers and organic carbon-based materials have been explored as catalysts for green NRR.[38]In addition to the use of defect engineering,other enhanced routes such as Li+incorporation,[10]aerophilic-hydrophilic heterostructure,[23]and interface engineering[39]have been investigated for green conversion of N2to NH3under mild conditions. Besides, many of theoretical calculations have also showed that these materials can be major active centers to enhance the N2adsorption, decrease the reaction energy barrier and permit the stabilization of hydrogenated N2species.

    3. Type of Electrolyte/Solvent System

    Jianyun Zheng received his Ph.D.degree in Physical Chemistry from Shanghai Institute of Ceramics,Chinese Academy of Sciences in 2015.From September 2015 to September 2019,he successively worked in Lanzhou Institute of Chemical Physics as an assistant research fellow and Hunan University and Curtin University as a united postdoctoral researcher.Currently,he is an associate professor in the College of Chemistry and Chemical Engineering in Hunan University.His main interests focus on the preparation of semiconductor materials,design,and assembly of photoelectrodes and photoelectrochemical devices,and their performance in photo(electro-)catalysis.

    Li Jiang is currently a graduate student in Hunan University,under the supervision of Prof.Jianyun Zheng and Prof.Shuangyin Wang. Her current research interest is photoelectrochemical nitrogen reduction reaction.

    Yanhong Lyu received her Pd.D. degree in Physical Chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2015.She currently works in Hunan First Normal University as a researcher. Her researches mainly focus on the (photo-)-electrochemistry, nanoscale analysis, and surface engineering of the materials for water splitting and nitrogen reduction.

    San Ping Jiang is a John Curtin Distinguished Professor at the Western Australian School of Mines: Minerals,Energy and Chemical Engineering and Deputy Director of Fuels and Energy Technology Institute, Curtin University,Australia. Dr Jiang obtained his PhD from The City University,London in 1988. Before 2010,Dr. Jiang worked at Nanyang Technological University in Singapore. His research interests encompass fuel cells, water electrolysis, supercapacitors,carbon dioxide reduction, single-atom catalysts, and nanostructured functional materials.

    As important as the catalyst, the electrolyte/solvent system is responsible for sufficient reaction elements or compounds at the solid/liquid interface, efficient conductivity in the overall reaction process, and appropriate pH environment toward targeted production, contributing to outstanding catalytic performance. As mentioned in the section of Catalysts, aqueous electrolytes have drawn attentions of numerous researchers to frequently explore and investigate in green NRR process because of environmental friendliness and rich reserves of water resource. However, a tremendous challenge for the use of aqueous electrolyte is low N2solubility and immediate availability of H+leading to poor NRR selectivity. Thus, an effective way to enhance the NRR performance is changing the electrolyte media, especially ionic liquid.Ionic liquid is a typical non-aqueous electrolyte, which only contains trace of water to offer the proton source and effectively suppresses the H2evolution. Meanwhile, certain ionic liquid can provide a high N2solubility under ambient conditions, as much as 20 times higher than aqueous electrolyte. For instance, MacFarlane group has reported ionic liquids with high N2solubility as electrolytes to obtain a high conversion efficiency of 60% for electrocatalytic NRR on a Fe-based catalyst(Figure 3b).[22]A series of other ionic liquids have been also tested for NRR at room temperature and enhanced the reaction selectivity toward NH3production. The NH3yield rates for NRR are quite low in ionic liquids although high conversion efficiency is achieved.In addition,the ionic liquids are non-green and expensive, not in accordance with the green synthesis requirements.

    Shuangyin Wang received his Ph.D. in 2010 from Nanyang Technological University, Singapore. He was a postdoctoral fellow working with Prof. L.Dai (2010–11) and Prof. A.Manthiram (2011–12). He was a Marie Curie Fellow at the University of Manchester with Prof. K. Novoselov (2012–13).He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are in novel catalysts, defects in various crystals and their application in electrocatalysis.

    4. Investigation of Reaction Conditions

    To further overcome the obstacles of yield rate and conversion efficiency,certain studies have started to control the reaction conditions to change the thermodynamic of NRR.According to Le Chatelier’s principle, the pressurized reaction environment can facilitate the balance toward the NH3production for NRR as a volume-reduced reaction and inhibit the hydrogen evolution owing to a reaction of an increasing volume.[30]In addition, the N2solubility in the electrolytes is directly proportional to the reaction pressure, which can affect the supply and diffusion of N2source. Encouragingly,the recent outstanding research work has revealed that the increased reaction pressure can be beneficial for improving NRR performance,achieving a record-high NH3yield rate of~74.2 μg?h-1?cm-2and a faradaic efficiency of ~20.4%, which exhibit 7.3-and 4.9-fold enhancements than those produced at ambient pressure(Figure 3c).[25]Actually, compared with the improvement of catalysts and electrolytes,the investigation and development of system pressure could be more promising to break the current limitations of NH3yield rate for NRR.

    Figure 1. Schematic diagrams for N2-to-NH3 fixation, including its synthesis methods, current dilemma, and application domain.

    5. Current Dilemma

    Figure 2. Timeline of the key developments in the field of green N2-to-NH3 fixation.

    Figure 3. Short overview of green NRR from three major groups. a) Schematic diagram and NH3 yield rate of electrocatalytic NRR by Ru single. Reproduced from ref. 28 with permission from Elsevier B.V. (Copyright 2019).b) N2 binding energy and NRR performance in the ionic liquids. Adapted from ref. 23 with permission from The Royal Society of Chemistry (Copyright 2017). c) Schematic of the pressurized NRR setup and NH3 yield rate at the different N2 pressures. Panels were reproduced with permission from ref. 25, National Academy of Sciences (Copyright 2020).

    The research field of green NRR still faces various problems in current stage although some achievements have suggested the potential values of this method. The major problem has been discussed as to whether the green N2-to-NH3fixation could be a practical and feasible or fictional and false way. Significant doubt and uncertainty in the NRR research are mainly derived from the various and potential contamination sources.[40]According to the source of contamination, the contamination can be grouped as extra-systematic and intra-systematic contamination.The NH3and labile nitrogen-containing compounds (e.g., NOx)from ambient environment such as the air and rubber gloves are referred to as the extra-systematiccontamination,which can be easily excluded by a closed system and rigorous operation.The intrasystematic contamination present in the catalysts, electrolytes, and feed gas has a significant influence on the true NRR performance.However,such intra-systematic contamination can be identified and eliminated by a series of control experiments and reaction units. Based on the rough calculation, all these contaminations can provide dozens or even hundreds of microgram of NH3production, showing a similar order of magnitude compared with the reported results of green NRR.[41]So far, the NH3yield rate by green NRR process ranges in the value from 1 to 70 μg?h-1?cm-2,which is too low to satisfy the practical production and suppress the interference of contamination. Under the current situation, it is extremely necessary for the researchers to adopt a more cautious attitude to treat all the results of green NRR or contamination. After all, enhancing the accuracy and reliability of the published literatures can be conducive to develop the green synthesis of N2-to-NH3fixation. In addition, the disturbance of contamination only exists in certain conditions and objects and is not of universality. It is confirmed that there is no discernible amount of NH3production detected in many NRR tests by different research groups and reaction methods.In fact,the involved literature reports on the false positives of NRR can be aimed at underlining and eliminating the effect of special contamination. Finally, all of the reported nitrogen-containing contamination can be effectively cleared away via an appropriate reaction unit, a rational experimental process,and a series of useful control experiments to achieve a“genuine” NRR. To improve the current situation of NRR, many of the research groups have proposed several rigorous and complicated protocols on basis of their own experimental routes.[24]Nevertheless, these protocols are too complicated to apply in all of the laboratories,especially for cash-strapped research group, and a complicated experimental process usually involves more experimental steps resulting in the more possibilities to introduce the contamination. In this perspective,we will also describe a facile protocol with a simple reaction unit available for reference purposes in the next section. In a word, the main reason for the difficulty in the NRR or contamination issues is the extremely low NH3yield rate by green methods. Therefore, the top priority of green NRR in future is to increase the yield rate by leaps and bounds.

    Figure 4. Schematic diagrams for increasing the NH3 yield rate, which contributes new opportunities for developing green NRR.

    6. Future Challenge, Strategy, and Prospect

    The major challenges we face in pursuit of practical application of green NRR are the very low NH3production rate with the disturbance of contamination. The low NH3production by green NRR under mild conditions can be attributed to the inherent limitations of reaction process like the rupture of N≡N and low N2solubility.The disturbance of contamination is regarded as the technical puzzles of green NRR in its infancy, which has often happened in creating and exploiting a new reaction or method. When the NH3yield rate still maintains the super low level, the results of NRR not only are difficult to be characterized by the existing NH3detection methods but also are easily affected by the contamination to display the “false positive.” On the other hand, the low NH3production from so-called NRR makes no sense to be reported when the contamination involves in the experiments.

    With respect to the breakthrough of NH3yield rate, there are several points in the NRR system should be considered in priority (see Figure 4). There is no doubt about the significance of the catalysts for NRR, but the routine improvements of the catalysts hardly break through the bottleneck of green NRR. The composite catalysts with different active sites to adsorb, activate, and hydrogenate N2and desorb NH3in series will be the inevitable development direction of NRR, but how to precisely synthesize and characterize the catalysts and testify the tandem and coupling mechanism can be the key points.In comparison with the catalysts, we can pay more attention to the selection and control of methods, electrolytes, and reaction conditions.Current technology for green NRR basically uses a single method,such as photocatalysis or electrocatalysis, which shows a poor NRR efficiency. In fact, utilizing the complementarity between methods, a few efforts on coupling the different methods can effectively enhance the performance of NRR, possibly involving the field enhancement effect and multi-step reaction chains (e.g., electrochemistry-photoelectrochemistry tandem device). On the other hand, developing novel and characteristic electrolytes has drawn the attentions of the researchers. We think that the future electrolytes may be neither single aqueous electrolytes nor ionic liquid electrolytes and can be a kind of mixed electrolytes with multiple phase to integrate the required functions (e.g., the mixture of metal-organic framework (or covalent organic frameworks) to adsorb and dissociate N2and aqueous electrolyte to provide protons). Finally, the reaction conditions like temperature and pressure should be changed to promote the N2-to-NH3fixation in the infancy of green NRR field. As everyone knows, high temperature and pressure can facilitate the NRR toward NH3production. Thus, to dramatically improve the NRR performance, rationally increasing the reaction temperature (e.g., 100 °C) or pressure (e.g.,1 MPa) can be a most fast and effective route, which establishes indepth understanding of green NRR and smart integration of comprehensive theories.

    For the protocol, we firstly emphasize that NRR is carried out in a clean and isolated room at least. The researchers in the NRR process should be careful and patient to well treat all the experimental details. The laboratory rookie for NRR should be accompanied by the master to guide the normative operation. It will be best to usually use a buddy system for NRR, which can enhance the accuracy of the results and reduce the occurrence of false positive. In addition, some facile and advanced experimental conditions and setups can be employed to exclude the disturbance of nitrogen-containing contamination. A series of cells to assemble a gas-tight reaction unit are used to carry out NRR, where each cell can play the different functions including the purification of N2gas, the NRR, the reabsorption of NH3production, and the effect of liquid seal. The rational design of control experiments is vitally important, which can confirm the N source of NH3from N2and check the composition of the catalysts, reaction reagents, and reaction gas to exclude the effect of contamination.

    Exploitation of a sustainable process N2-to-NH3fixation for both agriculture and energy industry can give rise to a massive global impact in the food and energy security and supply field in this century,as done at 100 years ago by Haber–Bosch process. In the face of great social and economic profit, we should keep confidence and strive to fundamental understanding and innovation in the NRR process for NH3production. We enthusiastically recommend the standard operational practices and new reaction modes to pursue such important task. We believe that all positive attempts and comments can make a good contribution to developing the green NRR.

    Acknowledgements

    The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017),the Provincial Natural Science Foundation of Hunan (2016JJ1006, 2020JJ5044, and 2016TP1009),and Australian Research Council(DP180100568 and DP180100731)for financial support of this research.

    Conflict of Interest

    The authors declare no conflict of interest.

    Keywords

    current dilemma, enhanced performances, future challenges, green synthesis,nitrogen-to-ammonia fixation

    Received: March 4, 2021

    Revised: March 22, 2021

    Published online: March 23, 2021

    [1] T. N. Ye, S. W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.

    [2] I. ?Cori′c, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015,526, 96.

    [3] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48,5658.

    [4] L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am.Chem. Soc. 2019, 141, 10677.

    [5] A. J. Mart′?n, T. Shinagawa, J. P′erez-Ram′?rez, Chem 2019, 5, 263.

    [6] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A.Ozin, Joule 2018, 2, 1055.

    [7] R. F. Service, Science 2018, 361, 120.

    [8] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M.Yan, Q. Jiang, X. B. Zhang, Adv. Mater. 2017, 29, 1604799.

    [9] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.

    [10] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am.Chem. Soc. 2017, 139, 9771.

    [11] L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.

    [12] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y.Weng, T. Zhang, Angew. Chem. Int. Edit. 2020, 60, 2554.

    [13] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci.Adv. 2019, 5, eaat5778.

    [14] X. Cui, C. Tang, Q. Zhang, Adv. Energy. Mater. 2016, 8, 1800369.

    [15] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N.Waterhouse, T. Zhang, Adv. Energy. Mater. 2020, 10, 2002199.

    [16] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Z. Qiao, ACS Catal. 2019, 9, 2902.

    [17] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J. A. Martens,Angew. Chem. Int. Edit. 2020, 59, 23825.

    [18] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu,H. Wang, Nat. Energy 2020, 5, 605.

    [19] J. Wang, L. Ling, Z. Deng, W. X. Zhang, Sci. Bull. 2020, 65, 926.

    [20] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652.

    [21] T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Edit. 2016, 55, 3942.

    [22] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017,10, 2516.

    [23] J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H.Zhou, S. P. Jiang, S. Wang, Chem 2019, 5, 1.

    [24] S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M.McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr,M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M.Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I.Chorkendorff, Nature 2019, 570, 504.

    [25] H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Proc Natl Acad Sci USA 2020,117, 29462.

    [26] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang,G. C. Schatz, M. G. Kanatzidis, Proc Natl Acad Sci USA 2016, 113, 5530.

    [27] C. Liu, K. K. Sakimoto, B. C. Col′on, P. A. Silver, D. G. Nocera, Proc Natl Acad Sci USA 2017, 114, 6450.

    [28] H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5,204.

    [29] F. Wang, L. Mao, H. Xie, J. Mao, Small Struct. 2021, 2, 2000075.

    [30] H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Edit.2019, 58, 15541.

    [31] L. Li, C. Tang, D. Yao, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 9,2111.

    [32] L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi, C. J. Li, Angew. Chem. Int. Edit.2017, 56, 8701.

    [33] P. Li, Z. Jin, Z. Fang, G. Yu, Angew. Chem. Int. Edit. 2020, 59, 22610.

    [34] J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang,Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Edit. 2019, 58,18604.

    [35] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J.Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Edit. 2020, 60, 345.

    [36] C. Lv, L. Zhong, Y. Yao, D. Liu, Y. Kong, X. Jin, Z. Fang, W. Xu, C. Yan,K. N. Dinh, M. Shao, L. Song, G. Chen, S. Li, Q. Yan, G. Yu, Chem 2020,6, 2690.

    [37] J. Zheng, Y. Lyu, B. Wu, S. Wang, EnergyChem 2020, 2, 100039.

    [38] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.

    [39] C. Tang, Y. Zheng, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Edit. 2021.https://doi.org/10.1002/anie.202101522

    [40] C. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166.

    [41] J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov, D. R.MacFarlane, ACS Energy Lett. 2020, 5, 2095.

    国产精品 国内视频| 尾随美女入室| 国产欧美日韩一区二区三区在线| 日本免费在线观看一区| 国产乱人偷精品视频| 久久国产亚洲av麻豆专区| 亚洲av国产av综合av卡| 男人添女人高潮全过程视频| 国产乱来视频区| 美女xxoo啪啪120秒动态图| 丝袜人妻中文字幕| 国产成人精品福利久久| 免费黄频网站在线观看国产| 9热在线视频观看99| 青青草视频在线视频观看| 美女主播在线视频| 中文字幕另类日韩欧美亚洲嫩草| 国产色婷婷99| 久久精品国产鲁丝片午夜精品| 一级毛片我不卡| 制服人妻中文乱码| 婷婷色综合大香蕉| 插逼视频在线观看| 国产又爽黄色视频| 性色av一级| 最近手机中文字幕大全| 日韩三级伦理在线观看| 18在线观看网站| 国产不卡av网站在线观看| 妹子高潮喷水视频| 国精品久久久久久国模美| 少妇的丰满在线观看| 亚洲一区二区三区欧美精品| 不卡视频在线观看欧美| 国产日韩欧美亚洲二区| 亚洲五月色婷婷综合| 久久97久久精品| 国产成人免费观看mmmm| 美女大奶头黄色视频| 黄色一级大片看看| 国产成人精品一,二区| 日韩一区二区三区影片| 日日爽夜夜爽网站| 18禁裸乳无遮挡动漫免费视频| 成人毛片60女人毛片免费| 日韩在线高清观看一区二区三区| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 丝袜在线中文字幕| 啦啦啦视频在线资源免费观看| 777米奇影视久久| 国产成人精品久久久久久| 欧美日韩综合久久久久久| 性高湖久久久久久久久免费观看| 91成人精品电影| 免费观看性生交大片5| 亚洲欧美成人综合另类久久久| 免费观看av网站的网址| 尾随美女入室| 老女人水多毛片| 天堂俺去俺来也www色官网| 成人无遮挡网站| 国产亚洲最大av| 91aial.com中文字幕在线观看| 十八禁网站网址无遮挡| 国产在线一区二区三区精| 成年人午夜在线观看视频| 人人澡人人妻人| 91aial.com中文字幕在线观看| 中文字幕另类日韩欧美亚洲嫩草| 秋霞伦理黄片| 亚洲精品国产av蜜桃| 亚洲精品av麻豆狂野| 中文精品一卡2卡3卡4更新| 22中文网久久字幕| 国产成人精品在线电影| 国产日韩欧美亚洲二区| 插逼视频在线观看| 免费在线观看完整版高清| 涩涩av久久男人的天堂| 在线观看三级黄色| 视频在线观看一区二区三区| 国产成人精品久久久久久| 人体艺术视频欧美日本| 久久精品熟女亚洲av麻豆精品| 老熟女久久久| 久久久久久久国产电影| 性色av一级| 少妇 在线观看| 九色亚洲精品在线播放| 亚洲欧美日韩卡通动漫| 久久热在线av| 亚洲欧洲精品一区二区精品久久久 | av电影中文网址| 免费观看无遮挡的男女| 国产亚洲最大av| 日韩av免费高清视频| 色吧在线观看| 精品久久蜜臀av无| 中国三级夫妇交换| 亚洲美女视频黄频| 哪个播放器可以免费观看大片| 日产精品乱码卡一卡2卡三| 亚洲精品aⅴ在线观看| 久久99一区二区三区| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| av视频免费观看在线观看| 成年动漫av网址| 涩涩av久久男人的天堂| 精品亚洲成a人片在线观看| 亚洲伊人色综图| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看| 超碰97精品在线观看| 精品一区二区三区视频在线| 中文字幕精品免费在线观看视频 | 中文字幕免费在线视频6| 久久精品久久久久久久性| 一二三四在线观看免费中文在 | 18禁动态无遮挡网站| 少妇人妻精品综合一区二区| 曰老女人黄片| 97人妻天天添夜夜摸| 成年人午夜在线观看视频| a 毛片基地| 成年人午夜在线观看视频| 国产精品一区www在线观看| 国产老妇伦熟女老妇高清| 亚洲欧美清纯卡通| 亚洲欧美日韩卡通动漫| 日日爽夜夜爽网站| 久久 成人 亚洲| 在线观看免费高清a一片| 在线观看免费高清a一片| 卡戴珊不雅视频在线播放| 青青草视频在线视频观看| 搡老乐熟女国产| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 最近手机中文字幕大全| 午夜91福利影院| 一本大道久久a久久精品| 精品卡一卡二卡四卡免费| 日日摸夜夜添夜夜爱| 高清不卡的av网站| 久久精品久久精品一区二区三区| 亚洲av电影在线观看一区二区三区| 午夜激情久久久久久久| 国产高清国产精品国产三级| 亚洲情色 制服丝袜| 免费大片18禁| 亚洲国产精品一区三区| 久久热在线av| 亚洲天堂av无毛| 美女大奶头黄色视频| 女人久久www免费人成看片| 成人亚洲精品一区在线观看| 国产白丝娇喘喷水9色精品| 最近中文字幕2019免费版| 永久网站在线| 国产免费一级a男人的天堂| 久久久久久久久久久久大奶| 视频在线观看一区二区三区| 日韩人妻精品一区2区三区| 欧美精品一区二区大全| 亚洲欧美一区二区三区黑人 | 热99久久久久精品小说推荐| 免费少妇av软件| 久久狼人影院| 久久av网站| 女性生殖器流出的白浆| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 精品福利永久在线观看| 美女大奶头黄色视频| 人成视频在线观看免费观看| 亚洲成色77777| 肉色欧美久久久久久久蜜桃| 美女大奶头黄色视频| 欧美人与性动交α欧美精品济南到 | 国产精品一区www在线观看| 婷婷成人精品国产| 十八禁高潮呻吟视频| 又黄又爽又刺激的免费视频.| 日韩视频在线欧美| 18+在线观看网站| 十八禁网站网址无遮挡| 全区人妻精品视频| 欧美精品一区二区大全| 成人黄色视频免费在线看| 少妇人妻久久综合中文| 夫妻午夜视频| 搡老乐熟女国产| 国精品久久久久久国模美| 夜夜骑夜夜射夜夜干| 免费黄色在线免费观看| 久久精品久久久久久久性| 国产乱人偷精品视频| 久久久欧美国产精品| 成人免费观看视频高清| 午夜福利在线观看免费完整高清在| 免费高清在线观看视频在线观看| 日韩中字成人| 亚洲国产精品专区欧美| 黑人高潮一二区| 一边亲一边摸免费视频| 久久青草综合色| 国内精品宾馆在线| 国产精品久久久久久精品古装| 在线观看人妻少妇| 中国美白少妇内射xxxbb| 国产欧美亚洲国产| 亚洲第一区二区三区不卡| 精品国产露脸久久av麻豆| 亚洲精品乱码久久久久久按摩| 精品久久久久久电影网| 亚洲精品国产色婷婷电影| av不卡在线播放| 韩国av在线不卡| av线在线观看网站| 国产精品国产av在线观看| 欧美日本中文国产一区发布| 中文字幕另类日韩欧美亚洲嫩草| av播播在线观看一区| 桃花免费在线播放| 久久久精品94久久精品| 黄色毛片三级朝国网站| 亚洲欧美中文字幕日韩二区| 晚上一个人看的免费电影| 久久精品国产a三级三级三级| 另类亚洲欧美激情| 黄色一级大片看看| 天堂中文最新版在线下载| 亚洲av国产av综合av卡| 最黄视频免费看| xxx大片免费视频| 人人澡人人妻人| 久久精品国产综合久久久 | 免费看光身美女| 插逼视频在线观看| 黄片无遮挡物在线观看| 制服人妻中文乱码| 中文乱码字字幕精品一区二区三区| 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| 久久这里有精品视频免费| videosex国产| 精品熟女少妇av免费看| 日本午夜av视频| 五月玫瑰六月丁香| 国产综合精华液| av不卡在线播放| 狠狠精品人妻久久久久久综合| 午夜影院在线不卡| 岛国毛片在线播放| 免费观看在线日韩| av在线观看视频网站免费| 中国三级夫妇交换| xxxhd国产人妻xxx| 久久人人爽人人片av| 三上悠亚av全集在线观看| 男人添女人高潮全过程视频| 国产精品不卡视频一区二区| videosex国产| 国产极品天堂在线| 成人国产av品久久久| 国产精品偷伦视频观看了| 美女国产视频在线观看| 91久久精品国产一区二区三区| 成人无遮挡网站| 美女视频免费永久观看网站| 久久这里有精品视频免费| 国产精品久久久久久久电影| 国产一区二区三区av在线| 日韩大片免费观看网站| 中文字幕最新亚洲高清| 婷婷色综合www| 狠狠精品人妻久久久久久综合| 日韩在线高清观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 免费人妻精品一区二区三区视频| av又黄又爽大尺度在线免费看| 久久久久久久久久久免费av| 你懂的网址亚洲精品在线观看| 中文欧美无线码| 欧美少妇被猛烈插入视频| 美女内射精品一级片tv| 热re99久久精品国产66热6| 欧美97在线视频| 国产精品.久久久| 国产精品成人在线| 一边亲一边摸免费视频| 丰满少妇做爰视频| 久久久久久人人人人人| 免费人成在线观看视频色| 少妇高潮的动态图| 国产黄频视频在线观看| 国产精品欧美亚洲77777| 春色校园在线视频观看| 久久人人97超碰香蕉20202| 熟女av电影| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 丰满迷人的少妇在线观看| 人妻少妇偷人精品九色| 亚洲第一av免费看| 全区人妻精品视频| 成人国产av品久久久| 超色免费av| 国产亚洲欧美精品永久| 午夜91福利影院| 女的被弄到高潮叫床怎么办| 巨乳人妻的诱惑在线观看| 国产免费现黄频在线看| av在线观看视频网站免费| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 18禁观看日本| 亚洲精品一二三| 久久久久久久久久久久大奶| 中国三级夫妇交换| 国产免费一区二区三区四区乱码| 久久久久久人人人人人| 高清视频免费观看一区二区| 国产精品 国内视频| 国产成人免费观看mmmm| 黄色毛片三级朝国网站| 热re99久久精品国产66热6| 赤兔流量卡办理| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 免费观看无遮挡的男女| 如何舔出高潮| 欧美老熟妇乱子伦牲交| 久久国产精品大桥未久av| 亚洲色图 男人天堂 中文字幕 | 久久国内精品自在自线图片| 成年av动漫网址| 女人久久www免费人成看片| 日本午夜av视频| 高清不卡的av网站| 熟妇人妻不卡中文字幕| 久久女婷五月综合色啪小说| av福利片在线| 中文字幕av电影在线播放| 国产精品蜜桃在线观看| 岛国毛片在线播放| 免费在线观看黄色视频的| 黑人猛操日本美女一级片| 免费黄色在线免费观看| 熟女av电影| 蜜臀久久99精品久久宅男| 欧美性感艳星| 蜜桃国产av成人99| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 人妻人人澡人人爽人人| 国产高清三级在线| 免费观看在线日韩| 九色成人免费人妻av| 黄色视频在线播放观看不卡| 男人添女人高潮全过程视频| 寂寞人妻少妇视频99o| 精品午夜福利在线看| av女优亚洲男人天堂| 黑人巨大精品欧美一区二区蜜桃 | av一本久久久久| 九色亚洲精品在线播放| 97超碰精品成人国产| 国产精品无大码| av在线播放精品| 十八禁高潮呻吟视频| 精品熟女少妇av免费看| 国产男人的电影天堂91| av女优亚洲男人天堂| 亚洲精品久久成人aⅴ小说| 亚洲一区二区三区欧美精品| 亚洲欧洲精品一区二区精品久久久 | videossex国产| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| 高清av免费在线| 韩国av在线不卡| 99re6热这里在线精品视频| 亚洲天堂av无毛| 国精品久久久久久国模美| 亚洲国产成人一精品久久久| 黄色配什么色好看| 亚洲精品乱码久久久久久按摩| 狠狠婷婷综合久久久久久88av| 在线观看免费视频网站a站| 啦啦啦啦在线视频资源| 一二三四中文在线观看免费高清| 色婷婷av一区二区三区视频| 中国三级夫妇交换| 色视频在线一区二区三区| 国产一级毛片在线| 亚洲经典国产精华液单| 日韩精品有码人妻一区| 久久精品国产综合久久久 | 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡 | 在线观看免费高清a一片| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 欧美丝袜亚洲另类| 夫妻性生交免费视频一级片| 七月丁香在线播放| 曰老女人黄片| 考比视频在线观看| 欧美人与性动交α欧美精品济南到 | 在线观看免费视频网站a站| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 亚洲国产毛片av蜜桃av| 国产极品天堂在线| 91精品伊人久久大香线蕉| 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 成人影院久久| 纯流量卡能插随身wifi吗| 全区人妻精品视频| 久久久久人妻精品一区果冻| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频 | 成人国产av品久久久| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 考比视频在线观看| 观看av在线不卡| 国产成人a∨麻豆精品| 男女无遮挡免费网站观看| 五月伊人婷婷丁香| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 欧美日韩成人在线一区二区| 日韩欧美精品免费久久| 久热这里只有精品99| 久久这里只有精品19| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 少妇熟女欧美另类| 国产精品.久久久| 在线观看三级黄色| 国产69精品久久久久777片| 老司机影院毛片| 精品久久国产蜜桃| 久久久久久久大尺度免费视频| 国产女主播在线喷水免费视频网站| 视频中文字幕在线观看| 高清在线视频一区二区三区| 亚洲精品自拍成人| 婷婷色综合www| 国产毛片在线视频| 精品久久蜜臀av无| 韩国av在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区在线不卡| 亚洲国产精品国产精品| 免费在线观看完整版高清| 日韩伦理黄色片| 国产 精品1| 亚洲av电影在线进入| 亚洲精品国产色婷婷电影| 亚洲图色成人| 一级,二级,三级黄色视频| 久久精品国产综合久久久 | 男女国产视频网站| 97在线人人人人妻| 男人操女人黄网站| 欧美日韩av久久| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| av在线app专区| 日本色播在线视频| 9热在线视频观看99| 亚洲av电影在线进入| 在线观看美女被高潮喷水网站| 国产又爽黄色视频| 国产成人91sexporn| 国产69精品久久久久777片| av.在线天堂| 中文字幕av电影在线播放| 亚洲人成网站在线观看播放| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 国产福利在线免费观看视频| 天美传媒精品一区二区| 久久狼人影院| 一区二区av电影网| 亚洲av综合色区一区| 一级片免费观看大全| 国产成人精品婷婷| 51国产日韩欧美| 久久久久国产网址| 草草在线视频免费看| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 久久久久久久精品精品| 秋霞伦理黄片| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美| 久久免费观看电影| 免费日韩欧美在线观看| 亚洲久久久国产精品| 色哟哟·www| 一个人免费看片子| 久久精品久久久久久噜噜老黄| 建设人人有责人人尽责人人享有的| 满18在线观看网站| 99久久精品国产国产毛片| 伦理电影大哥的女人| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 在线亚洲精品国产二区图片欧美| 免费人妻精品一区二区三区视频| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 久久综合国产亚洲精品| 日韩精品免费视频一区二区三区 | 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 一边亲一边摸免费视频| 涩涩av久久男人的天堂| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 一级片免费观看大全| 女性被躁到高潮视频| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 久久国产亚洲av麻豆专区| 久久av网站| 国国产精品蜜臀av免费| 欧美精品高潮呻吟av久久| 日韩大片免费观看网站| 日日啪夜夜爽| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 在线精品无人区一区二区三| 狂野欧美激情性xxxx在线观看| 人妻 亚洲 视频| 大片电影免费在线观看免费| 少妇精品久久久久久久| 一级毛片 在线播放| 国产在线一区二区三区精| 制服诱惑二区| 99热这里只有是精品在线观看| 亚洲精品自拍成人| 亚洲国产色片| 男女免费视频国产| 夜夜骑夜夜射夜夜干| 欧美日韩综合久久久久久| 久久午夜福利片| 波野结衣二区三区在线| 美女福利国产在线| av有码第一页| 在线观看免费高清a一片| 免费看光身美女| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 国国产精品蜜臀av免费| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 国产色婷婷99| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 国产熟女午夜一区二区三区| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | av.在线天堂| 大香蕉97超碰在线| 满18在线观看网站| 美女国产高潮福利片在线看| 国产熟女欧美一区二区| 国产精品久久久久成人av| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片我不卡| 十八禁网站网址无遮挡| 成人漫画全彩无遮挡| 熟女av电影| 天美传媒精品一区二区| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 国产在线视频一区二区| 久久国产亚洲av麻豆专区| 亚洲成色77777| 精品卡一卡二卡四卡免费| 插逼视频在线观看| 亚洲四区av| 欧美精品一区二区大全| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 国产一区二区激情短视频 | 亚洲丝袜综合中文字幕| 97在线视频观看| 一区二区日韩欧美中文字幕 | 黄色毛片三级朝国网站| 久久鲁丝午夜福利片| 高清不卡的av网站| 成年人免费黄色播放视频|