• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Green Synthesis of Nitrogen-to-Ammonia Fixation: Past,Present, and Future

    2022-07-04 09:14:12JianyunZhengLiJiangYanhongLyuSanPingJiangandShuangyinWang
    Energy & Environmental Materials 2022年2期

    Jianyun Zheng* , Li Jiang, Yanhong Lyu, San Ping Jiang, and Shuangyin Wang

    1. Introduction

    Food and energy security and sustainability are the two most grand challenges facing humankind today across the world.Ammonia(NH3)is one of the most critical ingredients in the food supplier chain as NH3is the essential fertilizer for the agricultural and food production sector.[1,2]Since the discovery of Haber–Bosch(HB)process in 1909,the important process has produced a large proportion of global NH3production over 100 years.[3]The world production of NH3by HB process is over $60 billion annually, and nearly, 80% of the produced NH3is used as the fertilizer in agriculture(see Figure 1).The practical NH3production via HB process enables the global population to nearly quadruple since the rapid implementation of the process in the early 20th century. In the energy field, NH3is currently acknowledged as a promising hydrogen energy carrier because of high volume energy density (13.6 GJ m-3) and easy transportation characteristics (boiling temperature of -33.5 °C).[4]However, to drive the rupture of N≡N and hydrogenation reaction, the HB process involves in high temperature (400–500 °C) and pressure (10–20 MPa) reaction conditions, which accounts for around 1.5% of total global carbon dioxide(CO2) emissions and consumes about 2% of the world’s annual energy supply.[5]Therefore,pursuing an alternative, green, and environmentally efficient process for nitrogen (N2)-to-NH3fixation with renewable energy is very significant for sustainable NH3production.[6–8]

    In view of compatibility with renewable energy source, low product cost and potential scalable production, photocatalytic, electrochemical, photoelectrochemical (PEC), and plasma-driven approaches are recognized as the promising and competitive next-generation NH3synthesis technologies.[9–13]These approaches not only carry out the N2-to-NH3fixation under mild conditions like room temperature and atmospheric pressure but also can be powered by renewable energy source such as sun and wind.[14–16]Generally, the photocatalytic process is directly driven by sunlight to propel the activation and hydrogenation of N2. This type of devices is most simple and low-cost, but shows the low chemical utilization of solar energy.Green electrolytic reaction units for N2reduction reaction(NRR) are powered by solar cells and wind turbines, which usually necessitate use of two encapsulation and support structures. The integrated modularity is the most mature and benefit with high technology readiness,but its cost is also highest.In comparison with photocatalytic and electrochemical method,PEC device is an economically viable solution by combining the catalyst and the solar absorbers into a fully integrated system, which has the considerable chemical utilization of solar energy and acceptable cost. The plasma-based processes can generate highly reactive species to activate N2and facilitate NH3synthesis under atmospheric pressure. Although this approach can obtain high NH3production rate,low selectivity,high energy consumption,and expensive devices limit the application of plasma-driven NRR. Furthermore,in addition to the direct fixation of N2to NH3, an indirect conversion route including oxidation of N2to nitrate and reduction in nitrate to NH3has been implemented by the use of the above approaches.[17–19]

    Indeed,the great prospect has inspired a flurry of research activity to increase the NH3production rate and conversion efficiency of the approaches. Important milestones in the research and development of this emerging field are highlighted in Figure 2.[20–25]The research activities in the green conversion of N2to NH3can be constructively divided into three major groups: 1) the selectivity and adjustment of various catalysts;[26–29]2) the type of electrolyte/solvent system;[22]and 3) the investigation of reaction conditions.[25,30]Recently, much effort and progress have been made in green NH3synthesis using photocatalytic and (photo-)electrochemical approaches, and meanwhile,some questions that the detected NH3is derived from the extraneous contamination rather than N2have arisen among some researchers in this field (Figure 1).[31]Herein, we briefly discuss the past advances and recent critical activities in the area of sustainable N2fixation and subsequently provide a perspective for rational and healthy development of this area.

    2. Selectivity and Adjustment of Catalysts

    Catalysts are the core component of both photocatalytic and (photo-)-electrochemical N2-to-NH3fixation and are absolutely vital for the N2absorption,hydrogenation reaction,and NH3desorption dynamic processes to influence the performance of NRR.[32,33]To date, a series of catalysts have been designed and prepared via various theoretical and experimental routes to carry out sustainable NH3production.Currently,the study of catalysts can primarily concentrate on the types of materials and improvement strategies, including noble metal-based materials,non-noble metal-based materials, nonmetal-based materials, and defect engineering. Ruthenium (Ru),[28]gold (Au),[34]and palladium(Pd)[35]are usually explored in photocatalytic and (photo-)electrochemical NRR under mild conditions (see Figure 3a). For example,Han et al. have reported that a catalyst with diatomic Pd-Cu sites dispersed on N-doped carbon show high activity and selectivity with an NH3formation rate of ~69.2 μg?h-1?mg-1and a faradic efficiency of~24.8%.[35]Non-noble metal-based materials such as Bi, Ti, and Cu have been currently explored as efficient catalysts for photocatalytic and(photo-)electrochemical NRR.An Bi4O5I2catalyst with oxygen vacancy and hydroxyl functional group, which can mimic “π back-donation”behavior by the presence of sufficient vacant orbitals, has been used to enhancing NRR activity in neutral media.[36]This catalyst reaches a splendid faradic efficiency of 32.4%superior to most of the other NRR catalysts in mild conditions.[36]Furthermore,nonmetal-based materials can not only offer good mechanical flexibility and electrical conductivity,but also more importantly,have sufficient catalytic active centers by the introduction of defects.[37]To date,some nonmetal-based materials including conducting polymers and organic carbon-based materials have been explored as catalysts for green NRR.[38]In addition to the use of defect engineering,other enhanced routes such as Li+incorporation,[10]aerophilic-hydrophilic heterostructure,[23]and interface engineering[39]have been investigated for green conversion of N2to NH3under mild conditions. Besides, many of theoretical calculations have also showed that these materials can be major active centers to enhance the N2adsorption, decrease the reaction energy barrier and permit the stabilization of hydrogenated N2species.

    3. Type of Electrolyte/Solvent System

    Jianyun Zheng received his Ph.D.degree in Physical Chemistry from Shanghai Institute of Ceramics,Chinese Academy of Sciences in 2015.From September 2015 to September 2019,he successively worked in Lanzhou Institute of Chemical Physics as an assistant research fellow and Hunan University and Curtin University as a united postdoctoral researcher.Currently,he is an associate professor in the College of Chemistry and Chemical Engineering in Hunan University.His main interests focus on the preparation of semiconductor materials,design,and assembly of photoelectrodes and photoelectrochemical devices,and their performance in photo(electro-)catalysis.

    Li Jiang is currently a graduate student in Hunan University,under the supervision of Prof.Jianyun Zheng and Prof.Shuangyin Wang. Her current research interest is photoelectrochemical nitrogen reduction reaction.

    Yanhong Lyu received her Pd.D. degree in Physical Chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2015.She currently works in Hunan First Normal University as a researcher. Her researches mainly focus on the (photo-)-electrochemistry, nanoscale analysis, and surface engineering of the materials for water splitting and nitrogen reduction.

    San Ping Jiang is a John Curtin Distinguished Professor at the Western Australian School of Mines: Minerals,Energy and Chemical Engineering and Deputy Director of Fuels and Energy Technology Institute, Curtin University,Australia. Dr Jiang obtained his PhD from The City University,London in 1988. Before 2010,Dr. Jiang worked at Nanyang Technological University in Singapore. His research interests encompass fuel cells, water electrolysis, supercapacitors,carbon dioxide reduction, single-atom catalysts, and nanostructured functional materials.

    As important as the catalyst, the electrolyte/solvent system is responsible for sufficient reaction elements or compounds at the solid/liquid interface, efficient conductivity in the overall reaction process, and appropriate pH environment toward targeted production, contributing to outstanding catalytic performance. As mentioned in the section of Catalysts, aqueous electrolytes have drawn attentions of numerous researchers to frequently explore and investigate in green NRR process because of environmental friendliness and rich reserves of water resource. However, a tremendous challenge for the use of aqueous electrolyte is low N2solubility and immediate availability of H+leading to poor NRR selectivity. Thus, an effective way to enhance the NRR performance is changing the electrolyte media, especially ionic liquid.Ionic liquid is a typical non-aqueous electrolyte, which only contains trace of water to offer the proton source and effectively suppresses the H2evolution. Meanwhile, certain ionic liquid can provide a high N2solubility under ambient conditions, as much as 20 times higher than aqueous electrolyte. For instance, MacFarlane group has reported ionic liquids with high N2solubility as electrolytes to obtain a high conversion efficiency of 60% for electrocatalytic NRR on a Fe-based catalyst(Figure 3b).[22]A series of other ionic liquids have been also tested for NRR at room temperature and enhanced the reaction selectivity toward NH3production. The NH3yield rates for NRR are quite low in ionic liquids although high conversion efficiency is achieved.In addition,the ionic liquids are non-green and expensive, not in accordance with the green synthesis requirements.

    Shuangyin Wang received his Ph.D. in 2010 from Nanyang Technological University, Singapore. He was a postdoctoral fellow working with Prof. L.Dai (2010–11) and Prof. A.Manthiram (2011–12). He was a Marie Curie Fellow at the University of Manchester with Prof. K. Novoselov (2012–13).He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are in novel catalysts, defects in various crystals and their application in electrocatalysis.

    4. Investigation of Reaction Conditions

    To further overcome the obstacles of yield rate and conversion efficiency,certain studies have started to control the reaction conditions to change the thermodynamic of NRR.According to Le Chatelier’s principle, the pressurized reaction environment can facilitate the balance toward the NH3production for NRR as a volume-reduced reaction and inhibit the hydrogen evolution owing to a reaction of an increasing volume.[30]In addition, the N2solubility in the electrolytes is directly proportional to the reaction pressure, which can affect the supply and diffusion of N2source. Encouragingly,the recent outstanding research work has revealed that the increased reaction pressure can be beneficial for improving NRR performance,achieving a record-high NH3yield rate of~74.2 μg?h-1?cm-2and a faradaic efficiency of ~20.4%, which exhibit 7.3-and 4.9-fold enhancements than those produced at ambient pressure(Figure 3c).[25]Actually, compared with the improvement of catalysts and electrolytes,the investigation and development of system pressure could be more promising to break the current limitations of NH3yield rate for NRR.

    Figure 1. Schematic diagrams for N2-to-NH3 fixation, including its synthesis methods, current dilemma, and application domain.

    5. Current Dilemma

    Figure 2. Timeline of the key developments in the field of green N2-to-NH3 fixation.

    Figure 3. Short overview of green NRR from three major groups. a) Schematic diagram and NH3 yield rate of electrocatalytic NRR by Ru single. Reproduced from ref. 28 with permission from Elsevier B.V. (Copyright 2019).b) N2 binding energy and NRR performance in the ionic liquids. Adapted from ref. 23 with permission from The Royal Society of Chemistry (Copyright 2017). c) Schematic of the pressurized NRR setup and NH3 yield rate at the different N2 pressures. Panels were reproduced with permission from ref. 25, National Academy of Sciences (Copyright 2020).

    The research field of green NRR still faces various problems in current stage although some achievements have suggested the potential values of this method. The major problem has been discussed as to whether the green N2-to-NH3fixation could be a practical and feasible or fictional and false way. Significant doubt and uncertainty in the NRR research are mainly derived from the various and potential contamination sources.[40]According to the source of contamination, the contamination can be grouped as extra-systematic and intra-systematic contamination.The NH3and labile nitrogen-containing compounds (e.g., NOx)from ambient environment such as the air and rubber gloves are referred to as the extra-systematiccontamination,which can be easily excluded by a closed system and rigorous operation.The intrasystematic contamination present in the catalysts, electrolytes, and feed gas has a significant influence on the true NRR performance.However,such intra-systematic contamination can be identified and eliminated by a series of control experiments and reaction units. Based on the rough calculation, all these contaminations can provide dozens or even hundreds of microgram of NH3production, showing a similar order of magnitude compared with the reported results of green NRR.[41]So far, the NH3yield rate by green NRR process ranges in the value from 1 to 70 μg?h-1?cm-2,which is too low to satisfy the practical production and suppress the interference of contamination. Under the current situation, it is extremely necessary for the researchers to adopt a more cautious attitude to treat all the results of green NRR or contamination. After all, enhancing the accuracy and reliability of the published literatures can be conducive to develop the green synthesis of N2-to-NH3fixation. In addition, the disturbance of contamination only exists in certain conditions and objects and is not of universality. It is confirmed that there is no discernible amount of NH3production detected in many NRR tests by different research groups and reaction methods.In fact,the involved literature reports on the false positives of NRR can be aimed at underlining and eliminating the effect of special contamination. Finally, all of the reported nitrogen-containing contamination can be effectively cleared away via an appropriate reaction unit, a rational experimental process,and a series of useful control experiments to achieve a“genuine” NRR. To improve the current situation of NRR, many of the research groups have proposed several rigorous and complicated protocols on basis of their own experimental routes.[24]Nevertheless, these protocols are too complicated to apply in all of the laboratories,especially for cash-strapped research group, and a complicated experimental process usually involves more experimental steps resulting in the more possibilities to introduce the contamination. In this perspective,we will also describe a facile protocol with a simple reaction unit available for reference purposes in the next section. In a word, the main reason for the difficulty in the NRR or contamination issues is the extremely low NH3yield rate by green methods. Therefore, the top priority of green NRR in future is to increase the yield rate by leaps and bounds.

    Figure 4. Schematic diagrams for increasing the NH3 yield rate, which contributes new opportunities for developing green NRR.

    6. Future Challenge, Strategy, and Prospect

    The major challenges we face in pursuit of practical application of green NRR are the very low NH3production rate with the disturbance of contamination. The low NH3production by green NRR under mild conditions can be attributed to the inherent limitations of reaction process like the rupture of N≡N and low N2solubility.The disturbance of contamination is regarded as the technical puzzles of green NRR in its infancy, which has often happened in creating and exploiting a new reaction or method. When the NH3yield rate still maintains the super low level, the results of NRR not only are difficult to be characterized by the existing NH3detection methods but also are easily affected by the contamination to display the “false positive.” On the other hand, the low NH3production from so-called NRR makes no sense to be reported when the contamination involves in the experiments.

    With respect to the breakthrough of NH3yield rate, there are several points in the NRR system should be considered in priority (see Figure 4). There is no doubt about the significance of the catalysts for NRR, but the routine improvements of the catalysts hardly break through the bottleneck of green NRR. The composite catalysts with different active sites to adsorb, activate, and hydrogenate N2and desorb NH3in series will be the inevitable development direction of NRR, but how to precisely synthesize and characterize the catalysts and testify the tandem and coupling mechanism can be the key points.In comparison with the catalysts, we can pay more attention to the selection and control of methods, electrolytes, and reaction conditions.Current technology for green NRR basically uses a single method,such as photocatalysis or electrocatalysis, which shows a poor NRR efficiency. In fact, utilizing the complementarity between methods, a few efforts on coupling the different methods can effectively enhance the performance of NRR, possibly involving the field enhancement effect and multi-step reaction chains (e.g., electrochemistry-photoelectrochemistry tandem device). On the other hand, developing novel and characteristic electrolytes has drawn the attentions of the researchers. We think that the future electrolytes may be neither single aqueous electrolytes nor ionic liquid electrolytes and can be a kind of mixed electrolytes with multiple phase to integrate the required functions (e.g., the mixture of metal-organic framework (or covalent organic frameworks) to adsorb and dissociate N2and aqueous electrolyte to provide protons). Finally, the reaction conditions like temperature and pressure should be changed to promote the N2-to-NH3fixation in the infancy of green NRR field. As everyone knows, high temperature and pressure can facilitate the NRR toward NH3production. Thus, to dramatically improve the NRR performance, rationally increasing the reaction temperature (e.g., 100 °C) or pressure (e.g.,1 MPa) can be a most fast and effective route, which establishes indepth understanding of green NRR and smart integration of comprehensive theories.

    For the protocol, we firstly emphasize that NRR is carried out in a clean and isolated room at least. The researchers in the NRR process should be careful and patient to well treat all the experimental details. The laboratory rookie for NRR should be accompanied by the master to guide the normative operation. It will be best to usually use a buddy system for NRR, which can enhance the accuracy of the results and reduce the occurrence of false positive. In addition, some facile and advanced experimental conditions and setups can be employed to exclude the disturbance of nitrogen-containing contamination. A series of cells to assemble a gas-tight reaction unit are used to carry out NRR, where each cell can play the different functions including the purification of N2gas, the NRR, the reabsorption of NH3production, and the effect of liquid seal. The rational design of control experiments is vitally important, which can confirm the N source of NH3from N2and check the composition of the catalysts, reaction reagents, and reaction gas to exclude the effect of contamination.

    Exploitation of a sustainable process N2-to-NH3fixation for both agriculture and energy industry can give rise to a massive global impact in the food and energy security and supply field in this century,as done at 100 years ago by Haber–Bosch process. In the face of great social and economic profit, we should keep confidence and strive to fundamental understanding and innovation in the NRR process for NH3production. We enthusiastically recommend the standard operational practices and new reaction modes to pursue such important task. We believe that all positive attempts and comments can make a good contribution to developing the green NRR.

    Acknowledgements

    The authors are grateful to the National Natural Science Foundation of China(51402100,21573066,21825201,22075075,21805080,and U19A2017),the Provincial Natural Science Foundation of Hunan (2016JJ1006, 2020JJ5044, and 2016TP1009),and Australian Research Council(DP180100568 and DP180100731)for financial support of this research.

    Conflict of Interest

    The authors declare no conflict of interest.

    Keywords

    current dilemma, enhanced performances, future challenges, green synthesis,nitrogen-to-ammonia fixation

    Received: March 4, 2021

    Revised: March 22, 2021

    Published online: March 23, 2021

    [1] T. N. Ye, S. W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391.

    [2] I. ?Cori′c, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015,526, 96.

    [3] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48,5658.

    [4] L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am.Chem. Soc. 2019, 141, 10677.

    [5] A. J. Mart′?n, T. Shinagawa, J. P′erez-Ram′?rez, Chem 2019, 5, 263.

    [6] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A.Ozin, Joule 2018, 2, 1055.

    [7] R. F. Service, Science 2018, 361, 120.

    [8] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M.Yan, Q. Jiang, X. B. Zhang, Adv. Mater. 2017, 29, 1604799.

    [9] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.

    [10] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am.Chem. Soc. 2017, 139, 9771.

    [11] L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.

    [12] S. Zhang, Y. Zhao, R. Shi, C. Zhou, G. I. N. Waterhouse, Z. Wang, Y.Weng, T. Zhang, Angew. Chem. Int. Edit. 2020, 60, 2554.

    [13] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. M. Sankaran, J. N. Renner, Sci.Adv. 2019, 5, eaat5778.

    [14] X. Cui, C. Tang, Q. Zhang, Adv. Energy. Mater. 2016, 8, 1800369.

    [15] Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N.Waterhouse, T. Zhang, Adv. Energy. Mater. 2020, 10, 2002199.

    [16] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Z. Qiao, ACS Catal. 2019, 9, 2902.

    [17] L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J. A. Martens,Angew. Chem. Int. Edit. 2020, 59, 23825.

    [18] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu,H. Wang, Nat. Energy 2020, 5, 605.

    [19] J. Wang, L. Ling, Z. Deng, W. X. Zhang, Sci. Bull. 2020, 65, 926.

    [20] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652.

    [21] T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Edit. 2016, 55, 3942.

    [22] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energy Environ. Sci. 2017,10, 2516.

    [23] J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H.Zhou, S. P. Jiang, S. Wang, Chem 2019, 5, 1.

    [24] S. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M.McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr,M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M.Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I.Chorkendorff, Nature 2019, 570, 504.

    [25] H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Proc Natl Acad Sci USA 2020,117, 29462.

    [26] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang,G. C. Schatz, M. G. Kanatzidis, Proc Natl Acad Sci USA 2016, 113, 5530.

    [27] C. Liu, K. K. Sakimoto, B. C. Col′on, P. A. Silver, D. G. Nocera, Proc Natl Acad Sci USA 2017, 114, 6450.

    [28] H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5,204.

    [29] F. Wang, L. Mao, H. Xie, J. Mao, Small Struct. 2021, 2, 2000075.

    [30] H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Edit.2019, 58, 15541.

    [31] L. Li, C. Tang, D. Yao, Y. Zheng, S. Z. Qiao, ACS Energy Lett. 2019, 9,2111.

    [32] L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi, C. J. Li, Angew. Chem. Int. Edit.2017, 56, 8701.

    [33] P. Li, Z. Jin, Z. Fang, G. Yu, Angew. Chem. Int. Edit. 2020, 59, 22610.

    [34] J. Zheng, Y. Lyu, M. Qiao, J. P. Veder, R. D. Marco, J. Bradley, R. Wang,Y. Li, A. Huang, S. P. Jiang, S. Wang, Angew. Chem. Int. Edit. 2019, 58,18604.

    [35] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J.Sun, J. Luo, H. L. Xin, Angew. Chem. Int. Edit. 2020, 60, 345.

    [36] C. Lv, L. Zhong, Y. Yao, D. Liu, Y. Kong, X. Jin, Z. Fang, W. Xu, C. Yan,K. N. Dinh, M. Shao, L. Song, G. Chen, S. Li, Q. Yan, G. Yu, Chem 2020,6, 2690.

    [37] J. Zheng, Y. Lyu, B. Wu, S. Wang, EnergyChem 2020, 2, 100039.

    [38] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.

    [39] C. Tang, Y. Zheng, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Edit. 2021.https://doi.org/10.1002/anie.202101522

    [40] C. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166.

    [41] J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov, D. R.MacFarlane, ACS Energy Lett. 2020, 5, 2095.

    丰满饥渴人妻一区二区三| 亚洲成人免费电影在线观看| 91精品国产国语对白视频| 中文字幕最新亚洲高清| 成人三级做爰电影| 婷婷丁香在线五月| 国产人伦9x9x在线观看| 久久久久网色| 天天影视国产精品| 国产亚洲精品久久久久5区| 麻豆av在线久日| 欧美黄色淫秽网站| netflix在线观看网站| 在线观看www视频免费| 91成人精品电影| 亚洲成人免费av在线播放| 亚洲视频免费观看视频| 午夜免费鲁丝| 女警被强在线播放| 亚洲天堂av无毛| 波多野结衣一区麻豆| 十八禁人妻一区二区| 1024视频免费在线观看| 精品国产一区二区三区久久久樱花| 日韩三级视频一区二区三区| 国产午夜精品久久久久久| 久久毛片免费看一区二区三区| 一区福利在线观看| 两个人免费观看高清视频| 国产野战对白在线观看| 啦啦啦免费观看视频1| 另类精品久久| av天堂在线播放| 精品少妇黑人巨大在线播放| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 丰满少妇做爰视频| 丝袜喷水一区| 久久亚洲精品不卡| 欧美老熟妇乱子伦牲交| 一本综合久久免费| 搡老乐熟女国产| 日韩有码中文字幕| 在线观看免费日韩欧美大片| 久久九九热精品免费| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 国产高清国产精品国产三级| 丝袜美足系列| 五月天丁香电影| 亚洲国产欧美日韩在线播放| 亚洲精品久久成人aⅴ小说| 亚洲精品粉嫩美女一区| 久久中文字幕人妻熟女| 亚洲av欧美aⅴ国产| 12—13女人毛片做爰片一| 国内毛片毛片毛片毛片毛片| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 欧美成狂野欧美在线观看| 在线天堂中文资源库| 亚洲av日韩精品久久久久久密| 国产有黄有色有爽视频| 久久免费观看电影| 久久精品91无色码中文字幕| 一级,二级,三级黄色视频| 1024视频免费在线观看| 桃红色精品国产亚洲av| 亚洲一区二区三区欧美精品| 99riav亚洲国产免费| 国产欧美日韩综合在线一区二区| 成人三级做爰电影| 精品卡一卡二卡四卡免费| 91成人精品电影| 岛国毛片在线播放| 制服诱惑二区| 亚洲精品久久午夜乱码| a级毛片黄视频| 搡老岳熟女国产| 日韩熟女老妇一区二区性免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日本wwww免费看| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 成人国产av品久久久| 人人澡人人妻人| 国产精品一区二区精品视频观看| 91成人精品电影| 亚洲av第一区精品v没综合| 免费在线观看黄色视频的| 中文字幕最新亚洲高清| 91精品国产国语对白视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品久久午夜乱码| 757午夜福利合集在线观看| 国产在线一区二区三区精| 午夜福利免费观看在线| 欧美日韩视频精品一区| 淫妇啪啪啪对白视频| 久久久久久人人人人人| 亚洲中文av在线| 午夜老司机福利片| netflix在线观看网站| 午夜视频精品福利| 99精国产麻豆久久婷婷| 免费不卡黄色视频| 美国免费a级毛片| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 国产精品 国内视频| 一本色道久久久久久精品综合| 两性午夜刺激爽爽歪歪视频在线观看 | 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 国产亚洲一区二区精品| 日本精品一区二区三区蜜桃| 一区在线观看完整版| 国产一区二区 视频在线| 久热爱精品视频在线9| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 国产99久久九九免费精品| 大型黄色视频在线免费观看| 久久久久久久久久久久大奶| 国产高清videossex| 日本av免费视频播放| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 热re99久久国产66热| 国产精品久久久久久精品古装| 日韩欧美一区二区三区在线观看 | 欧美老熟妇乱子伦牲交| 国产精品成人在线| 窝窝影院91人妻| 欧美日韩av久久| 老熟女久久久| 国产xxxxx性猛交| 十八禁网站网址无遮挡| av片东京热男人的天堂| 国产免费视频播放在线视频| 老熟妇乱子伦视频在线观看| 美国免费a级毛片| 欧美激情高清一区二区三区| 99精品欧美一区二区三区四区| 国产精品二区激情视频| 大香蕉久久网| 久久99一区二区三区| 两性夫妻黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜福利在线观看视频 | 亚洲成人手机| 久久久久网色| 国产高清视频在线播放一区| av在线播放免费不卡| 高清毛片免费观看视频网站 | 国产国语露脸激情在线看| 日日爽夜夜爽网站| 另类亚洲欧美激情| 女警被强在线播放| 欧美国产精品一级二级三级| 在线亚洲精品国产二区图片欧美| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| av免费在线观看网站| av视频免费观看在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| 亚洲专区字幕在线| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 国产精品欧美亚洲77777| 高清av免费在线| 精品一品国产午夜福利视频| 深夜精品福利| av在线播放免费不卡| a级片在线免费高清观看视频| 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| 999精品在线视频| 成年人免费黄色播放视频| av福利片在线| 久热爱精品视频在线9| kizo精华| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 女人高潮潮喷娇喘18禁视频| 香蕉国产在线看| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 欧美激情高清一区二区三区| 黄色丝袜av网址大全| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 91字幕亚洲| 国产成人精品无人区| 免费在线观看日本一区| 欧美黑人精品巨大| 精品福利永久在线观看| 精品少妇内射三级| 嫩草影视91久久| 午夜激情av网站| 亚洲成人国产一区在线观看| 国产成人免费观看mmmm| 少妇 在线观看| 欧美午夜高清在线| 欧美黄色淫秽网站| 午夜两性在线视频| 免费观看av网站的网址| 亚洲欧洲精品一区二区精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 一区福利在线观看| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲| 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 不卡av一区二区三区| av在线播放免费不卡| 黄片大片在线免费观看| 咕卡用的链子| 欧美日本中文国产一区发布| 首页视频小说图片口味搜索| 亚洲熟女毛片儿| 99精国产麻豆久久婷婷| 国产高清videossex| 蜜桃国产av成人99| 亚洲黑人精品在线| 一级毛片精品| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 国产一区二区三区视频了| 国产精品.久久久| 欧美日韩视频精品一区| 精品少妇一区二区三区视频日本电影| av一本久久久久| 老司机在亚洲福利影院| 久久久久精品人妻al黑| 制服人妻中文乱码| 国产野战对白在线观看| 久久免费观看电影| a级毛片黄视频| 女性生殖器流出的白浆| 搡老乐熟女国产| 丁香欧美五月| 99香蕉大伊视频| 国产成+人综合+亚洲专区| 男女床上黄色一级片免费看| 久久精品国产亚洲av香蕉五月 | 亚洲国产精品一区二区三区在线| av天堂久久9| 精品人妻1区二区| 午夜福利在线免费观看网站| 久久久精品94久久精品| 日本五十路高清| kizo精华| 18禁国产床啪视频网站| 亚洲专区字幕在线| 色老头精品视频在线观看| 大型黄色视频在线免费观看| 精品国产一区二区三区久久久樱花| 欧美日韩福利视频一区二区| 黄色a级毛片大全视频| 中文亚洲av片在线观看爽 | 男人舔女人的私密视频| av有码第一页| 99久久国产精品久久久| 女性被躁到高潮视频| 亚洲国产看品久久| 亚洲九九香蕉| 亚洲伊人久久精品综合| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| videosex国产| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 国产精品98久久久久久宅男小说| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 亚洲精品在线观看二区| 19禁男女啪啪无遮挡网站| 亚洲人成电影观看| 欧美中文综合在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产综合亚洲精品| 两个人看的免费小视频| tube8黄色片| 精品国产一区二区久久| 麻豆成人av在线观看| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 国产成人啪精品午夜网站| 最新美女视频免费是黄的| 久久精品亚洲av国产电影网| 十八禁人妻一区二区| 大码成人一级视频| 9191精品国产免费久久| a级毛片黄视频| 在线观看人妻少妇| 一夜夜www| 色尼玛亚洲综合影院| 水蜜桃什么品种好| 99re在线观看精品视频| 在线看a的网站| 色综合欧美亚洲国产小说| 久久久久网色| 亚洲av美国av| 桃红色精品国产亚洲av| 黄片播放在线免费| 国产精品影院久久| 国产av精品麻豆| 极品人妻少妇av视频| 咕卡用的链子| 天天添夜夜摸| 国产成人av激情在线播放| 另类精品久久| 国产精品久久久久久人妻精品电影 | 亚洲色图综合在线观看| 午夜福利一区二区在线看| 一进一出抽搐动态| 动漫黄色视频在线观看| 欧美亚洲 丝袜 人妻 在线| 久久精品国产综合久久久| 国产午夜精品久久久久久| 午夜成年电影在线免费观看| 中文字幕制服av| 交换朋友夫妻互换小说| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 精品人妻1区二区| 一区二区av电影网| 一区二区三区激情视频| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕 | 久久 成人 亚洲| 国产精品香港三级国产av潘金莲| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 国产精品 国内视频| 亚洲欧美日韩高清在线视频 | 成人18禁高潮啪啪吃奶动态图| 国产av一区二区精品久久| 夫妻午夜视频| 国产免费av片在线观看野外av| 亚洲精品国产一区二区精华液| 久久精品国产a三级三级三级| 免费在线观看黄色视频的| 少妇粗大呻吟视频| av又黄又爽大尺度在线免费看| 国产麻豆69| 日日爽夜夜爽网站| 国产精品熟女久久久久浪| 美女午夜性视频免费| 亚洲av国产av综合av卡| 国产精品电影一区二区三区 | 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 久久中文字幕一级| 法律面前人人平等表现在哪些方面| 下体分泌物呈黄色| 欧美日本中文国产一区发布| 超色免费av| 国产主播在线观看一区二区| 最近最新中文字幕大全免费视频| 大片电影免费在线观看免费| 国产精品久久久久成人av| 日本五十路高清| 亚洲精品中文字幕一二三四区 | 中文字幕精品免费在线观看视频| 天天影视国产精品| 国产精品成人在线| 国产老妇伦熟女老妇高清| 五月开心婷婷网| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 肉色欧美久久久久久久蜜桃| 黑人欧美特级aaaaaa片| 欧美大码av| 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密| 久久99热这里只频精品6学生| 国产免费av片在线观看野外av| 在线播放国产精品三级| 天天影视国产精品| e午夜精品久久久久久久| 国产精品麻豆人妻色哟哟久久| 三级毛片av免费| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 亚洲精品国产区一区二| 免费人妻精品一区二区三区视频| 纯流量卡能插随身wifi吗| 日韩大码丰满熟妇| 亚洲色图av天堂| 久久免费观看电影| 亚洲色图av天堂| 久久影院123| 午夜视频精品福利| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产99精品国产亚洲性色 | 午夜日韩欧美国产| 性高湖久久久久久久久免费观看| 窝窝影院91人妻| 黑丝袜美女国产一区| 国产高清国产精品国产三级| 两个人免费观看高清视频| √禁漫天堂资源中文www| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 91成人精品电影| 亚洲成a人片在线一区二区| 老汉色∧v一级毛片| 精品国产一区二区久久| 丝瓜视频免费看黄片| 18禁裸乳无遮挡动漫免费视频| 日韩欧美国产一区二区入口| 久久久久视频综合| 国产又爽黄色视频| 精品午夜福利视频在线观看一区 | 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡| 国产黄频视频在线观看| 麻豆乱淫一区二区| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费 | 久久精品国产99精品国产亚洲性色 | 啦啦啦免费观看视频1| e午夜精品久久久久久久| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 国产av一区二区精品久久| 欧美国产精品一级二级三级| 美女高潮喷水抽搐中文字幕| 亚洲午夜理论影院| 大型av网站在线播放| 亚洲中文字幕日韩| 亚洲人成伊人成综合网2020| 成人av一区二区三区在线看| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 欧美日韩国产mv在线观看视频| 一级黄色大片毛片| 日韩人妻精品一区2区三区| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 757午夜福利合集在线观看| 十八禁人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 成人免费观看视频高清| 国产精品国产高清国产av | 青草久久国产| 亚洲av成人不卡在线观看播放网| 国产黄频视频在线观看| 国产精品影院久久| 女人精品久久久久毛片| 久久天堂一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 亚洲av成人一区二区三| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 欧美日韩一级在线毛片| 国产深夜福利视频在线观看| 久久久精品国产亚洲av高清涩受| 欧美亚洲日本最大视频资源| 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| av天堂久久9| 免费在线观看完整版高清| 9191精品国产免费久久| 中文字幕另类日韩欧美亚洲嫩草| 午夜两性在线视频| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 大码成人一级视频| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 一本大道久久a久久精品| 亚洲国产精品一区二区三区在线| 交换朋友夫妻互换小说| 一级黄色大片毛片| 国产麻豆69| 80岁老熟妇乱子伦牲交| 热re99久久国产66热| 电影成人av| 大型黄色视频在线免费观看| 久久久国产一区二区| 国产主播在线观看一区二区| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 国产亚洲精品一区二区www | av国产精品久久久久影院| 极品教师在线免费播放| 亚洲精品成人av观看孕妇| 女警被强在线播放| 新久久久久国产一级毛片| 热99re8久久精品国产| 成人18禁高潮啪啪吃奶动态图| 性高湖久久久久久久久免费观看| 99国产精品一区二区三区| 免费观看人在逋| 亚洲色图av天堂| 久久久久久久久久久久大奶| 欧美+亚洲+日韩+国产| 国产精品亚洲av一区麻豆| h视频一区二区三区| 国产99久久九九免费精品| 90打野战视频偷拍视频| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| 欧美av亚洲av综合av国产av| 午夜成年电影在线免费观看| videosex国产| 超碰成人久久| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 国产高清videossex| 高清视频免费观看一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂动漫精品| 法律面前人人平等表现在哪些方面| 人妻一区二区av| 免费在线观看日本一区| 夜夜爽天天搞| 久热爱精品视频在线9| 亚洲天堂av无毛| 国产精品香港三级国产av潘金莲| 久久影院123| 国产伦人伦偷精品视频| 一区二区三区激情视频| 一区二区av电影网| 宅男免费午夜| 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品中文字幕在线视频| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 亚洲色图综合在线观看| a级毛片在线看网站| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 国产伦理片在线播放av一区| 欧美 亚洲 国产 日韩一| 午夜福利在线观看吧| 国产野战对白在线观看| 日本一区二区免费在线视频| 人妻 亚洲 视频| 91九色精品人成在线观看| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 日韩一卡2卡3卡4卡2021年| 人人妻人人爽人人添夜夜欢视频| 色综合婷婷激情| 免费看十八禁软件| 亚洲美女黄片视频| 欧美大码av| 狠狠狠狠99中文字幕| 久久婷婷成人综合色麻豆| 午夜成年电影在线免费观看| 国产精品av久久久久免费| 国产成人欧美| 男女高潮啪啪啪动态图| 性高湖久久久久久久久免费观看| 亚洲熟女毛片儿| 成人三级做爰电影| 久久中文看片网| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 国产一区二区 视频在线| 大型av网站在线播放| 999久久久精品免费观看国产| 高清av免费在线| 一本一本久久a久久精品综合妖精| 成年人午夜在线观看视频| 国产成人av教育| 欧美黑人精品巨大| 国产在视频线精品| 十八禁人妻一区二区| 精品国产一区二区三区四区第35| 国产高清国产精品国产三级| 久久99一区二区三区| 另类精品久久| 黑人猛操日本美女一级片| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| 如日韩欧美国产精品一区二区三区| 国产日韩欧美亚洲二区|