• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries

    2022-07-04 09:13:42PengbiaoGengMengDuXiaotianGuoHuanPangZiqiTianPierreBraunsteinandQiangXu
    Energy & Environmental Materials 2022年2期

    Pengbiao Geng, Meng Du, Xiaotian Guo, Huan Pang* , Ziqi Tian*, Pierre Braunstein, and Qiang Xu*

    1. Introduction

    Metal-organic frameworks (MOFs), also called coordination polymers,are crystalline materials constructed by coordination of organic linkers to metal ions.[1,2]MOFs are well-known for their remarkable features,including high-porosity and -adsorption capacity for some gases and noxious solutes.[3–5]Owing to these physicochemical properties,MOFs have attracted increasing attention for various applications in energy storage devices,[6]brackish water desalination,[7,8]electrocatalysis,[9,10]and others.[11–13]Recently, the application of MOFs to immobilize sulfur and adsorb lithium polysulfides (Li2Sx, 4 ≤x ≤8) in lithium–sulfur(Li-S)batteries has attracted increasing interest. Through a solvothermal method followed by a sonication process, Park et al. obtained a UiO-66/Nafion composite onto polyethylene as separator for Li-S batteries.[14]Guo et al.designed ultrathin 2D MOF-Co nanosheet composites as an interlayer in the anode side to anchor polysulfides and suppress their crossovers.[15]

    Among Li-based batteries,[16–18]Li-S batteries have a high-theoretical specific capacity(1675 mAh g-1) due to sulfur, resulting from the conversion of sulfur to Li2S4and Li2S.[19,20]Furthermore, the sulfur electrode materials are abundant in the earth.[21]However, the major issues associated with the cathode in Li-S batteries are the drastic volume change on going from sulfur to Li2S4, Li2S, and the “shuttle effect” of soluble intermediate Li2Sxthat causes the progressive leakage of active material from the cathode,resulting in short life cycle of the battery.[22–24]One strategy consists in dispersing sulfur into porous carbonaceous host materials to physically confine them, as exemplified by the work of Dong et al.[25]However, it was recognized that the physical confinement of polar Li2Sxin nonpolar carbon materials was not enough to prevent its dissolution and the shuttle of polysulfides from the cathode to the anode.[26]To address the issue,Park et al.designed an ingenious route to disperse sulfur into GOs, which obtained a nano-sulfur solution to prepare a homodisperse R-GO/nS hybrid.[27]Recently,researchers have focused on materials that can enable strong dipolar interaction,such as the interaction between sulfiphilic Cu2+ions and polysulfides.[28]It turns out that MOFs not only have porous structures for sulfur incorporation, but also can contain metal ions acting as Lewis acid sites to chemically adsorb Li2Sx.

    As a subclass of MOFs, the MIL series have the advantages to be of low cost,easy to prepare,and non-toxic.(Al)MIL-53 as a common Al-MOF, of chemical formula Al(OH)[O2C-C6H4-CO2]?[HO2C-C6H4-CO2H]0.70, was firstly synthesized by Ferey’s team[29,30]and its 3D framework is interconnected by 1,4-dicarboxybenzene (BDC) groups.It forms highly porous networks and owns a high-pyrolysis temperature(275°C).For our purpose,vast porous network for sulfur implantation and high-pyrolysis temperature for MOF/sulfur melt-diffusion process feature this MOF as a promising sulfur host. However, as the structural model of Al-MOF shows(Figure S1),Al3+is six-coordinated and coordinatively saturated,unable to bind extra polysulfides.To genfunctional theory (DFT) calculations indicated that the Al/Cu-MOF could overcome the “shuttle effect,” as evidenced by their excellent adsorption capacities.Clearly,the novel strategy(Lewis acid-base interaction), different from the conventional physical confinement, developed in this work for the adsorption of polysulfides appears most promising.erate additional binding sites for the polysulfide anions(S)and suppress the “shuttle effect”, MOF materials are considered to modify through incorporation of additional metal ions with high-binding energy with Li2Sx. In recent years, Cu2+has been considered as an effective metal ion for anchoring polysulfides due to its sulfiphilicity.Zhou and co-workers utilized Cu3(BTC)2@GO as an interlayer to construct ionic sieve membranes.[31]We reasoned that four-coordinated Cu2+ions would have a high-binding tendency withto effectively prevent the dissolution of Li2Sxgenerated in the cyclic discharge/charge process.In such bimetallic MOFs,Cu2+would not only function as an ionic crosslinking agent,but also as a chemical binding agent for polysulfide anions.[32–34]

    Based on the above consideration,we selected Al-MOF as sulfur host material and sulfiphilic Cu2+as the second metal ion to effectively immobilize Li2Sxand suppress its dissolution.A one-step hydrothermal method was designed to prepare bimetallic Al/Cu-MOF as an advanced cathode material and the resulting sulfur-loaded electrode material(Al/Cu-MOF-S)delivered a high-initial capacity of 974.2 mAh g-1at 0.1 C,which is higher than that delivered by monometallic Al-MOF.Furthermore,to explore the influence of the amount of Cu2+present,samples with different Cu2+contents were prepared by controlling the Al3+:Cu2+molar ratio. The macroscopic permeation test and density

    Figure 1. Schematic diagram of Al/Cu-MOF-S synthesis.

    2. Results and Discussion

    The bimetallic Al/Cu-MOF investigated in this work were synthesized by a one-step hydrothermal method at 220°C.In the synthetic process,through changing the Cu2+content, we prepared a series of samples,labeled as Al/Cu-MOF-n (where n indicates the Cu2+molar quantity;for the details see Supporting Information). To facilitate comparisons,the coordination polymer Al-MOF and Cu-1,4-dicarboxybenzene (Cu-MOF) were prepared. Sulfur injection into the free space of the Al-MOF, Al/Cu-MOF-n, and Cu-MOF was performed using a simple melt-diffusion method (the obtained samples were named as Al-MOFS, Al/Cu-MOF-n-S, and Cu-MOF-S). The overall preparation process is schematically illustrated in Figure 1, and the details are provided in

    Supporting Information.

    Figure S2 shows the powder X-ray diffraction (PXRD) patterns of the samples, and the diffraction peaks of Al-MOF (ht) are consistent with those in the literature.[35]The atomic coordination model in Figure S1 indicates the 3D framework is formed by the trans chains of sharing AlO4(OH)2octahedra and the chains are linked by BDC groups, which is favorable for polysulfide injection. The diffraction peak at 2θ = 8° in the PXRD patterns clearly indicates the successful complexation reaction. Cu-MOF diffraction peaks were obtained from the literature.[36]After impregnation of sulfur in MOFs, the PXRD patterns of Al-MOF-S, Al/Cu-MOF-S displayed the weak peaks of orthorhombic sulfur phase(Figure S2),confirming the impregnation of sulfur in MOF structure (the peaks of Al/Cu-MOF-1, Al/Cu-MOF-1-S, Al/Cu-MOF-10, and Al/Cu-MOF-10-S are shown in Figure S3). However, the Cu-MOF-S pattern displayed obvious orthorhombic sulfur peaks comparing with Cu-MOF,indicating most sulfur powder left the outside of Cu-MOF.

    Solid-state nuclear magnetic resonance(NMR)spectroscopy was utilized for demonstrating the structural information variation with Cu2+introduction.To investigate the chemical composition of Al-MOF, Al/Cu-MOF, and Cu-MOF,1H magic angle spinning (MAS) NMR experiments were conducted. The signal at 7.2 ppm can be assigned to the aromatic protons linker BDC in the1H MAS NMR spectra of Al-MOF, Al/Cu-MOF-5, and Cu-MOF (Figure S4). The resonance at 2.7 ppm results from the Al-OH-Al bridges in Al-MOF, which shifts from 2.7 to 2.4 ppm after introducing Cu2+. Owing to the interference of strong magnetism of Cu2+,the1H MAS NMR data of Cu-MOF shows no distinct chemical shift peaks.

    Figure 2. SEM images of a,b) Al-MOF, c,d) Al-MOF-S, e,f) Al/Cu-MOF-5, g,h) Al/Cu-MOF-5-S. i) STEM image and elemental mapping analysis of Al/Cu-MOF-5-S.

    Scanning electron microscopy(SEM)images of the prepared samples for Al/Cu-MOF-5(Figure 2e and f) show that the quasirectangular morphology resembles that of Al-MOF (Figure 2a and b) and the particle sizes of Al-MOF and Al/Cu-MOF-5 are uniform. It can be deduced that the introduction of Cu2+could not change the overall morphology and particle size of Al-MOF.After the sulfur impregnation process,the morphology of Al-MOF-S (Figure 2c and d), Al/Cu-MOF-1-S (Figure S5c and d),Al/Cu-MOF-5-S(Figure 2g and h),and Al/Cu-MOF-10-S(Figure S5g and h) show no distinct change compared with Al-MOF, Al/Cu-MOF-1 (Figure S5a and b), Al/Cu-MOF-5 (Figure 2e and f), and Al/Cu-MOF-10 (Figure S5e and f) owing to the high thermostability.Besides, no residual sulfur agglomeration was observed from all SEM images of sulfur-loaded samples, indicating that the sulfur amount (ca.60 wt.%) was appropriate. It can be deduced that the introduction of Cu2+could not result in the change of sulfur amount.The SEM images of Cu-MOF in(Figure S6a and b)show a rod-like structure.After loading sulfur,the morphology of Cu-MOF-S(Figure S6c and d)illustrates most sulfur powder was adhered on the surface. The scanning transmission electron microscopy(STEM)images and an elemental mapping analysis established the uniform distribution of sulfur and Cu2+in Al/Cu-MOF-5-S (Figure 2i). In particular, the Cu2+mapping image demonstrates the uniform distribution of Cu2+in the framework of Al/Cu-MOF-5 synthesized by the one-step hydrothermal method.

    To explore the elemental composition and valence states in the samples, X-ray photoelectron spectroscopy (XPS) measurements were performed. Five characteristic peaks located at 74.17, 164.31, 284.66,530.98,and 934.3 eV(Figure S7)correspond to the Al 2p,S 2p,C 1s,O 1s,and Cu 2p peaks,respectively.Cu signals were not found in Al/Cu-MOF-5 and Al/Cu-MOF-5-S. This is due to the limited survey thickness and low-atomic amount in the crystal structure. The highresolution S 2p spectra could be deconvoluted into three peaks (Figure S8) at 163.67, 164.85, and 165.09 eV,corresponding to S-S,Sat.,and S-C bands, respectively. The pore-size distributions of the MOFs were revealed by N2adsorption isotherms at 77 K(Figure S9-S12)and the sulfur impregnation into Al-MOF and Al/Cu-MOF-5 clearly led to a decrease of N2adsorption capacity(Figure S9 and S10),with the pores being occupied by sulfur. Interestingly, Cu-MOF presented the lowest N2adsorption ability, demonstrating its limited free space for sulfur injection. The pore-size distribution curves, calculated by the Barrett–-Joyner–Halenda method, of the MOF host materials (Figure S11 and S12), show a broad mesopore (~2.5–32 nm) distribution, which is beneficial for the storage of sulfur particles and polysulfides in the porous structures of the MOFs.[37,38]

    To evaluate the impact of the immobilization of sulfur in the MOFs and the presence of sulfiphilic Cu2+in Al/Cu-MOF,the electrochemical performance of Al-MOF-S, Al/Cu-MOF-S, Cu-MOF-S, and S-Super P(sulfur without host materials, see details in Supporting Information)cells, assembled with Li foils and 1.0 M LiTFSI as the electrolyte, were investigated(details of the Li-S cell preparation are provided in Supporting Information). The cyclic voltammetry (CV) curves of Al/Cu-MOF-5-S and Al-MOF-S cells under the voltage window of 1.7–2.7 V at a scan rate of 0.1 mV s-1(Figure 3a and Figure S15) show distinct reduction peaks at~2.34 and~2.01 V,assigned to the conversion of S8molecule to high-order soluble polysulfides and their further transformation to Li2S2and Li2S. The oxidation peaks at ~2.41 and ~2.26 V correspond to the conversion of Li2S2and Li2S to sulfur molecule(Equations 1 and 2):

    Figure 3. a) CV curves of the initial three cycles of Al/Cu-MOF-5-S electrode at a scan rate of 0.1 mV s-1. b) GCD profiles of Al-MOF-S at 0.1C. c) GCD profiles of Al/Cu-MOF-5-S at 0.1C. d) Comparison of specific capacities in different Cu2+-content samples with Al-MOF and Cu-MOF. e) Rate performances of Al-MOF-S and Al/Cu-MOF-5-S with the corresponding coulombic efficiencies at different discharge rates. f) Nyquist plots of Al-MOF-S and Al/Cu-MOF-5-S electrode before and after 200 cycles. g) Cyclic performance of Al-MOF-S, Al/Cu-MOF-1-S, Al/Cu-MOF-5-S, Al/Cu-MOF-10-S, and Cu-MOF at a constant rate of 0.1 C.

    The well-echoed peaks indicate the reversible electrochemical reactions that occurred in the electrode materials.[39]Subsequently,the electrochemical stability was indicated by their galvanostatic charge/discharge(GCD)test between 1.7 to 2.7 V at 0.1(1 C = 1675 mA g-1).The accurate sulfur mass fractions in Al-MOF-S and Al/Cu-MOF-5-S were calculated from the thermogravimetric analysis (TGA) curves (Figure S13 and S14),and the elemental analysis data(Table S2).Figure S16 and Figure 3b,c show the GCD profiles of the S-Super P,Al-MOF-S,Al/Cu-MOF-5-S electrodes at 0.1 C, and the initial discharge specific capacities are 597.8,639.5,and 974.2 mAh g-1,respectively,indicating the improved specific capacity of Al/Cu-MOF-S than Al-MOF-S.

    By comparing with the GCD profiles of Al-MOF, Al/Cu-MOF-1-S,Al/Cu-MOF-5-S,and Al/Cu-MOF-10-S at a current density of 0.1 C,it is clear that the specific capacities of Al/Cu-MOF-S-n are all competitive.Besides, the initial specific capacity of S-Super P (Figure S16a) can achieve 597.8 mAh g-1and keep 298.8 mAh g-1after 200 cycles,which are evidently lower than Al/Cu-MOF-n-S. The GCD profiles of Al-MOF-S, Al/Cu-MOF-S, and Cu-MOF at 0.5 C are presented in Figure S17, indicating the high-rate performance. These electrochemical results can be ascribed to the direct contact between the sulfur molecule and the organic electrolyte,resulting in fast capacity fading.All the GCD profiles of MOF-S samples experienced two distinct plateaus at about 2.33 and 2.05 V (vs Li+/Li), which are almost consistent with the reduction peaks in the CV curves.[40]However,the S-Super P GCD profiles show no discharge plateaus during the incipient cycles, probably due to the polarization of sulfur in electrolyte.Generally,the high-sulfur loading on the cathode will decrease the specific capacity to a degree.Considering the factor, we further evaluated the cyclic performance of Al/Cu-MOF-5 with a cathode possessing a high-sulfur loading of 2.1 mg cm-2(Figure S20).After 400 cycles,the Li-S batteries showed a high-reversible capacity of 324.4 mAh g-1at 0.5 C,with a slight capacity attenuation.[41]In order to clearly display the improved electrochemical performance of the Al/Cu-MOF-n-S comparing with Al-MOF and Cu-MOF electrodes,Figure 3d presents the comparison of initial specific capacities with those after 200 cycles at 0.1 C.The rate performance is a well-acknowledged indicator for batteries.Therefore,the Al-MOF-S and Al/Cu-MOF-5-S electrodes were cycled at various charge/discharge rates:0.1,0.2,0.3,0.5,0.8,and 1.0 C,and then back to 0.1 C and 0.2 C.The specific capacities of Al/Cu-MOF-5-S surpassed those of Al-MOFS (Figure 3e), as indicated in the corresponding GCD profiles (Figure S19). Following the common electrochemical energy storage law,the highest specific capacity should be achieved at the lowest discharge rate and should decrease as the discharge rate increases.[42,43]Moreover,the cyclic performance of different MOF-S electrode materials was tested at 0.1 C and 0.5 C(Figure 3g and Figure S18).The decreasing capacity at a high-discharge rate can be attributed to the limited free space available for Li+ions in the electrode materials.[44]The resistance of Al-MOF-S and Al/Cu-MOF-5-S was investigated by electrochemical impedance spectroscopy (EIS) (Figure 3f). Before the cycling process, the semicircular diameter of Al/Cu-MOF-5-S was smaller than that of Al-MOF-S,indicating that the charge-transfer resistance of Al/Cu-MOF-5-S was improved by the introduction of Cu2+.After 200 cycles,the resistances of Al-MOF-S and Al/Cu-MOF-5-S decreased owing to the deposition of Li2S2and Li2S into electrolyte.

    Figure 4. Schematic illustration for the lithium polysulfides binding with Al-MOF and Al/Cu-MOF.

    The specific capacity comparison in Figure 3d shows that the improved capacity of Al/Cu-MOF-5-S to Al/Cu-MOF-10-S cannot achieve that of Al/Cu-MOF-1-S to Al/Cu-MOF-5-S, which is ascribed to the saturation of Cu2+in Al-MOF determined by the limited replacement of Al3+. The inductively coupled plasma-optical emission spectrometry (ICP-OES) data in Table S1 shows an almost identical concentration of Cu2+in Al/Cu-MOF-5 and Al/Cu-MOF-10, verifying the above hypothesis. To further clarify the corresponding microstructural stability after long-term cycling,SEM images at different cycles of Al/Cu-MOF-5-S electrode were examined (Figure S21). As the cycle number increases,the morphology of Al/Cu-MOF could keep the intact morphology. Compared with traditional porous carbon host materials,the metal nodes(Lewis acidic sites)and the porous structure,resulting from the connecting organic functional groups, can provide effective binding sites for the lithium polysulfides and strongly confine them within the MOF pores.[45–47]The interaction mechanism in the Al-MOF and Al/Cu-MOF host materials is shown in Figure 4. When Al-MOF is used as the sulfur host,the generated Li2Sxis almost completely dispersed in the electrolyte owing to the low-binding energy among Al3+/Li2Sxand few binding sites for Li2Sx. In contrast, with Al/Cu-MOF as the cathode host materials, Li2Sxmolecules could be readily captured by Cu2+, resulting from its strong binding energy with Sn2-and the lower steric hindrance, as compared to that of the sixcoordinate Al3+. In particular, the porous framework offers a platform for effectively restraining the dissolution and diffusion of polysulfides at the molecular level.To clearly compare the improved electrochemical performance of the Al/Cu-MOF-S electrode,Table S3 displays the contrastive specific capacity in contrast with other MOFs as host materials.

    To further evaluate the adsorption capacity of Al/Cu-MOF-5 toward lithium polysulfides, 20 mg of Al/Cu-MOF-5 and Al-MOF powders were separately immersed in 3 mL 10 mmol L?1Li2S4solution, and the color change with time was recorded. The preparation detail of Li2S4solution presented in Supporting Information. As shown in Figure 5a, the color of the solution containing the Al/Cu-MOF-5 powder became almost transparent after 12 h due to the strong adsorption capacity of Al/Cu-MOF-5 to Li2S4. In contrast, almost no discoloration was observed for the Al-MOF, consistent with its low-adsorption ability. Moreover, the change of concentration in the Li2S4supernatants was analyzed by ultraviolet-visible (UV-vis) spectroscopy.The absorption intensity at ca. 410 nm of the Al/Cu-MOF-5 supernatant after 12 h is weaker than that of Al-MOF after 27 h(Figure 5b). Furthermore, the interaction between the host and Li2S4was confirmed by XPS analysis (Figure 5c). The Li 1s high-resolution spectra of the Al-MOF and Al/Cu-MOF-5/Li2S4mixture exhibit a characteristic feature at 55.10 eV, corresponding to the Li-S bond in Li2S4. The Al-O signal in Al/Cu-MOF (Figure 5d) appears a small negative shift than Al-MOF owing to the decreased binding energy between Al and O atoms after replacing Al with Cu atoms partly. The high-resolution S 2p spectra (Figure 5e) indicate the valence state change of S after Li2S4adsorption.The peaks in Al-MOF located at 161.68,163.10 eV, and 163.58 eV can be attributed to terminal sulfur (ST-1), S-S and S-C,respectively. The newly emerged S2-signal located at 167.95 eV is attributed to the intermediate Li2S4.[48]The positive binding energy shift of S-S and S-C could be ascribed to the increased electron cloud density between the metallic center with Li2S4due to the introduction of Cu2+. The above-mentioned result demonstrates that the Al/Cu-MOF hosts can effectively encapsulate Li2S4into their cavity to form inclusion complexes.

    Figure 5. a) Optical photos of Li2S4 solution permeation tests of Al-MOF and Al/Cu-MOF-5 powers. b) UV-vis absorption spectra of pure Li2S4 solution and the supernate adding Al-MOF and Al/Cu-MOF-5 powers in 10 mmol L-1 Li2S4 (Al-MOF after 27 h and Al/Cu-MOF-5 after 12 h). c-e), Li 1s, Al 2p and S 2p XPS spectra of Al-MOF and Al/Cu-MOF-5 powers after lithium polysulfide permeation tests.

    We employed DFT calculations to gain more insight into the improved performance of Al/Cu-MOF in lithium polysulfides adsorption. Simulation models were built based on Al-MOF-ht supercell. As shown in Figure 6a and b,one-eighth of the Al3+cations are replaced with Cu2+. In order to keep the total charge neutral, one bridging hydroxyl group should be removed,creating two coordinatively unsaturated metal nodes.For pristine Al-MOF,the binding energies to Li2S4,Li2S6,Li2S8,and S8molecules are ?1.17,?1.36,?1.81,and ?1.27 eV,respectively, whereas after replacement by copper cations, the binding energies increase to ?1.59,?1.73, ?2.46,and ?1.49 eV (Figure 6e),respectively. The MOF-Li2S8complex structure is illustrated in Figure 6c and d. The enhanced interaction is commonly considered to be related to the improved performance of the Li-S battery and we assumed that coordinatively unsaturated cations would behave as strong Lewis acid sites, strongly binding to polysulfides. In fact, the replacement of the lower-valent Cu2+by higher valent Al3+induces an internal dipole which contributes to the framework-polysulfides interaction.Moreover, compared to the strong metal–sulfur bonds, this weaker,non-bonding interaction makes the battery system more recyclable.

    Figure 6. a,b) Different views of the structure of Al/Cu-MOF. The Cu2+ cation is highlighted in yellow circle and the removed OH group is in shadow. c,d)Different views of the structure of the Al/Cu-MOF-Li2S8 complex. e) Comparison of binding energies of lithium polysulfides to Al-MOF and Al/Cu-MOF. The polysulfides are depicted in CPK (Corey-Pauling Koltun) model. Color code: C, gray; H, white; O, red; Al, purple; Cu, brown; Li, green; S, yellow.

    3. Conclusion

    A high-efficiency host material was synthesized through a one-step hydrothermal method to suppress the detrimental “shuttle effect”. The improved electrochemical performance of the Li-S battery was confirmed, and the explanations offered were supported by DFT calculations. Compared with the physical sulfur adsorption occurring with porous carbon host materials, the chemical immobilization (Lewis acidic–basic sites) could provide effective binding sites for the lithium polysulfides and strongly confine them within the MOF pores. The incorporation of electropositive Cu2+cations had a significant and beneficial influence on the intrinsic properties of Al-MOF. Consequently,the assembled Li-S batteries with the Al/Cu-MOF-n-S cathode exhibited the higher specific capacity than Al-MOF-S and maintained a final specific capacity. Furthermore, samples with different Cu2+contents were prepared and even a small quantity of Cu2+was found to have a positive effect.This work combined for the first time the benefits of porous Al-MOF and sulfiphilic Cu2+to construct new bimetallic MOF host materials for polysulfides. It is expected that this strategy could be extended to the preparation of other host materials with high-lithium polysulfide-adsorbing capacities for use as advanced electrode materials in Li-S batteries.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(U1904215), Natural Science Foundation of Jiangsu Province (BK20200044),Changjiang scholars program of the Ministry of Education(Q2018270),the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_2805).

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Informationis available from the Wiley Online Library or from the author.

    Keywords

    lithium polysulfides, lithium–sulfur batteries, metal-organic frameworks,shuttle effect, sulfiphilic Cu2+

    Received: January 10, 2021

    Revised: April 1, 2021

    Published online: April 5, 2021

    [1] W. Xu, X. Pei, C. S. Diercks, H. Lyu, Z. Ji, O. M. Yaghi, J. Am. Chem. Soc.2019, 141, 17522.

    [2] L. Zou, C.-C. Hou, Z. Liu, H. Pang, Q. Xu, J. Am. Chem. Soc. 2018, 140,15393.

    [3] X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 2017, 46, 2660.

    [4] A. K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G.Wang, Chem. - A Eur. J. 2017, 23, 3683.

    [5] Y.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H. J. Park, S. Okajima, K. E.Cordova,H.Deng,J.Kim,O.M.Yaghi,J.Am.Chem.Soc.2015,137,2641.

    [6] B. Li, M. Zheng, H. Xue, H. Pang, Inorg. Chem. Front. 2016, 3, 175.

    [7] Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Inorg. Chem. Front. 2017, 4, 33.

    [8] W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Adv. Mater. 2019, 31, 1804740.

    [9] D. Li, H. Xu, L. Jiao, H. Jiang, Energy Chem. 2019, 1, 100005.

    [10] Y.-P. Wu, J.-W. Tian, S. Liu, B. Li, J. Zhao, L.-F. Ma, D.-S. Li, Y.-Y. Lan, X.Bu, Angew. Chemie Int. Ed. 2019, 58, 12185.

    [11] X. Yang, X. Lu, Z. Zhai, Y. Zhao, X. Liu, L. Ma, S. Zang, Chem. Commun.2019, 55, 11099.

    [12] Q.Qu,H.Xuan,K.Zhang,Y.Ding,Q.Xu,Electrophoresis 2016,37,2175.

    [13] C. Hou, Q. Xu, L. Yin, X. Hu, Analyst 2012, 137, 5803.

    [14] S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi, H. S. Park, J. Mater. Chem. A 2018, 6, 24971.

    [15] Y. Li, S. Lin, D. Wang, T. Gao, J. Song, P. Zhou, Z. Xu, Z. Yang, N. Xiao,S. Guo, Adv. Mater. 2020, 32, 1906722.

    [16] Y. Xu, Q. Li, H. Xue, H. Pang, Coord. Chem. Rev. 2018, 376, 292.

    [17] Y. Liu, H. Wang, K. Yang, Y. Yang, J. Ma, K. Pan, G. Wang, F. Ren, H.Pang, Appl. Sci. 2019, 9, 2677.

    [18] Y. Zheng, X. Li, C. Pi, H. Song, B. Gao, P. K. Chu, K. Huo, FlatChem 2020, 19, 100149.

    [19] Y. Li, W. Wang, X. Liu, E. Mao, M. Wang, G. Li, L. Fu, Z. Li, A. Y. S. Eng,Z. W. Seh, Y. Sun, Energy Storage Mater. 2019, 23, 261.

    [20] Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. W. Seh, N. Zhang, J. Sun,L. Huang, J. Jiang, J. Zhou, Y. Sun, Energy Storage Mater. 2020, 30, 250.

    [21] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. Chiang, Y. Cui, Nat. Commun. 2015, 6, 7436.

    [22] M. Yan, W. Wang, Y. Yin, L. Wan, Y. Guo, EnergyChem 2019, 1, 100002.

    [23] Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, EnergyChem 2019, 1, 100001.

    [24] Y. Li, C. Wang, W. Wang, A. Y. S. Eng, M. Wan, L. Fu, E. Mao, G. Li, J.Tang, Z. W. Seh, Y. Sun, ACS Nano 2020, 14, 1148.

    [25] Y. Li, J. Fan, M. Zheng, Q. Dong, Energy Environ. Sci. 1998, 2016, 9.

    [26] X.-J. Hong, T.-X. Tan, Y.-K. Guo, X.-Y. Tang, J.-Y. Wang, W. Qin, Y.-P.Cai, Nanoscale 2018, 10, 2774.

    [27] J. S. Yeon, S. Yun, J. M. Park, H. S. Park, ACS Nano 2019, 13, 5163.

    [28] P. Li, L. Ma, T. Wu, H. Ye, J. Zhou, F. Zhao, N. Han, Y. Wang, Y. Wu, Y.Li, J. Lu, Adv. Energy Mater. 2018, 22, 1800624.

    [29] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T.Bataille, G. F¨yrey, Chem. - A Eur. J. 2004, 10, 1373.

    [30] D. Chen, N. Zhang, C.-S. Liu, M. Du, ACS Appl. Mater. Interfaces 2017,9, 24671.

    [31] S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 2016, 1, 16094.

    [32] J. Liu, M. Sun, Q. Zhang, F. Dong, P. Kaghazchi, Y. Fang, S. Zhang, Z.Lin, J. Mater. Chem. A 2018, 6, 7382.

    [33] D. Chen, J. Tian, Z. Wang, C.-S. Liu, M. Chen, M. Du, Chem. Commun.2017, 53, 10668.

    [34] D. Shi, R. Zheng, M. Sun, X. Cao, C. Sun, C. Cui, C.-S. Liu, J. Zhao, M.Du, Angew. Chemie Int. Ed. 2017, 56, 14637.

    [35] H. Jiang, X.-C. Liu, Y. Wu, Y. Shu, X. Gong, F. Ke, H. Deng, Angew. Chemie Int. Ed. 2018, 57, 3916.

    [36] M. Shete, P. Kumar, J. Bachman, X. Ma, Z. Smith, W. Xu, A. Mkhoyan, J.Long, M. Tsapatsis, J. Memb. Sci. 2018, 549, 312.

    [37] S. Zhang, M. Zheng, Z. Lin, R. Zang, Q. Huang, H. Xue, J. Cao, H. Pang,RSC Adv. 2016, 6, 39918.

    [38] Y. Wen, J. Zhang, Q. Xu, X.-T. Wu, Q.-L. Zhu, Coord. Chem. Rev. 2018,376, 248.

    [39] P. Geng, S. Cao, X. Guo, J. Ding, S. Zhang, M. Zheng, H. Pang, J. Mater.Chem. A 2019, 7, 19465.

    [40] Z. Wu, W. Wang, Y. Wang, C. Chen, K. Li, G. Zhao, C. Sun, W. Chen, L.Ni, G. Diao, Electrochim. Acta 2017, 224, 527.

    [41] M. Jana, R. Xu, X.-B. Cheng, J. S. Yeon, J. M. Park, J.-Q. Huang, Q. Zhang,H. S. Park, Energy Environ. Sci. 2020, 13, 1049.

    [42] L. Sun, J. Xie, L. Zhang, R. Jiang, J. Wu, L. Fan, R. Shao, Z. Chen, Z. Jin,FlatChem 2020, 20, 100152.

    [43] H. Ji, T. Wang, Y. Liu, C. Lu, G. Yang, W. Ding, W. Hou, Chem. Commun.2016, 52, 12725.

    [44] T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z.Jin, J. Am. Chem. Soc. 2017, 139, 12710.

    [45] R. Zhao, Z. Liang, S. Gao, C. Yang, B. Zhu, J. Zhao, C. Qu, R. Zou, Q.Xu, Angew. Chemie Int. Ed. 1975, 2019, 58.

    [46] L. Yi, Z. Li, L. Lei, T. Lan, Y. Li, P. Li, X. Lin, R. Liu, Z. Huang, X. Fen, Y.Ma, FlatChem 2019, 15, 100091.

    [47] X. Guo, Y. Zhang, F. Zhang, Q. Li, D. Anjum, H. Liang, Y. Liu, C. Liu, H.Alshareef, H. Pang, J. Mater. Chem. A 2019, 7, 15969.

    [48] Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K.Xi, R. V. Kumar, S. Ding, Adv. Energy Mater. 2019, 9, 1900953.

    夜夜躁狠狠躁天天躁| 黄色视频不卡| www国产在线视频色| 久久亚洲精品不卡| 一级毛片女人18水好多| 国产一区二区三区综合在线观看| 精品国产美女av久久久久小说| 制服诱惑二区| svipshipincom国产片| av国产精品久久久久影院| 国产有黄有色有爽视频| 18禁观看日本| www.www免费av| 欧美久久黑人一区二区| 国产精品爽爽va在线观看网站 | 999久久久精品免费观看国产| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 亚洲午夜精品一区,二区,三区| 操美女的视频在线观看| 国产黄a三级三级三级人| 日韩免费高清中文字幕av| 在线观看免费日韩欧美大片| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 久久天躁狠狠躁夜夜2o2o| 欧美+亚洲+日韩+国产| 国产区一区二久久| 99在线人妻在线中文字幕| 高清欧美精品videossex| 成年人免费黄色播放视频| 国产深夜福利视频在线观看| 麻豆一二三区av精品| 18禁裸乳无遮挡免费网站照片 | 欧美一级毛片孕妇| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久av网站| 露出奶头的视频| 亚洲第一青青草原| 亚洲,欧美精品.| 色在线成人网| 中文字幕精品免费在线观看视频| 久久久久精品国产欧美久久久| 日韩有码中文字幕| 国产一区二区在线av高清观看| 国产精品98久久久久久宅男小说| 色综合欧美亚洲国产小说| 久久久久久久久久久久大奶| 国产精品免费一区二区三区在线| 国产深夜福利视频在线观看| 又黄又爽又免费观看的视频| 美女扒开内裤让男人捅视频| 大陆偷拍与自拍| 叶爱在线成人免费视频播放| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 欧美激情久久久久久爽电影 | 久久精品成人免费网站| 88av欧美| 18禁观看日本| 免费日韩欧美在线观看| 欧美色视频一区免费| 亚洲精品美女久久av网站| 麻豆成人av在线观看| 一级片'在线观看视频| 成年人免费黄色播放视频| 不卡一级毛片| 精品无人区乱码1区二区| 亚洲精品粉嫩美女一区| 一边摸一边做爽爽视频免费| 高潮久久久久久久久久久不卡| 久久九九热精品免费| 亚洲av美国av| 色婷婷久久久亚洲欧美| 日本三级黄在线观看| 91国产中文字幕| 国产欧美日韩一区二区三| 不卡一级毛片| 91精品国产国语对白视频| 99国产综合亚洲精品| 99re在线观看精品视频| 午夜两性在线视频| 黄片播放在线免费| 91国产中文字幕| 俄罗斯特黄特色一大片| 亚洲国产精品一区二区三区在线| 欧美性长视频在线观看| 波多野结衣一区麻豆| 少妇裸体淫交视频免费看高清 | 亚洲精华国产精华精| 精品人妻1区二区| 欧美乱码精品一区二区三区| svipshipincom国产片| 国产精品久久视频播放| 国产高清激情床上av| 亚洲精品一卡2卡三卡4卡5卡| 国产高清videossex| 亚洲成人国产一区在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲中文日韩欧美视频| 久9热在线精品视频| 欧美日韩亚洲综合一区二区三区_| 亚洲第一av免费看| 亚洲午夜精品一区,二区,三区| 成人18禁在线播放| 99在线视频只有这里精品首页| 国产精品香港三级国产av潘金莲| 婷婷六月久久综合丁香| 国产成人av激情在线播放| 国产熟女午夜一区二区三区| 精品久久久久久久毛片微露脸| 久久香蕉精品热| 欧美大码av| 夜夜爽天天搞| 欧美黑人精品巨大| 成年版毛片免费区| 欧美另类亚洲清纯唯美| 中亚洲国语对白在线视频| 天堂动漫精品| 日本五十路高清| 九色亚洲精品在线播放| 看免费av毛片| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品在线电影| 韩国精品一区二区三区| 看黄色毛片网站| 日本三级黄在线观看| 亚洲一区高清亚洲精品| 男人操女人黄网站| 久久久久久久久久久久大奶| 一二三四社区在线视频社区8| ponron亚洲| 久久国产精品影院| netflix在线观看网站| 国产精品一区二区在线不卡| 女警被强在线播放| 视频在线观看一区二区三区| 成在线人永久免费视频| 十八禁网站免费在线| 在线观看一区二区三区| 一边摸一边做爽爽视频免费| 国产激情欧美一区二区| www.精华液| aaaaa片日本免费| 午夜免费激情av| 国产精品自产拍在线观看55亚洲| 久久精品国产清高在天天线| 亚洲精品国产区一区二| 午夜91福利影院| 国产高清国产精品国产三级| 亚洲欧美激情综合另类| 日本免费a在线| av欧美777| 不卡一级毛片| 久久人妻av系列| 性欧美人与动物交配| 人人妻人人澡人人看| 十八禁人妻一区二区| 一级片免费观看大全| 成人免费观看视频高清| 99热只有精品国产| 亚洲激情在线av| 国产av一区二区精品久久| 神马国产精品三级电影在线观看 | 午夜影院日韩av| 一边摸一边抽搐一进一出视频| 看免费av毛片| 夫妻午夜视频| 大香蕉久久成人网| 人成视频在线观看免费观看| 1024香蕉在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美激情久久久久久爽电影 | 色综合婷婷激情| 久久国产精品影院| 999久久久国产精品视频| 在线永久观看黄色视频| 脱女人内裤的视频| 国产黄色免费在线视频| 国产亚洲精品久久久久5区| 19禁男女啪啪无遮挡网站| 午夜免费成人在线视频| 亚洲人成网站在线播放欧美日韩| 不卡一级毛片| 精品卡一卡二卡四卡免费| 国内久久婷婷六月综合欲色啪| 亚洲欧美激情综合另类| 午夜精品在线福利| 久久久久久久久久久久大奶| 国产有黄有色有爽视频| 国产精品爽爽va在线观看网站 | 国产精品野战在线观看 | 少妇 在线观看| 亚洲专区字幕在线| 亚洲情色 制服丝袜| 亚洲欧美精品综合久久99| 男人操女人黄网站| 男人操女人黄网站| 老汉色av国产亚洲站长工具| 波多野结衣av一区二区av| 国产av在哪里看| 露出奶头的视频| 女生性感内裤真人,穿戴方法视频| 国产午夜精品久久久久久| 嫩草影院精品99| 大型av网站在线播放| 午夜精品在线福利| 性少妇av在线| 校园春色视频在线观看| 淫妇啪啪啪对白视频| 中文字幕高清在线视频| 看免费av毛片| 久久热在线av| 高潮久久久久久久久久久不卡| 欧美最黄视频在线播放免费 | 欧美黄色淫秽网站| 日韩一卡2卡3卡4卡2021年| 97超级碰碰碰精品色视频在线观看| 99精品久久久久人妻精品| 两性夫妻黄色片| 男女下面插进去视频免费观看| 亚洲一码二码三码区别大吗| 香蕉丝袜av| 天天添夜夜摸| av在线天堂中文字幕 | 婷婷精品国产亚洲av在线| 亚洲 国产 在线| 天天躁狠狠躁夜夜躁狠狠躁| 97碰自拍视频| 一区二区三区激情视频| 亚洲一区中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 老司机午夜十八禁免费视频| 亚洲五月婷婷丁香| 成在线人永久免费视频| 色综合站精品国产| 啦啦啦 在线观看视频| 一区福利在线观看| 嫩草影视91久久| 国产一区二区三区视频了| 一区二区三区激情视频| 午夜91福利影院| 中文字幕av电影在线播放| 在线国产一区二区在线| 窝窝影院91人妻| 我的亚洲天堂| 夜夜躁狠狠躁天天躁| 91麻豆av在线| 成熟少妇高潮喷水视频| 桃色一区二区三区在线观看| 久久精品国产99精品国产亚洲性色 | 黄色片一级片一级黄色片| 国产av又大| 日本五十路高清| 天天躁夜夜躁狠狠躁躁| av天堂在线播放| 久久狼人影院| 黄片小视频在线播放| 岛国视频午夜一区免费看| 在线永久观看黄色视频| 免费在线观看完整版高清| 天天躁狠狠躁夜夜躁狠狠躁| avwww免费| 久热这里只有精品99| 精品一区二区三卡| 国产三级在线视频| 国产精品亚洲一级av第二区| 成人av一区二区三区在线看| 12—13女人毛片做爰片一| 精品人妻1区二区| 国产男靠女视频免费网站| 日本欧美视频一区| 久久国产精品男人的天堂亚洲| 深夜精品福利| 亚洲中文av在线| 国产成年人精品一区二区 | 婷婷六月久久综合丁香| 国产亚洲精品第一综合不卡| 久久久久亚洲av毛片大全| 欧美日本亚洲视频在线播放| 亚洲成人免费电影在线观看| 国产亚洲精品综合一区在线观看 | 免费不卡黄色视频| 日韩大码丰满熟妇| 国产成人欧美在线观看| 久久人妻av系列| 中文字幕精品免费在线观看视频| 精品一区二区三区视频在线观看免费 | 精品久久久精品久久久| 欧美一区二区精品小视频在线| 欧美老熟妇乱子伦牲交| 母亲3免费完整高清在线观看| av片东京热男人的天堂| xxx96com| 国产成+人综合+亚洲专区| 国产成人欧美在线观看| 热99国产精品久久久久久7| 激情在线观看视频在线高清| 久久精品91蜜桃| 新久久久久国产一级毛片| 欧美黑人精品巨大| 亚洲成av片中文字幕在线观看| 日韩欧美免费精品| 国产精华一区二区三区| 在线av久久热| 男男h啪啪无遮挡| 亚洲熟妇熟女久久| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 91成年电影在线观看| 美女大奶头视频| 天天躁夜夜躁狠狠躁躁| 女性被躁到高潮视频| 亚洲第一av免费看| 女性被躁到高潮视频| 欧美成人午夜精品| 国产亚洲av高清不卡| 高潮久久久久久久久久久不卡| 伦理电影免费视频| 美女 人体艺术 gogo| 欧美成人性av电影在线观看| 露出奶头的视频| 美女高潮喷水抽搐中文字幕| 久久久精品欧美日韩精品| 黄色视频不卡| 日韩视频一区二区在线观看| 久久精品国产亚洲av高清一级| 免费人成视频x8x8入口观看| 久久性视频一级片| 一级片'在线观看视频| 亚洲情色 制服丝袜| 亚洲精品在线美女| 51午夜福利影视在线观看| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 最近最新免费中文字幕在线| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 欧美 亚洲 国产 日韩一| 成人免费观看视频高清| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| 亚洲精品国产色婷婷电影| 丁香欧美五月| 久久久久国产一级毛片高清牌| 国产成人精品久久二区二区免费| 欧美日韩瑟瑟在线播放| 欧美亚洲日本最大视频资源| 国产精品香港三级国产av潘金莲| 国产单亲对白刺激| 亚洲成人精品中文字幕电影 | 国产精品1区2区在线观看.| 免费观看人在逋| 99国产精品99久久久久| 99在线人妻在线中文字幕| 天堂影院成人在线观看| 国产精品香港三级国产av潘金莲| 人妻久久中文字幕网| 亚洲精品一区av在线观看| 日本一区二区免费在线视频| 97碰自拍视频| 免费不卡黄色视频| 日本免费一区二区三区高清不卡 | 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器 | 免费不卡黄色视频| 国产亚洲精品第一综合不卡| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 夜夜夜夜夜久久久久| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 亚洲国产欧美日韩在线播放| 国产av又大| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| 国产精品 欧美亚洲| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av美国av| 成人av一区二区三区在线看| 丝袜美足系列| 757午夜福利合集在线观看| av免费在线观看网站| 午夜精品国产一区二区电影| 亚洲精品中文字幕在线视频| 久久婷婷成人综合色麻豆| 巨乳人妻的诱惑在线观看| 99精品欧美一区二区三区四区| 久久精品影院6| 大型av网站在线播放| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址 | 国产精品一区二区免费欧美| 女性被躁到高潮视频| 亚洲精品在线观看二区| 91麻豆精品激情在线观看国产 | 免费日韩欧美在线观看| 国产伦人伦偷精品视频| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 老司机在亚洲福利影院| 国产成人影院久久av| 久久国产精品影院| 中文欧美无线码| 日本黄色视频三级网站网址| 午夜精品在线福利| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 丰满饥渴人妻一区二区三| 一级片免费观看大全| 国产精品一区二区精品视频观看| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼 | 男人舔女人下体高潮全视频| 欧美黑人精品巨大| 99久久综合精品五月天人人| 国产主播在线观看一区二区| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 亚洲在线自拍视频| 久久久久久久午夜电影 | 久久亚洲真实| 国产亚洲av高清不卡| 香蕉国产在线看| 免费在线观看影片大全网站| 色婷婷av一区二区三区视频| 日本欧美视频一区| svipshipincom国产片| 久久精品国产清高在天天线| 9色porny在线观看| 国产一区二区激情短视频| 国产成人精品久久二区二区免费| 久久中文字幕一级| 手机成人av网站| 中亚洲国语对白在线视频| 午夜两性在线视频| 色婷婷av一区二区三区视频| 午夜视频精品福利| 国产成人av教育| 村上凉子中文字幕在线| 成人三级做爰电影| 国产欧美日韩一区二区三| 91老司机精品| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 亚洲色图av天堂| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 亚洲成国产人片在线观看| 美女大奶头视频| 成人18禁在线播放| 久久久水蜜桃国产精品网| 看黄色毛片网站| 国产伦人伦偷精品视频| 在线观看免费视频日本深夜| 日韩有码中文字幕| 无遮挡黄片免费观看| 午夜成年电影在线免费观看| 亚洲熟妇中文字幕五十中出 | 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| tocl精华| 免费看a级黄色片| 国产欧美日韩综合在线一区二区| 不卡av一区二区三区| 久久精品国产清高在天天线| 天堂影院成人在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 动漫黄色视频在线观看| 精品久久久久久电影网| 欧美在线黄色| 久久人人爽av亚洲精品天堂| 黄色视频,在线免费观看| 热99国产精品久久久久久7| 麻豆av在线久日| 超碰97精品在线观看| 黄色片一级片一级黄色片| 欧美在线黄色| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 国产av又大| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 亚洲久久久国产精品| 精品高清国产在线一区| 电影成人av| 国产成人欧美| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 中文字幕av电影在线播放| 一夜夜www| 国产精品免费视频内射| 人人妻人人澡人人看| 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 嫩草影院精品99| 色老头精品视频在线观看| 国产色视频综合| 国产男靠女视频免费网站| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 成人永久免费在线观看视频| 一级,二级,三级黄色视频| 不卡av一区二区三区| 麻豆久久精品国产亚洲av | 亚洲国产精品999在线| 日韩欧美在线二视频| 黄色视频不卡| 日韩精品中文字幕看吧| 99香蕉大伊视频| 国产成人系列免费观看| 亚洲情色 制服丝袜| 欧美日韩亚洲综合一区二区三区_| 9热在线视频观看99| av福利片在线| 国产又爽黄色视频| 人妻丰满熟妇av一区二区三区| 视频区欧美日本亚洲| 天堂俺去俺来也www色官网| 一进一出抽搐gif免费好疼 | svipshipincom国产片| 久久人人精品亚洲av| 操出白浆在线播放| 麻豆久久精品国产亚洲av | 精品一区二区三区视频在线观看免费 | 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 在线免费观看的www视频| 精品第一国产精品| 1024香蕉在线观看| av天堂久久9| 在线免费观看的www视频| 丰满迷人的少妇在线观看| 亚洲视频免费观看视频| 欧美中文综合在线视频| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 1024香蕉在线观看| 我的亚洲天堂| 视频区欧美日本亚洲| 精品福利观看| 久久这里只有精品19| 他把我摸到了高潮在线观看| 丝袜美足系列| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 91大片在线观看| 欧美激情高清一区二区三区| 欧美日韩黄片免| 首页视频小说图片口味搜索| 亚洲久久久国产精品| 欧美国产精品va在线观看不卡| 成年人黄色毛片网站| 巨乳人妻的诱惑在线观看| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 精品久久久久久电影网| 精品乱码久久久久久99久播| 午夜福利影视在线免费观看| 后天国语完整版免费观看| 国产又色又爽无遮挡免费看| 怎么达到女性高潮| av超薄肉色丝袜交足视频| 伊人久久大香线蕉亚洲五| av天堂久久9| 国产有黄有色有爽视频| 每晚都被弄得嗷嗷叫到高潮| 成人亚洲精品av一区二区 | 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 成人影院久久| 免费av毛片视频| 久久影院123| 午夜福利在线免费观看网站| 曰老女人黄片| 一级,二级,三级黄色视频| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影| 久久精品亚洲熟妇少妇任你| 日本a在线网址| 又黄又爽又免费观看的视频| 男女下面插进去视频免费观看| 欧美日韩精品网址| av超薄肉色丝袜交足视频| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 日韩精品中文字幕看吧| 免费搜索国产男女视频| 亚洲三区欧美一区| 三级毛片av免费| 欧美在线黄色| 久久久水蜜桃国产精品网| 色尼玛亚洲综合影院| 免费在线观看完整版高清| 免费一级毛片在线播放高清视频 |