• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries

    2022-07-04 09:13:56LiyuanTianZeZhangShengLiuGuoranLiandXuepingGao
    Energy & Environmental Materials 2022年2期

    Liyuan Tian, Ze Zhang* , Sheng Liu, Guoran Li, and Xueping Gao*

    1. Introduction

    Lithium–sulfur (Li-S) batteries offer a great potential to achieve high energy density because of high theoretical gravimetric/volumetric energy densities(2600 Wh kg?1and 2800 Wh L?1).[1,2]In principle,the sulfur cathode undergoes a complex conversion process from solid S8molecules to soluble lithium polysulfides (LiPS), and fully to insoluble Li2S2/Li2S.[3,4]Such a multi-electron reaction is favorable for the high theoretical capacity of 1675 mAh g?1of sulfur. However, the shuttle effect originated from soluble LiPS, and sluggish redox kinetics of both insulating sulfur and Li2S2/Li2S are harmful to achieve the high utilization of active sulfur(capacity)and stable cycle life of Li-S batteries.[5–7]

    Considerable efforts have been made to address the shuttle effect by confining sulfur within various host materials,which can physically or/and chemically trap soluble LiPS for improving the battery performance.[8–11]However,such passive entrapping strategies are incapable of fully eliminating the LiPS dissolution into electrolyte. In this regard, a positive electrocatalytic strategy that accelerating the conversion of soluble LiPS to final product Li2S by using transition metal compounds as catalytic materials is suggested recently.[12–17]Despite their relatively inferior conductivity to carbon nanomaterials, these polar electrocatalysts can enhance the electrochemical kinetics of sulfur redox reactions, and suppress the shuttle effect due to the strong chemical confinement of sulfur species, thus realizing the high utilization and cycle stability of sulfur cathode.[18–21]In addition, a high-efficiency electrocatalyst is favorable for realizing the high electrochemical performance of sulfur cathodes even under high sulfur loading and low electrolyte occupation, which is fundamentally essential for the development of high energy density Li-S batteries.[22–26]Furthermore,kinds of strategies have been developed to enhance the activity of these electrocatalysts, including defect engineering,[27,28]heterojunction construction,[29]and single-atom catalysis.[30]The core technology among all strategies is to explore new materials for achieving favorable adsorption catalysis on the conversion of soluble LiPS.

    In particular, the catalytic activity is closely related to metal cation centers, and recently, multicomponent metal oxides are proved to be the effective regulator of soluble LiPS because of the synergistic effect among multiple metal cations.[31,32]Specifically,these multicomponent oxides have been employed as additive such as Mg0.6Ni0.4O[33]and Mg0.8Cu0.2O,[34]or the host such as spinel NiFe2O4[35]and NiCo2O4[36]oxides,and could effectively enhance the chemical adsorption of soluble LiPS,as compared to the single metal ones.[37,38]Zhang et al.[39]further demonstrated Ba0.5Sr0.5Co0.8Fe0.2O3?δperovskite nanoparticles as a bifunctional promoter for LiPS conversion and Li2S deposition. In consideration of these attributes of multicomponent oxides, high-entropy materials (HEMs) such as high-entropy alloys,[40]oxides,[41]and sulfides[42]feature homogeneously mixed and tunable five or more principal elements in a single crystal phase and are favorable to the pursuit of high adsorption ability of reaction intermediates and the catalytic activity for energy storage and conversion.[43,44]In particular, high-entropy oxides (HEOs) are recognized as single-phase oxide systems with 5 or more cations, which benefits for providing strong polar surface to chemically adsorb the sulfur species. For instance, Qiao et al. prepared a cubic rock salt type HEO containing Ni, Mg, Cu, Zu, and Co elements for Li-S batteries via a mechanical ball milling method combining with the thermal treatment at 1000 °C.[45]The as-prepared HEO exhibited an irregular bulk shape and extremely low surface area, which might not be favorable for high-efficiency loading of sulfur. In view of these issues, it is desirable to develop HEO materials with regular nanostructures as efficient catalysts for Li-S batteries.

    Figure 1. Structural characterization. a) SEM image, b) TEM image, c) the corresponding SEAD pattern, d) high-resolution TEM image of HEO nanofibers, e)XRD patterns, f) TG curve, and g) N2 adsorption/desorption isotherms. h) TEM image, i) HAADF-STEM image, and j) the corresponding EDS elemental maps of S/HEO composite.

    In this contribution, for the first time, high-entropy spinel oxide nanofibers are prepared via electrospinning method and used as catalytic host of sulfur to facilitate the conversion of soluble LiPS, which is the rate-determining step in the electrochemical reaction of sulfur cathode. The synergistic concept of well-designed porous 1D nanostructure and multiple metal cations in a single spinel structure not only can provide desired paths for facilitating Li-ion diffusion,but also can afford abundant active sites for chemically anchoring LiPS and catalyzing the conversion of LiPS. Moreover, the heavy HEO host is helpful to the high tap density of S/HEO composite (1.92 g cm?3).As a result, fast kinetics and excellent cycle stability can be realized in S/HEO composite to fulfill the demand of both high gravimetric and volumetric capacities.

    2. Results and Discussion

    Figure 2. Electrochemical evaluation. a) CV curve at a scan rate of 0.1 mV s?1, b) rate capability, c) the initial discharge/charge curves at 0.1 C rate, cycle stability at d) 0.1 C and e) 1 C, f) areal capacity at 0.1 C of S/HEO electrode with different sulfur loadings, g) cycle stability of S/HEO electrode with different E/S ratios.

    The high-entropy oxide (denoted as HEO, (Mg0.2Mn0.2Co0.2-Ni0.2Zn0.2)Fe2O4) nanofibers were prepared by electrospinning the mixture solution of polyacrylonitrile (PAN) and principal metal salts followed by a calcination process in air. The as-prepared HEO nanofibers are about tens of micrometers in length with diameter range of 120–200 nm (Figure 1a). Transmission electron microscope (TEM)image in Figure 1b shows that the HEO nanofiber with a ~160 nm diameter is composed of abundant nanocrystals. The polycrystalline characteristic is identified by the diffraction rings in the selected area electron diffraction(SAED)pattern(Figure 1c).As further confirmed in the X-ray diffraction (XRD) pattern (Figure 1e), the HEO sample presents a single spinel structure(JCPDS 89-4927)without any impurities,similar to that of NiFe2O4.[46]It is evidently demonstrated that the extra multiple metal cations (Mg, Mn, Co, and Zn) occupy the same lattice to Ni cation in a stabilized single phase,thus leading to a high configurational entropy. Accordingly, all the diffraction rings (Figure 1c) can be ascribed to the different crystalline planes of cubic spinel structure.High-resolution TEM image in Figure 1d presents the clear lattice spacing of ~0.24 nm, corresponding to the (311) plane of HEO sample.After sulfur incorporation,the S/HEO composite shows a clear appearance of orthorhombic sulfur due to the high sulfur content of 79.6 wt% (Figure 1f). Interestingly, two-step weight loss is observed in the thermogravimetric(TG)curve,which is because of the strong chemical interaction between HEO host and sulfur,[47]thus leading to the postponed evaporation of sulfur (3.4 wt%). The morphology of S/HEO composite was further characterized using scanning electron microscope(SEM),TEM,and high-angle annular dark-field scanning electron microscopy (HAADF-STEM). SEM image (Figure S1, Supporting Information),TEM,and HAADF-STEM images(Figure 1h,i)show the wellretained 1D nanofiber morphology of S/HEO, indicating the uniform distribution of sulfur among HEO nanofibers.The uniform distribution of sulfur can be also confirmed by the corresponding energy-dispersive spectroscopy (EDS) elemental mapping (Figure 1j). In addition, the incorporation of sulfur into HEO decreases the specific surface area from 384.4 to 154.7 m2g?1(Figure 1g, and Table S1, Supporting Information) due to the filling of sulfur inside the pore structure or covering on the surface of HEO nanofibers. As a comparison, porous carbon nanofibers (CNFs) with abundant micro-/mesopores are also prepared and used as host of sulfur (Figure S2 and S3, Supporting Information).

    Figure 3. Adsorption of LiPS on HEO. a) UV-vis results of the Li2S6 solution after full adsorption of different sorbents.Inset shows the photographs of static adsorption test.XPS spectra of b)Co 2p3/2,c)Ni 2p3/2,and d)S 2p of HEO before and after adsorbing Li2S6.

    The electrochemical performance of S/HEO and S/CNF(sulfur content of 78.7 wt%, Figure S4, Supporting Information) is evaluated in CR2032 coin cells. For regular Li-S batteries, the sulfur loading of~1.4 g cm?2and electrolyte/sulfur (E/S) ratio of 20 μL mg?1were applied. Cyclic voltammetry (CV) curves in Figure 2a of the S/HEO and S/CNF composites demonstrate that two cathodic peaks are in accord with the two-step reduction of sulfur to soluble LiPS and further to insoluble Li2S2/Li2S, and two overlapped anodic peaks are corresponding to the opposite conversion.The lower value of the peak separation in S/HEO implies the good catalytic effect of HEO on the polysulfide-involving reversible conversion reactions. The improved kinetics results in better rate capability of the S/HEO electrode. As shown in Figure 2b, specific discharge capacities of 1368.7, 1100.8,982.2, 885.8, and 752.3 mAh g?1can be achieved for S/HEO at 0.1,0.2,0.5,1,and 2 C rates,respectively.Even at 5 C rate,the high reversible capacity of 632.1 mAh g?1is still realized,and both the high and low discharge potential plateaus maintain well for S/HEO (Figure S5a,Supporting Information). However, the S/CNF composite delivers much lower capacity of 297.4 mAh g?1with severe shrinkage of both the two discharge plateaus(Figure S5b,Supporting Information).More impressively,the superiority of S/HEO is overwhelmingly expressed in terms of volumetric capacity (2627.9 mAh cm?3at 0.1 C rate), about 2.5 times that of S/CNF(1039.8 mAh cm?3),which is because of the significant difference in tap density of S/HEO (1.92 g cm?3) and S/CNF (0.84 g cm?3). The results clearly demonstrate the great potential of heavy HEO to realize both high gravimetric and volumetric capacities compared with lightweight carbon hosts.Figure 2c,d shows the cycle stability of the S/HEO and S/CNF composites at various rates.The S/HEO composite displays much better cycle stability than that of S/CNF over 100 cycles at 0.1 C rate.Even at 1 C rate,the gravimetric capacity can reach up to 879.6 mAh g?1for S/HEO(Figure 2e), corresponding to the volumetric capacity of 1688.8 mAh cm?3, exceeding that of S/CNF (544.2 mAh g?1and 457.1 mAh cm?3). The high discharge capacity can be remained at 558.4 mAh g?1after 500 cycles with a low capacity fading rate of ~0.073% per cycle, as well as a high average Coulombic efficiency of ~99.4%. It demonstrates that the shuttle effect of LiPS is greatly restricted due to the strong chemical binding of sulfur species on HEO catalytic host. By contrast, S/CNF composite suffers lower specific capacity and rapid capacity decay because of the weak entrapment of LiPS on CNF host.

    High sulfur loading and low E/S ratio are indispensably required for achieving high energy density of Li-S batteries. However,the redox kinetics of sulfur cathode is greatly impeded under such harsh conditions.[48]In this aspect, HEO catalytic host with multiple cation composition can accelerate the redox kinetics of sulfur cathode, thereby benefiting for satisfying performance under high sulfur loading and low E/S condition. In Figure 2f, with high sulfur loading of 2.8, and 4.6 mg cm?2,the S/HEO electrode can offer maximum discharge capacities of 1107.1 and 956.5 mAh g?1at 0.1 C rate with an E/S ratio of 15 μL mg?1, corresponding the areal capacities of 3.1 and 4.4 mAh cm?2, respectively. The high areal capacities of 2.6 and 3.8 mAh cm?2can be obtained after 100 cycles. Figure 2g shows the cycle stability of S/HEO composite with different E/S ratios.When the E/S ratio is set to be 10 and 5 μL mg?1, S/HEO composite displays high specific capacities of 896.8 and 809.3 mAh g?1at 0.1 C rate,respectively. In the meantime, the good cycle performance can be also realized upon 100 cycles. It is commonly stated that larger potential polarization occurs under low E/S ratio,resulting in a severe shrinkage of discharge potential plateaus.[49]As for the S/HEO composite, the slight decrease in potential plateaus appears (Figure S6, Supporting Information)owing to the high-efficiency catalysis of HEO on the conversion of soluble LiPS. Therefore,the as-prepared HEO with sufficient catalytic sites holds the great potential as alternative to carbon hosts in constructing high-performance sulfur cathodes.

    To understand the adsorption catalysis performance, the adsorption of soluble LiPS on HEO host was firstly investigated. Based on the results of the visual adsorption tests and UV-vis spectra (Figure 3a),HEO exhibits much stronger adsorption of Li2S6solution than CNF in spite of the lower surface area.It indicates that the chemical interaction is the dominating factor for the efficient entrapment of LiPS,instead of surface area and physical adsorption.[50]The interaction mechanism is further verified by evidence of X-ray photoelectron spectra (XPS) of HEO sample before and after adsorbing Li2S6. Figure 3b shows the high-resolution Co 2p3/2spectrum with the Co3+/Co2+couple at 780.3 and 783.1 eV, respectively. After adsorbing Li2S6, the decreased fraction of Co3+from 64.6%to 44.7%can be observed,and the peaks shift toward lower binding energies due to the electron transfer from Li2S6.Similarly,the Ni 2p3/2spectrum(Figure 3c)shows the decreased fraction of Ni3+and the peaks of Ni3+/Ni2+couple shift to lower binding energies. These results demonstrate the strong chemical interaction between Co/Ni cations and LiPS,which benefits for effectively alleviating the shuttle effect of soluble LiPS. The important shifts can be also observed in the high resolution of Mg 1s, Mn 2p, Zn 2p, and Fe 2p spectra (Figure S7, Supporting Information). Therefore, HEO nanofibers could provide preferable chemical adsorption of LiPS owing to the synergistic effect of multi-metal cations.[45]Moreover,in the S 2p core level(Figure 3d),the peak at 162.1 eV is attributed to the bridging sulfur (S0B), and the peak at 160.5 eV is indexed as the terminal sulfur()in Li2S6and sulfdies.Notably,the dominating S0Bspecies in pristine Li2S6became weak, while the S-1Tspecies became strong in terms of peak area, which should be assigned to the strong sulfur–metal(S-M)chemical interaction between LiPS and HEO host.[51]In addition,the signals at higher binding energies are ascribed to thiosulfate and polythionate complex, and these sulfur species at high oxidation state indicate the oxidation of Li2S6upon contacting with HEO nanofibers,which is in accord with the reduction of high valence metal cations.The chemical interaction on HEO host is favorable for adsorbing LiPS and further catalyzing the conversion of LiPS,thus leading to the significant improvement of cycle stability of sulfur cathodes.

    Figure 4. Diffusion catalysis of LiPS on HEO. a) CV profiles at different scan rates of S/HEO electrode. b–d) Linear correlation between CV peak current values and the square root of scan rates. e) Potentiostatic discharge profile at 2.05 V and f) potentiostatic charge profile at 2.4 V of different electrodes with Li2S8/tetraglyme catholyte for evaluating the nucleation and dissolution kinetics of Li2S.

    Furthermore, the redox kinetics of sulfur cathode are explored based on CV evaluation of both S/HEO (Figure 4a) and S/CNF (Figure S8, Supporting Information) under various scan rates. The peak currents present a linear correlation with the square root of scan rate as shown in Figure 4b–d, and the fitted slope reflects the kinetics of Li-ion diffusion in the electrode according to the Randles–Sevcik equation.[52]Clearly, the S/HEO electrode shows larger slopes of both cathodic and anodic peaks, indicating the faster Li-ion diffusivity in both the reduction and oxidation processes. As mentioned above, the sulfur chemistry involves the two-step transformation from solid S8molecules into soluble LiPS and further solid Li2S2/Li2S. CV profiles and electrochemical impedance spectra (EIS) in symmetric cells with Li2S8electrolyte are conducted to explore the liquid–liquid conversion kinetics. The HEO electrode shows much higher peak current and lower charge transfer resistance (Figure S9, Supporting Information),suggesting fast electrochemical kinetics of the LiPS conversion on HEO electrode.

    Figure 5. Impedance analysis. a) The initial discharge curve of the S/HEO electrode at 0.1 C rate. b, c)Nyquist plots of the S/HEO and S/CNF electrodes at different DOD. d–f) Plots of resistance values against DOD in the first discharge process.

    Note that the vast majority of capacity contribution comes from the Li2S deposition from soluble LiPS species in the electrochemical process of sulfur.It is of great significance to evaluate the precipitation kinetics of Li2S reduction in the electrode, as well as the opposite process, that is,the oxidation of Li2S.Firstly,a potentiostatic discharge measurement at 2.05 V is conducted to reveal the nucleation of Li2S(Figure 3e).The HEO electrode exhibits higher peak current and reaches the current peak faster than CNF electrode.Meanwhile,the calculated capacity contribution of Li2S precipitation(light color region)is 287.4 mAh g?1in HEO electrode, near 1.77 times of CNF electrode (162.3 mAh g?1),demonstrating the faster kinetics of nucleation and deposition of Li2S on HEO nanofibers. Similarly, a potentiostatic charge measurement is conducted to investigate the dissolution kinetics of Li2S (Figure 3f).Usually, the deposition of non-conducting solid Li2S on the electrode surface leads to a significant increase in battery impedance and impedes both Li-ion diffusion and the subsequent oxidation of Li2S.[53,54]Therefore, the electrocatalysis on the oxidation of Li2S is urgently required for catalytic host materials to insure highly reversible processes of sulfur cathode. As calculated, HEO electrode exhibits much higher dissolution capacity(774.6 mAh g?1) than CNF electrode(364.9 mAh g?1). Overall, these results demonstrate the high electrocatalytic activity of HEO host in accelerating the kinetics of both the reduction and oxidation processes of sulfur cathode.

    To deeply understand the electrochemical processes at the electrode/electrolyte interface,Nyquist plots at different depths of discharge(DOD)in the first cycle are presented in Figure 5a–c.Given that the plots are composed of two semicircles and a sloping line,the equivalent circuit (Figure S10, Supporting Information) involving charge transfer process, adsorption, and diffusion processes of soluble LiPS is established to investigate the interfacial properties of sulfur cathode.[47]The dissolution of LiPS into the electrolyte during discharging increases the viscosity of electrolyte,leading to an increase in electrolyte resistance (Re) value before point C (Figure 5d).[55]The subsequent decline in the discharge curve is related to the reduction of soluble LiPS to solid Li2S2/Li2S. The lower Revalue in the S/HEO electrode demonstrates the strong chemical entrapment of LiPS on HEO host. Similarly,the consumption of insulating sulfur in the initial process enables a highly active interface in the cathode,leading to smaller charge transfer resistance (Rct) values, while the deposition of insulating Li2S in the later process could increase the resistance values (Figure 5e). More importantly, the relatively low Rctsignifies the catalyzed conversion reaction on HEO surface. In addition, the fast kinetics of LiPS conversion in S/HEO electrode is also corresponding to smaller adsorption impedance(Ws, Figure 5f) and diffusion impedance (Wo, Table S2, Supporting Information). It is noted that at 90% DOD (point E) or in the end of discharge (point F), both the middle-frequency (MF) semicircle and low-frequency sloping line appear as an arc,which could be explained by the deposition of insulating Li2S on the electrode surface.[56]Furthermore,the measurements of the charge process with different depths are also presented (Figure S11 and Table S2, Supporting Information).Overall,the results from EIS spectra fully demonstrate the high catalytic activity of HEO host in promoting both the reduction and oxidation processes of sulfur cathodes.

    It is worth noting that the concept of high-entropy configuration is the key to realizing high catalytic activity of polar hosts for sulfur redox reactions. Therefore, other counterparts including unary spinel oxide(NFO, NiFe2O4) and ternary spinel oxide (NCMFO, (Ni1/3Co1/3Mn1/3)Fe2O4)are also investigated to comprehensively understand the superiority of HEO host.Figure 6a shows the XRD patterns of the two oxides, and they share the same cubic spinel crystal structure. In the meantime,the nanofibrous morphology is well maintained for the two samples(Figure 6b,c).The Li2S precipitation on the surface of the two electrodes is further investigated. Compared with NiFe2O4, the higher capacity contribution of Li2S precipitation (Figure 6d) indicates that(Ni1/3Co1/3Mn1/3)Fe2O4is more effective in facilitating the Li2S nucleation, as well as the dissolution of Li2S (Figure 6e). This evidently demonstrates that multiple metallic compounds are more favorable for polysulfide regulator owing to the synergistic effect among different metallic cations compared with monometallic compounds. Moreover,the catalytic activity of oxide host can be further improved by mixing extra metal elements into a homogeneous and high-entropy spinel oxide. As a result, the S/HEO composite exhibits the best performance among the S/oxides composites including rate performance(Figure 7a) and cycle stability (Figure 7b). On the other hand,due to the strong chemical adsorption of LiPS (Figure S12, Supporting Information),better cycle stability and rate capability are achieved for all the S/oxide composites when compared with S/CNF composite. Notably,all the composites show high sulfur content of ~80 wt% (Figure S13 and Table S3, Supporting Information). Another shared feature is that the tap density of S/oxide composites exceeds much that of S/CNF(Table S3, Supporting Information), leading to much high volumetric capacities. As shown in Figure 7c, high volumetric capacities of 2052.9, 2233.5, and 2627.9 mAh cm?3are achieved for S/NFO,S/NCMFO,and S/HEO composites,respectively.Moreover,the S/HEO composite presents remarkable volumetric capacity as compared with previous sulfur-based composites with porous carbon,[46,50,55]dense graphene,[57,58]and heavy oxide[47,50,55,59,60]host materials, as summarized in Figure 7d. Therefore, the advantages of HEO materials including high density,desirable polysulfide adsorption, and enhanced catalytic activity are well established, which are critical for fabricating sulfur cathodes with both high gravimetric and volumetric capacity.

    Figure 6. a) XRD pattern and SEM images of b) NCMFO and c) NFO nanofibers. d) Potentiostatic discharge profile at 2.05 V and e) potentiostatic charge profile at 2.4 V of NCMFO and NFO electrodes.

    Figure 7. Electrochemical performance of various S/spinel oxide and S/CNF composites. a) Rate capability,b) cycle stability, and c) volumetric capacities. d) Comparison of volumetric capacity between S/HEO and various sulfur/host composites in the literatures.

    3. Conclusion

    In summary, we propose HEO ((Mg0.2Mn0.2Co0.2Ni0.2Zn0.2)Fe2O4)nanofibers as carbon-free sulfur immobilizer for highly efficient sulfur redox reactions. The inherent multiple meal cations offer sufficient binding sites for chemical entrapment of LiPS and exhibit an expected synergistic effect on boosting the diffusion and conversion of LiPS,and the deposition and dissolution of Li2S. The S/HEO composite presents high specific capacity of 1368.7 mAh g?1at 0.1 C rate, excellent rate capability up to 632.1 mAh g?1at 5 C rate, and good cycle stability over 500 cycles at 1 C rate.Satisfying cycle stabilities can be still realized with high sulfur loading of 4.6 mg cm?2or at low E/S ratio of 5 μL mg?1. Notably, the high-entropy feature of HEO benefits for its high catalytic activity on sulfur redox reactions as compared with the unary or ternary spinel oxides. In particular, the HEO host enables the high tap density of S/HEO composite that leads to a more than twofold volumetric capacity in comparison with S/CNF composite. Therefore,this work affords a strategy of developing highly efficient hosts in consideration of cathode density, LiPS entrapment, and electrocatalytic activity for practical Li-S batteries, and also inspires the future exploration of various high-entropy materials for energy storage and conversion.

    4. Experimental Section

    Synthesis of high-entropy (Mg0.2Mn0.2Co0.2-Ni0.2Zn0.2)Fe2O4nanofibers: Typically, a mixture of Mg(CH3COO)2?4H2O (0.02 mmol), Mn(CH3COO)2?4H2O (0.02 mmol), Ni(CH3COO)2?4H2O (0.02 mmol), Co(CH3COO)2?4H2O (0.02 mmol), Zn(CH3COO)2?2H2O (0.02 mmol), Fe(NO3)3?9H2O(0.2 mmol), and polyacrylonitrile (PAN, 1 g) was dissolved in N,N-dimethylformamide (DMF,10 mL)to obtain a homogenous solution with the solid content of 0.11 g mL?1under continuous stirring. The pristine nanofibers were prepared via the electrospinning method with a flow rate of 2 mL h?1with a voltage condition of 20 kV. The high-entropy(Mg0.2Mn0.2Co0.2Ni0.2Zn0.2)Fe2O4nanofibers could be obtained after a calcination at 500 °C for 3 h in air. Besides, unary spinel oxide(NiFe2O4) and ternary spinel oxide ((Ni1/3Co1/3Mn1/3)Fe2O4) were also obtained via the same procedure. As control, carbon nanofibers (CNFs)were prepared by electrospinning a DMF solution(10 mL) containing PAN (1 g) and polystyrene(PS, 0.5 g) with the solid content of 0.15 g mL-1,followed by a calcination at 850 °C for 3 h in Ar.

    Preparation of sulfur cathodes: Sulfur composite was firstly prepared by combining sulfur with the host (HEO or CNF) via a heat treatment at 155 °C for 12 h in an Ar-filled sealed autoclave. Then, the as-obtained sulfur/host composites(70 wt%)were mixed with aligned carbon nanotubes(20 wt%,XFM61, XFNANO) and polyvinylidene fluoride (PVDF, 10 wt%) in N-methyl pyrrolidone.The uniform slurry was casted onto the Al foil using doctor blade.Finally, sulfur electrodes with a diameter of 12 mm were obtained after drying overnight and punching.

    Materials characterization: Scanning electron microscope (JEOL, JSM-7800F)and transmission electron microscope(JEOL,JSM-2800)were used to characterize the microstructure and morphology. Phase purity of the samples was examined by X-ray diffraction (Rigaku MiniFlexII). X-ray photoelectron spectroscopy (XPS)was carried out on a Thermo Scientific ESCALAB 250Xi instrument. N2adsorption/desorption isotherms were recorded on an instrument (JW-BK112). Sulfur content was confirmed by thermogravimetry (METTLER TOLEDO, TG/DSC1).Tap density(g cm?3)of S/HEO and S/CNF composites was measured in a graduated glass cylinder with continuous shake until the measured volume change was below 2%.

    Battery assembly and electrochemical evaluation: CR2032 coin cells were assembled using the above sulfur cathode, lithium metal anode, and Celgard 2300 membrane as the separator.The electrolyte consisted of 1 M lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)and 0.2 M LiNO3in a mixture solvent of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (1:1, v/v). For regular Li-S batteries, sulfur loading of 1.4 mg cm?2and the electrolyte/sulfur (E/S) ratio of 20 μL mg?1were applied.For high-loading batteries of 2.8 and 4.6 mg cm?2,E/S ratios of 15,10,and 5 μL mg?1were applied.Galvanostatic discharge/charge tests were performed in the potential range of 1.7–2.8 V (vs. Li/Li+) on LANDCT2001A instruments. Cyclic voltammogram (CV) profiles were collected using an electrochemical station(CHI 600e)at different scan rates,and electrochemical impedance spectra (EIS) were tested on Zahner IM6ex in the 10 mHz–100 kHz frequency region with an amplitude of 5 mV.

    Symmetric cell assembly: HEO or CNF electrode was prepared by dropping HEO/ethanol or CNF/ethanol solution onto carbon paper (P75, 12 mm in diameter) following with drying at 60 °C. The mass loading of HEO or CNF was about 1 mg cm?2. CR2032 cells were assembled with two identical HEO or CNF electrodes and Celgard 2300 separator. 20 μL of 0.2 M Li2S6and 1 M LiTFSI in DOL/DME solution were added to each electrode. The Nyquist plots were measured in the 100 mHz–100 kHz frequency region, and CV curves were recorded in a voltage window of ?0.8 to 0.8 V at a scan rate of 5 mV s?1.

    Nucleation and dissolution of Li2S on HEO and CNF: CR2032 cells were assembled with the above HEO or CNF electrode,lithium metal anode,and Celgard 2300 separator.20 μL of 0.25 M Li2S8/tetraglyme solution was added in the cathode side,and 20 μL of 1 M LiTFSI/tetraglyme solution was added in the anode side.To study the liquid–solid conversion kinetics,the assembled cells were galvanostatically discharged at 0.112 mA to 2.06 V and subsequently potentiostatically discharged at 2.05 V until the current was below 0.01 mA to ensure the complete nucleation of Li2S.For evaluating the dissolution of Li2S,the cells were firstly galvanostatically discharged at 0.112 mA to 1.8 V,then at 0.01 mA to 1.7 V,and finally potentiostatically charged at 2.4 V until the current was below 0.01 mA to ensure the complete dissolution of Li2S.

    Acknowledgments

    Financial supports from the National Natural Science Foundation of China(21935006 and 22008102)are gratefully acknowledged.

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Informationis available from the Wiley Online Library or from the author.

    Keywords

    catalytic host, high-entropy oxide, lithium–sulfur battery, polysulfide conversion, spinel oxide nanofibers

    Received: April 10, 2021

    Revised: May 4, 2021

    Published online: May 11, 2021

    [1] X. P. Gao, H. X. Yang, Energy Environ. Sci. 2010, 3, 174.

    [2] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater.2012, 11, 19.

    [3] L. Peng, Z. Y. Wei, C. Z. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. T.Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B.Dunn, Y. Huang, P. Sautet, X. F. Duan, Nat. Catal. 2020, 3, 762.

    [4] Y. T. Liu, S. Liu, G. R. Li, X. P. Gao, Adv. Mater. 2021, 33, 2003955.

    [5] Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 11.

    [6] A. Bhargav, J. R. He, A. Gupta, A. Manthiram, Joule 2020, 4, 1.

    [7] J. Lei, T. Liu, J. J. Chen, M. S. Zheng, Q. Zhang, B. W. Mao, Q. F. Dong,Chem. 2020, 6, 2533.

    [8] H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017,7, 1700260.

    [9] B. H. Zhang, J. F. Wu, J. K. Gu, S. Li, T. Y. Yan, X. P. Gao, ACS Energy Lett. 2021, 6, 537.

    [10] P. Chen, G. R. Li, T. T. Li, X. P. Gao, Adv. Sci. 2019, 6, 1900620.

    [11] S. Q. Li, Z. Y. Fan, Energy Storage Mater. 2021, 34, 107.

    [12] C. Deng, Z. W. Wang, L. L. Feng, S. P. Wang, J. X. Yu, J. Mater. Chem. A 2020, 8, 19704.

    [13] C. Zhao, G. L. Xu, Z. Yu, L. C. Zhang, I. H. Hwang, Y. X. Mo, Y. Ren, L.Cheng, C. J. Sun, Y. Ren, X. B. Zuo, J. T. Li, S. G. Sun, K. Amine, T. S.Zhao, Nat. Nanotechnol. 2020, 16, 166.

    [14] P. D. Xu, H. D. Liu, Q. W. Zeng, X. Li, Q. Li, K. Pei, Y. H. Zhang, X. F.Yu, J. Zhang, X. Qian, R. C. Che, Small 2021, 17, 2005227.

    [15] D. H. Liu, C. Zhang, G. M. Zhou, W. Lv, G. W. Ling, L. J. Zhi, Q. H. Yang,Adv. Sci. 2018, 5, 1700270.

    [16] Z. X. Sun, S. Vijay, H. H. Heenen, A. Y. S. Eng, W. G. Tu, Y. X. Zhao, S.W. Koh, P. Q. Gao, Z. W. Seh, K. Chan, H. Li, Adv. Energy Mater. 2020,10, 1904010.

    [17] Y. Z. Song, W. L. Cai, L. Kong, J. S. Cai, Q. Zhang, J. Y. Sun, Adv. Energy Mater. 2019, 9, 1901075.

    [18] R. Razaq, D. Sun, Y. Xin, Q. Li, T. Huang, L. Zheng, Z. Zhang, Y. Huang,Nanotechnology 2018, 29, 295401.

    [19] H. Yuan, H. J. Peng, B. Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J. Q.Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1802768.

    [20] Z. Zhang, A. H. Shao, D. G. Xiong, J. Yu, N. Koratkar, Z. Y. Yang, A. C.S. Appl, Mater. Interfaces 2020, 12, 19572.

    [21] M. Zhao, H. J. Peng, B. Q. Li, X. Chen, J. Xie, X. Y. Liu, Q. Zhang, J. Q.Huang, Angew. Chem. Int. Ed. 2020, 132, 9096.

    [22] Y. X. Yang, Y. R. Zhong, Q. W. Shi, Z. H. Wang, K. N. Sun, H. L. Wang,Angew. Chem. Int. Ed. 2018, 57, 15549.

    [23] S. D. Seo, S. Yu, S. Park, D. W. Kim, Small 2020, 16, 2004806.

    [24] X. Q. Zhang, W. Yuan, Y. Yang, Y. Chen, Z. H. Tang, C. Wang, Y. H.Yuan, Y. T. Ye, Y. P. Wu, Y. Tang, Small 2020, 16, 2005998.

    [25] J. R. He, A. Bhargav, A. Manthiram, Adv. Mater. 2020, 32, 2004741.

    [26] L. Wang, G. R. Li, S. Liu, X. P. Gao, Adv. Funct. Mater. 2021, 2010693.

    [27] D. He, J. T. Meng, X. Y. Chen, Y. Q. Liao, Z. X. Cheng, L. X. Yuan, Z. Li,Y. H. Huang, Adv. Funct. Mater. 2021, 31, 2001201.

    [28] L. L. Xu, H. Y. Zhao, M. Z. Sun, B. L. Huang, J. W. Wang, J. Xia, N. Li, D.D. Yin, M. Luo, F. Luo, Y. P. Du, C. H. Yan, Angew. Chem. Int. Ed. 2019,58, 2.

    [29] Y. Yao, H. Y. Wang, H. Yang, S. F. Zeng, R. Xu, F. F. Liu, P. C. Shi, Y. Z.Feng, K. Wang, W. J. Yang, X. J. Wu, W. Luo, Y. Yu, Adv. Mater. 2019,31, 1905658.

    [30] Z. Z. Du, X. J. Chen, W. Hu, C. H. Chuang, S. Xie, A. J. Hu, W. S. Yan, X.H. Kong, X. J. Wu, H. X. Ji, L. J. Wan, J. Am. Chem. Soc. 2019, 141, 3977.

    [31] Y. W. Chen, H. Y. Fu, Y. Y. Huang, L. Q. Huang, X. Y. Zheng, Y. M. Dai,Y. H. Huang, W. Luo, ACS Mater. Lett. 2021, 3, 160.

    [32] A. Sarkar, L. Velasco, D. Wang, Q. S. Wang, G. Talasila, L. Biasi, C. K¨ubel,T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun.2018, 9, 3400.

    [33] M. S. Song, S. C. Han, H. S. Kim, J. H. Kim, K. T. Kim, Y. M. Kang, H. J.Ahn, S. X. Dou, J. Y. Lee, J. Electrochem. Soc. 2004, 151, A791.

    [34] Y. Zhang, X. B. Wu, H. Feng, L. Wang, A. Zhang, T. C. Xia, H. C. Dong,Int. J. Hydrogen Energy 2009, 34, 1556.

    [35] Q. Fan, W. Liu, Z. Weng, Y. M. Sun, H. L. Wang, J. Am. Chem. Soc.2015, 137, 12946.

    [36] A. Iqbal, Z. A. Ghazi, A. M. Khattak, A. Ahmad, J. Solid State Chem.2017, 256, 189.

    [37] S. Evers, T. Yim, L. F. Nazar, J. Phys. Chem. C 2012, 116, 19653.

    [38] Y. C. Jiang, H. M. U. Arshad, H. J. Li, S. Liu, G. R. Li, X. P. Gao, Small 2021, 17, 2005332.

    [39] L. Kong, X. Chen, B. Q. Li, H. J. Peng, J. Q. Huang, J. Xie, Q. Zhang, Adv.Mater. 2018, 30, 1705219.

    [40] B. Cantor, Entropy 2014, 16, 4749.

    [41] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. Dickey, D. Hou, J. L.Jones, S. Curtarolo, J. P. Maria, Nat. Commun. 2015, 6, 8485.

    [42] M. J. Cui, C. P. Yang, B. Y. Li, Q. Dong, M. L. Wu, S. Hwang, H. Xie, X.Z. Wang, G. F. Wang, L. B. Hu, Adv. Energy Mater. 2020, 10, 2002887.

    [43] Q. S. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, S. S. Bhattacharya,T. Bergfeldt, A. D¨uvel, P. Heitjans, T. Brezesinski, H. Hahn, B. Breitung,Energy Environ. Sci. 2019, 12, 2433.

    [44] T.Wang,H.Chen,Z.Yang,J.Liang,S.Dai,J.Am.Chem.Soc.2020,142,4550.

    [45] Y. N. Zheng, Y. K. Yi, M. H. Fan, H. Y. Liu, X. Li, R. Zhang, M. T. Li, Z.A. Qiao, Energy Storage Mater. 2019, 23, 678.

    [46] Z. Zhang, D. H. Wu, Z. Zhou, G. R. Li, S. Liu, X. P. Gao, Sci. China Mater.2019, 62, 74.

    [47] Y. T. Liu, D. D. Han, L. Wang, G. R. Li, S. Liu, X. P. Gao, Adv. Energy Mater. 2019, 9, 1803477.

    [48] M. Zhao, B. Q. Li, H. J. Peng, H. Yuan, J. Y. Wei, J. Q. Huang, Angew.Chem. Int. Ed. 2020, 59, 12636.

    [49] Z. Zhang, L. L. Kong, S. Liu, G. R. Li, X. P. Gao, Adv. Energy Mater. 2017,7, 1602543.

    [50] L. Wang, Y. H. Song, B. H. Zhang, Y. T. Liu, Z. Y. Wang, G. R. Li, S. Liu,X. P. Gao, A. C. S. Appl, Mater. Interfaces 2020, 12, 5909.

    [51] Z. Zhang, J. N. Wang, A. H. Shao, D. G. Xiong, J. W. Liu, C. Y. Lao, K. Xi,S. Y. Lu, Q. Jiang, J. Yu, H. L. Li, Z. Y. Yang, R. V. Kumar, Sci. China Mater. 2020, 63, 2443.

    [52] X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang, Z. Liu, Adv.Energy Mater. 2018, 8, 1800201.

    [53] Z. Q. Ye, Y. Jiang, L. Li, F. Wu, R. J. Chen, Adv. Mater. 2020, 32,2002168.

    [54] C. Q. Zhang, J. J. Biendicho, T. Zhang, R. F. Du, J. S. Li, X. H. Yang, J.Arbiol, Y. T. Zhou, J. R. Morante, A. Cabot, Adv. Funct. Mater. 2019, 29,1903842.

    [55] L. Wang, Z. Y. Wang, J. F. Wu, G. R. Li, S. Liu, X. P. Gao, Nano Energy 2020, 77, 105173.

    [56] Z. F. Deng, Z. A. Zhang, Y. Q. Lai, J. Liu, J. Li, Y. X. Liu, J. Electrochem.Soc. 2013, 160, A553.

    [57] H. F. Li, X. W. Yang, X. M. Wang, M. N. Liu, F. M. Ye, J. Wang, Y. C.Qiu, W. F. Li, Y. G. Zhang, Nano Energy 2015, 12, 468.

    [58] H. Li, Y. Tao, C. Zhang, D. H. Liu, J. Y. Luo, W. C. Fan, Y. Xu, Y. Z. Li, C.H. You, Z. Z. Pan, M. C. Ye, Z. Y. Chen, Z. Dong, D. W. Wang, F. Y.Kang, J. Lu, Q. H. Yang, Adv. Energy Mater. 2018, 8, 1703438.

    [59] Z. Y. Wang, D. D. Han, S. Liu, G. R. Li, T. Y. Yan, X. P. Gao, Electrochim.Acta 2020, 337, 135772.

    [60] S. J. Chen, Y. Ming, B. C. Tan, S. Y. Chen, Electrochim. Acta 2020, 329,135128.

    久久精品国产亚洲av香蕉五月| 久久人妻av系列| 韩国av一区二区三区四区| 日本黄色视频三级网站网址| 国产精品香港三级国产av潘金莲| 一夜夜www| x7x7x7水蜜桃| 国产1区2区3区精品| 亚洲电影在线观看av| 久久精品aⅴ一区二区三区四区| 90打野战视频偷拍视频| 国产麻豆69| 久久青草综合色| 一级a爱视频在线免费观看| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 人人妻人人澡人人看| 欧美一级a爱片免费观看看 | 熟妇人妻久久中文字幕3abv| 97人妻精品一区二区三区麻豆 | 人成视频在线观看免费观看| 色尼玛亚洲综合影院| 岛国在线观看网站| 久热这里只有精品99| 日本a在线网址| 女人精品久久久久毛片| 欧美绝顶高潮抽搐喷水| 欧美日本亚洲视频在线播放| 亚洲欧美一区二区三区黑人| 欧美色欧美亚洲另类二区 | 丝袜在线中文字幕| 免费在线观看完整版高清| 亚洲精华国产精华精| 一卡2卡三卡四卡精品乱码亚洲| 9191精品国产免费久久| 亚洲成人精品中文字幕电影| 免费人成视频x8x8入口观看| 自拍欧美九色日韩亚洲蝌蚪91| 91在线观看av| 久久人人精品亚洲av| 午夜福利免费观看在线| 热99re8久久精品国产| 亚洲精品av麻豆狂野| 国产一区二区三区视频了| 午夜免费观看网址| 给我免费播放毛片高清在线观看| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 国产精品二区激情视频| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 精品日产1卡2卡| av电影中文网址| 波多野结衣高清无吗| 久久久久久久午夜电影| 日本免费a在线| 无人区码免费观看不卡| 久久人妻av系列| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 国产一区在线观看成人免费| 在线观看午夜福利视频| 成人欧美大片| 午夜影院日韩av| 欧美日韩乱码在线| 少妇的丰满在线观看| 久久精品国产99精品国产亚洲性色 | 日本a在线网址| 电影成人av| 国产麻豆69| 无人区码免费观看不卡| 1024香蕉在线观看| 宅男免费午夜| 女性被躁到高潮视频| 熟妇人妻久久中文字幕3abv| 中文字幕精品免费在线观看视频| 亚洲三区欧美一区| 亚洲欧美日韩无卡精品| 午夜福利,免费看| 丝袜美腿诱惑在线| 欧美成狂野欧美在线观看| www国产在线视频色| 怎么达到女性高潮| 激情在线观看视频在线高清| 97碰自拍视频| 午夜福利,免费看| 久久精品国产亚洲av高清一级| 操出白浆在线播放| 欧美大码av| 亚洲精品一卡2卡三卡4卡5卡| av视频免费观看在线观看| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 亚洲欧美激情综合另类| 精品福利观看| 国产精品一区二区三区四区久久 | 日韩三级视频一区二区三区| 国产一区二区激情短视频| 女性被躁到高潮视频| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区 | 成人手机av| 国内精品久久久久久久电影| 最新在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 午夜成年电影在线免费观看| 可以免费在线观看a视频的电影网站| 校园春色视频在线观看| 国产1区2区3区精品| av电影中文网址| 天天一区二区日本电影三级 | 啦啦啦 在线观看视频| 最近最新中文字幕大全免费视频| 一级作爱视频免费观看| 伦理电影免费视频| 国产亚洲精品一区二区www| 久久久久久人人人人人| 在线永久观看黄色视频| 制服丝袜大香蕉在线| 一级作爱视频免费观看| 超碰成人久久| 亚洲av成人av| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 午夜福利一区二区在线看| 亚洲人成电影观看| 免费在线观看日本一区| 丁香欧美五月| 国产亚洲av嫩草精品影院| 黄色毛片三级朝国网站| 国产高清激情床上av| 成人手机av| 在线国产一区二区在线| 一区二区日韩欧美中文字幕| 在线观看日韩欧美| 国产亚洲精品av在线| 美女午夜性视频免费| 免费看十八禁软件| 亚洲国产欧美网| 国产精品久久久av美女十八| 成年人黄色毛片网站| 久久国产亚洲av麻豆专区| 午夜福利高清视频| 日韩av在线大香蕉| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 黄频高清免费视频| 天堂影院成人在线观看| 人人妻,人人澡人人爽秒播| 51午夜福利影视在线观看| 高清在线国产一区| 免费在线观看影片大全网站| а√天堂www在线а√下载| 亚洲第一电影网av| 神马国产精品三级电影在线观看 | 久久久久久大精品| 日韩欧美国产在线观看| 午夜视频精品福利| 两个人视频免费观看高清| 亚洲国产精品久久男人天堂| 国产av在哪里看| 亚洲国产精品成人综合色| 九色国产91popny在线| 黑人巨大精品欧美一区二区蜜桃| 欧美成人一区二区免费高清观看 | 国产成人欧美在线观看| 久久人人爽av亚洲精品天堂| 黄色成人免费大全| av在线播放免费不卡| 在线观看免费日韩欧美大片| 搞女人的毛片| 欧美激情极品国产一区二区三区| www.精华液| 亚洲精品中文字幕在线视频| 免费搜索国产男女视频| 中文字幕高清在线视频| 男女下面进入的视频免费午夜 | 国内精品久久久久久久电影| 久久香蕉精品热| 亚洲av电影在线进入| 色av中文字幕| 成人国产一区最新在线观看| 免费看十八禁软件| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成网站在线播放欧美日韩| 色婷婷久久久亚洲欧美| 天堂影院成人在线观看| 成人永久免费在线观看视频| 身体一侧抽搐| 亚洲男人天堂网一区| 国产精品 国内视频| 精品久久久久久成人av| 欧美国产精品va在线观看不卡| 乱人伦中国视频| 久久久久久国产a免费观看| 国产熟女午夜一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合一区二区三区| 国产又爽黄色视频| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 国产精品综合久久久久久久免费 | 伦理电影免费视频| 人妻丰满熟妇av一区二区三区| 久久国产精品影院| 一区二区日韩欧美中文字幕| 免费人成视频x8x8入口观看| 成人亚洲精品av一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久av美女十八| 日本a在线网址| 色综合欧美亚洲国产小说| 欧美国产精品va在线观看不卡| 国产一区在线观看成人免费| 久久久久久久久久久久大奶| 伦理电影免费视频| 91字幕亚洲| 免费搜索国产男女视频| 无限看片的www在线观看| 亚洲久久久国产精品| 精品欧美一区二区三区在线| 亚洲精品在线观看二区| 久久香蕉激情| 黄网站色视频无遮挡免费观看| 国内毛片毛片毛片毛片毛片| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 搞女人的毛片| 日韩视频一区二区在线观看| 国产激情欧美一区二区| 欧美老熟妇乱子伦牲交| www.精华液| 亚洲少妇的诱惑av| 久久久国产成人免费| 亚洲色图av天堂| 91成年电影在线观看| 国产av一区在线观看免费| 男女午夜视频在线观看| 三级毛片av免费| 国产视频一区二区在线看| av在线天堂中文字幕| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产清高在天天线| 法律面前人人平等表现在哪些方面| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 黄色视频,在线免费观看| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 国产成人欧美| 黄片大片在线免费观看| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 国产又爽黄色视频| 国产单亲对白刺激| 日本五十路高清| 两性夫妻黄色片| 欧美激情久久久久久爽电影 | 欧美日韩瑟瑟在线播放| 99国产综合亚洲精品| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品在线电影| 国产av一区二区精品久久| 免费av毛片视频| 久久精品成人免费网站| 亚洲第一电影网av| 动漫黄色视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲色图 男人天堂 中文字幕| 国产在线精品亚洲第一网站| 久久久久久免费高清国产稀缺| 亚洲熟妇中文字幕五十中出| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 91国产中文字幕| 中文字幕高清在线视频| 日本欧美视频一区| 一边摸一边抽搐一进一小说| 久久青草综合色| 精品久久久久久,| 1024视频免费在线观看| 免费观看精品视频网站| 男女午夜视频在线观看| 1024视频免费在线观看| 久久 成人 亚洲| 日本五十路高清| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 老汉色∧v一级毛片| 亚洲国产欧美一区二区综合| 精品福利观看| 亚洲国产精品成人综合色| 美国免费a级毛片| 天堂√8在线中文| 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 色综合站精品国产| 欧美另类亚洲清纯唯美| 一进一出抽搐gif免费好疼| 免费女性裸体啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 黄色毛片三级朝国网站| 啦啦啦免费观看视频1| 真人一进一出gif抽搐免费| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 国产亚洲av嫩草精品影院| 欧美日本视频| 国产高清激情床上av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产熟女xx| 免费在线观看完整版高清| 免费在线观看亚洲国产| 亚洲av五月六月丁香网| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 国产成人精品在线电影| 咕卡用的链子| 丝袜美腿诱惑在线| 中文字幕精品免费在线观看视频| 免费看美女性在线毛片视频| 国产免费男女视频| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| 人成视频在线观看免费观看| 亚洲最大成人中文| 满18在线观看网站| 成人国产综合亚洲| 亚洲精华国产精华精| 9热在线视频观看99| 日日干狠狠操夜夜爽| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 男男h啪啪无遮挡| 在线永久观看黄色视频| 99riav亚洲国产免费| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区 | 91成年电影在线观看| 久久国产亚洲av麻豆专区| 国产午夜精品久久久久久| 黄片播放在线免费| 国产精品一区二区三区四区久久 | 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸| 精品久久久久久久人妻蜜臀av | 精品久久久久久久久久免费视频| 天堂动漫精品| 国产精品野战在线观看| 天天添夜夜摸| 一本综合久久免费| 丝袜美腿诱惑在线| 成人永久免费在线观看视频| 国产成人精品久久二区二区91| 岛国在线观看网站| a级毛片在线看网站| 老司机在亚洲福利影院| 18美女黄网站色大片免费观看| av免费在线观看网站| 一级,二级,三级黄色视频| 亚洲色图av天堂| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 国产精品久久久久久人妻精品电影| 曰老女人黄片| 久久精品成人免费网站| 亚洲精品国产区一区二| 人人妻人人澡人人看| 神马国产精品三级电影在线观看 | 69精品国产乱码久久久| 韩国精品一区二区三区| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| av天堂在线播放| 又大又爽又粗| 国产伦一二天堂av在线观看| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 久久国产精品影院| 99国产综合亚洲精品| 黄片播放在线免费| 美女免费视频网站| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 午夜免费成人在线视频| 国产精华一区二区三区| 日韩精品中文字幕看吧| 国产三级黄色录像| 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 男人的好看免费观看在线视频 | 好男人在线观看高清免费视频 | 亚洲精品中文字幕在线视频| 亚洲国产精品成人综合色| 亚洲午夜理论影院| 十八禁网站免费在线| 欧美中文综合在线视频| 国产不卡一卡二| 国产精品永久免费网站| 免费在线观看完整版高清| 免费观看精品视频网站| 国产精品自产拍在线观看55亚洲| 免费在线观看日本一区| 免费在线观看完整版高清| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 国产精品野战在线观看| 免费观看人在逋| 中文字幕精品免费在线观看视频| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 久久久国产精品麻豆| 精品国产国语对白av| 国产欧美日韩精品亚洲av| 欧美av亚洲av综合av国产av| 成人亚洲精品av一区二区| 黄色女人牲交| 脱女人内裤的视频| av在线天堂中文字幕| www日本在线高清视频| 欧美在线一区亚洲| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看 | 可以免费在线观看a视频的电影网站| 美女午夜性视频免费| 伦理电影免费视频| 啦啦啦 在线观看视频| 久久精品国产综合久久久| 男女之事视频高清在线观看| 精品少妇一区二区三区视频日本电影| 99香蕉大伊视频| 婷婷精品国产亚洲av在线| 91麻豆av在线| 日韩欧美三级三区| 麻豆一二三区av精品| 日本免费a在线| 国产乱人伦免费视频| 久久九九热精品免费| 亚洲成人久久性| 极品人妻少妇av视频| 国产在线观看jvid| 久久人妻av系列| 久久久久久国产a免费观看| 久久精品亚洲精品国产色婷小说| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 99久久国产精品久久久| 成人三级黄色视频| 最新美女视频免费是黄的| 国产亚洲欧美在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品亚洲一级av第二区| 日韩高清综合在线| 国产精品亚洲一级av第二区| 午夜福利免费观看在线| 免费搜索国产男女视频| 免费在线观看日本一区| 国产高清激情床上av| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 黄片大片在线免费观看| 久久人人爽av亚洲精品天堂| 黄色女人牲交| 色av中文字幕| 久久久国产欧美日韩av| 精品无人区乱码1区二区| 久久久久久人人人人人| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 人成视频在线观看免费观看| 欧美精品啪啪一区二区三区| 日韩欧美免费精品| 日日爽夜夜爽网站| 国产一卡二卡三卡精品| 久久伊人香网站| 亚洲片人在线观看| 少妇的丰满在线观看| 美女大奶头视频| 首页视频小说图片口味搜索| 男女午夜视频在线观看| 很黄的视频免费| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看 | 变态另类成人亚洲欧美熟女 | 岛国在线观看网站| 欧美老熟妇乱子伦牲交| 男人的好看免费观看在线视频 | 国产精品 国内视频| 香蕉久久夜色| 免费观看人在逋| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 成人国产综合亚洲| 高清黄色对白视频在线免费看| 一级毛片女人18水好多| 国产成人精品在线电影| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 欧美国产精品va在线观看不卡| 久久亚洲真实| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 国语自产精品视频在线第100页| 免费看十八禁软件| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 丝袜在线中文字幕| 热99re8久久精品国产| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 亚洲精品久久成人aⅴ小说| 日本在线视频免费播放| 国产欧美日韩一区二区三| 午夜久久久久精精品| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频 | 麻豆一二三区av精品| 免费高清在线观看日韩| 国产亚洲精品一区二区www| 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 亚洲欧美一区二区三区黑人| 免费无遮挡裸体视频| 在线观看午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美午夜高清在线| 黄色丝袜av网址大全| 宅男免费午夜| 国产精品一区二区在线不卡| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看| 亚洲av美国av| 啦啦啦观看免费观看视频高清 | 两个人看的免费小视频| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全电影3 | 久久久久久人人人人人| 久久久国产成人免费| 午夜视频精品福利| 热99re8久久精品国产| 最好的美女福利视频网| 99久久综合精品五月天人人| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 国产亚洲欧美精品永久| 此物有八面人人有两片| 欧美人与性动交α欧美精品济南到| 亚洲三区欧美一区| 好男人在线观看高清免费视频 | 一区二区三区高清视频在线| 国产欧美日韩综合在线一区二区| 日韩精品青青久久久久久| 性少妇av在线| 久久国产精品男人的天堂亚洲| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 久久影院123| 国产精品九九99| 欧美日本视频| av视频在线观看入口| 手机成人av网站| 桃红色精品国产亚洲av| 不卡一级毛片| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| av视频免费观看在线观看| 久久人妻av系列| 国产黄a三级三级三级人| 精品卡一卡二卡四卡免费| 日本a在线网址| 国语自产精品视频在线第100页| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 自线自在国产av| 亚洲成国产人片在线观看| 国产精品香港三级国产av潘金莲| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 可以在线观看毛片的网站| 久久久久久大精品| 不卡av一区二区三区| 麻豆av在线久日| 亚洲精品中文字幕在线视频|