• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Assembled VS4 Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage

    2022-07-04 09:13:40SilingChengKaitongYaoKunxiongZhengQifeiLiDongChenYuJiangWeilingLiuYuezhanFengXianhongRuiandYanYu
    Energy & Environmental Materials 2022年2期

    Siling Cheng, Kaitong Yao, Kunxiong Zheng, Qifei Li, Dong Chen, Yu Jiang, Weiling Liu,Yuezhan Feng, Xianhong Rui* , and Yan Yu*

    1. Introduction

    Currently, lithium-ion batteries (LIBs) have attracted much heeds and been applied to many areas such as electric vehicles (EVs) and the grid.[1–4]Nevertheless, the limited lithium resources on Earth hinder the widespread applications of LIBs.[5]Sodium,on the other hand,not only shows similar physicochemical properties as lithium, but also has a higher natural abundance and lower cost.[6,7]Besides, the redox potential of sodium is pretty close to that of lithium.[8]Sodium-ion batteries (SIBs) are thus the most perspective substitute for the next generation LIBs, especially in sizeable energy storage areas. The ion radius of Na+(1.02 ?) is,however, large, which leads to slow diffusion kinetics, and thus results in serious capacity attenuation and penniless power performance.[9,10]Consequently,a lot of research has been directed at catching proper electrodes to boost the development and practical use of SIBs.

    Transition metal sulfides (TMSs) have brought a great deal of interests recently,owing to their advantages such as unique layered structure, high reversible capacity, and long cycle life. TMSs like MoS2,[11,12]WS2,[13–15]and CoS2[16,17]display excellent electrochemical performance when used in SIBs. In particular,vanadium sulfides (VS2, VS4, V2S3, V5S8, etc.)are of great interest due to their high initial coulombic efficiency(CE),high reversible storage capacity, and the variable oxidation state of vanadium.[18–21]Compared with other vanadium sulfides, VS4has the highest theoretical capacity (1196 mA h g?1) due to its higher S content which provides abundant active sites and participates in more electrochemical reactions with sodium.[22]The crystal structure of VS4,which was first determined in 1964,consists of 1D chain-like structure made up of thedimer and two adjacent V atoms.[23,24]The chain is linked by weak Van der Waals forces with an inter-chain distance(5.83 ?) that is much larger than the ion radius of Na+(1.02 ?),making it easier for the Na+uptake/release during the charging/discharging process.[25,26]Researchers have made preliminary exploration on the application of VS4as SIB anodes.For example,Yang et al.[27]utilized a solvothermal method to fabricate a 3D VS4structure, which exhibits the superior rate performance (288 mA h g?1at 10 A g?1)and cycle performance(410 mA h g?1after 400 cycles at 1 A g?1) in the voltage window of 0.5–3.0 V.Li and other researchers[28]successfully prepared 3D VS4microspheres to demonstrate attractive electrochemical performance within the voltage range of 0.5–3.0 V for SIBs,such as providing a high capacity of 412 mA h g?1at 0.2 A g?1after 230 times. However, in these voltage ranges, only the electrochemical Na+(de)intercalation reactions are involved, and the reversible capacities are still relatively low.To increase the capacity,it is encouraging to operate the VS4anode in a wide voltage window covering both intercalation and conversion reactions. Additionally,the main problem is that the conversion reaction will cause part of irreversible capacity loss,resulting in poor cycling stability. This will be a research direction to promote the capacity and stability of VS4anode materials for SIBs.

    Figure 1. The chemical composition characterization of VS4-CN-Hs.a)XRD pattern,b)The full spectrum of XPS,XPS spectra of c)V 2p and d)S 2p.

    Herein, we developed 3D VS4curly nanosheets self-assembled hierarchitectures (VS4-CN-Hs) as the anode for SIBs. The growth mechanism of VS4-CN-Hs during the solvothermal reaction process was investigated. When evaluated in a wide voltage window of 0.01–3.0 V, such anode exhibits high reversible capacity of about 863 mA h g?1at 0.1 A g?1, and outstanding cycling stability at high current densities (e.g., delivering 386 mA h g?1at 5 A g?1after 1000 cycles). The superior electrochemical performance of the VS4-CN-Hs is mainly ascribed to the large exposed surface area of the nanosheets and the abundant buffer space formed in 3D architecture.

    2. Results and Discussion

    VS4-CN-Hs were successfully prepared via a one-step solvothermal method. XRD was utilized to evaluate the purity and study the crystal structure of the as-prepared VS4-CN-Hs, and the result is presented in Figure 1a. From the XRD pattern, all the diffraction peaks can be matched to those for monoclinic VS4(JCPDS No. 72-1294) with no observable impurity peak, confirming that the as-prepared sample is pure VS4.[19,29]To study the chemical composition of VS4-CN-Hs,energy dispersive spectroscopy (EDS), XPS, and Raman spectroscopy were used and the results are displayed in Figure 1b–d and Figures S1–S3 (Supporting Information). EDS together with XPS confirms the presence of vanadium(V)and sulfur(S)in the as-prepared sample.The carbon and oxygen detected by both techniques were attributed to surface adsorption as no obvious second phase is observed in the XRD pattern. To understand the chemical states of V and S, high-resolution XPS was done. From Figure 1c, it can be seen that there are 2 pairs of peaks, with the ones at 516.2 and 523.6 eV attributed to V4+while the pair at 513.5 and 521.1 eV ascribed to V3+.[30]The presence of V3+indicates that there is a planar interaction force between the curly VS4nanosheets.The S 2p1/2peak at 163.6 eV and the S 2p3/2 peak at 162.4 eV are assigned to S2-2and confirm the formation of VS4(Figure 1d).[31,32]Additionally, in the Raman spectrum, the peaks (139, 192, 282, 407,527,689,and 991 cm?1)that are characteristic to the stretching and bending bands of VS4are also observed(Figure S3,Supporting Information).[22,33]

    SEM and TEM were used to observe the morphological and microstructural characteristics of the as-prepared samples.The SEM images displayed in Figure 2a,b show that the VS4-CN-Hs consist of micron-sized(~6 μm) hierarchitectures that are made up of curly nanosheets. A closer look at the sample(Figure 2c)reveals that the curly VS4nanosheet has a width of about 0.5–1.0 μm.And TEM images (Figure 2d,e) indicate that the nanosheets with thickness of approximately 20 nm are arranged irregularly, and the curly structure forms rich space gaps.The specific surface area of VS4-CN-Hs is determined to be 24.4 m2g?1by using Brunauer–Emmett–Teller (BET) method (Figure S4, Supporting Information). The selected area electron diffraction (SAED) pattern shows diffraction rings from the(013)and(044)planes(inset of Figure 2e),and corroborates the polycrystalline nature of the VS4.The high-resolution TEM(HRTEM)image reveals a spacing of 0.56 nm between adjacent lattice fringes (Figure 2f),which corresponds to the(110) crystal plane of VS4-CN-Hs(calculated by Bragg equation).High-angle annular dark field scanning TEM (HAADF-STEM) and energy dispersive X-ray(EDX) elemental mapping images of VS4-CN-Hs are shown in Figure 2g–i,which illustrates that V and S were evenly distributed on the curly VS4nanosheets, and further confirms the as-prepared sample is the pure VS4.

    The growth process of the VS4-CN-Hs is demonstrated in Figure 3.During the initial 0.5 h of reaction, particles nucleated rapidly and grew into larger ones with numerous small nanoflakes on the surfaces(Figure 3a). As the reaction proceeds (from 2 to 6 h), the nanoflakes continue to grow and some of them acquire curly structure(Figure 3b and Figure S5,Supporting Information).As the growth continued with 8 h (Figure 3c), tensile deformation took place with the help of intermolecular force, causing the structure to bend. After 16–28 h of reaction, the bending nanosheets morphology with the presence of some incompletely transformed particles is demonstrated (Figure 3d,e). The perfect VS4-CN-Hs were obtained after a solvothermal treatment for 36 h (Figure 3f). During the whole reaction process, as illustrated by the XRD patterns (Figure S6, Supporting Information), the VS4crystal phase was always maintained.Therefore,the growth of VS4-CN-Hs follows the well-established Ostwald ripening mechanism,as illustrated in Figure 3g.

    Figure 2. The morphology and microstructure characterizations of VS4-CN-Hs. a–c) SEM images, d) TEM image, e) High magnification TEM image (inset: the selected area electron diffraction spectrum), f) High-resolution transmission electron microscope (HRTEM) image, g–i) HAADF-STEM and the corresponding EDX elemental mapping images.

    CR 2032 type cells were assembled to test the sodium storage properties of the VS4-CN-Hs anode for SIBs with 1 M NaPF6in DME as the electrolyte. They were cycled within a wide voltage window of 0.01–3.0 V versus Na+/Na.Initially,its electrochemical reaction behaviors were elucidated by cyclic voltammetry(CV).From the CV profiles at 0.1 mV s?1(Figure 4a),it is thinly disguised that the initial cathodic scan has multiple reduction peaks at ~2.2, ~1.8, and ~1.7 V, implying that the NaxVS4is formed via multiple steps of Na+intercalation(Equation 1).The strong reduction peak at low voltage of~0.25 V is attributed to the conversion reaction (Equation 2), resulting in the formation of V-metal wrapped by Na2S matrix and the formation of solid electrolyte interphase (SEI) layer after discharging to 0.01 V.[34–36]In the subsequent anodic cycle, the peak at ~1.9 V is ascribed to the reaction in Equation (3), where VS4is re-formed through the fast kinetics conversion reaction between V and Na2S.[37–39]In the following cyclic scans,the reactions involved are similar to those in the first cycle except that the position of the strong reduction peak is shifted due to the different position of sodium-ion intercalation.

    Figure 3. SEM images of intermediates collected at different reaction times: a) 0.5 h, b) 2 h, c) 8 h, d) 16 h, e) 28 h, and f) 36 h. g) Schematic illustration of the growth process of VS4-CN-Hs.

    Figure 4b displays the galvanostatic charge/discharge curves at 0.1 A g?1. These curves present multiple voltage plateaus and are perfectly in tune with the CV results. High initial discharge and charge capacities of 1019 and 829 mA h g?1, respectively, were attained by the VS4-CN-Hs,with a gratifying CE of 81%.Even at the 30th cycle,it still retains good capacity (863 mA h g?1). Remarkably, VS4-CN-Hs deliver excellent rate performance as shown in Figure 4c. Capacities of 847, 735, 674, 597, 479, and 444 mA h g?1are achieved at rates of 0.2, 0.5, 1.0, 2.0, 5.0, and 10 A g?1, respectively. Figure 4d shows the charge/discharge profiles corresponding to the various rates and it can be seen that all the curves have similar shape and the charge/discharge platforms are consistent with that in Figure 4b. Such rate capability is much better than that of the reference sample (VS4particles without 3D architecture, Figures S7–S9, Supporting Information). Figure S10(Supporting Information)shows that satisfactory electrochemical performance of 701 mA h g?1after 300 cycles (0.5 A g?1) and 728 mA h g?1after 150 cycles (1 A g?1) for the VS4-CN-Hs is attained.It is worth to mention that the capacities have a sharp decline during the first several cycles, and then gradually increase to a stable state. Such phenomenon was analyzed by electrochemical impedance spectroscopy(EIS)measured under different number of cycles(the 1st,10th, 35th, 50th, and 60th cycles), and the results are shown in Figure S11 (Supporting Information). It is found that the charge transfer resistance (Rct) increases significantly during the initial cycling stage(1–10 cycles),which may be caused by the pulverization,and then the value decreases gradually during the subsequent cycles,which is consistent with the capacity variation.It is an activation process with the slow construction of the polymeric SEI surface layer.[40]In addition, the long-term cycling stability of this anode at 5 A g?1is also outstanding,expressing nearly no capacity degradation after 1000 cycles (Figure 4e),which is much higher than VS4particles(Figure S12,Supporting Information) and the most advanced VS4anodes (e.g.,~238 mA h g?1for cuboid-shaped VS4//Na foil,[39]and~309 mA h g?1for VS4hollow microspheres//Na metal[41]).And the corresponding charge/discharge curves (Figure S13, Supporting Information) show no shape change during the cycles, indicating a good reversibility. These results show that our VS4-CN-Hs is distinguished,which is superior than other reported VS4anodes or other TMSs anodes for SIBs,as listed in Table S1(Supporting Information).

    To further understand the superiority of the VS4-CN-Hs anode for SIBs, its sodium storage kinetics was investigated by the CV technique(scan rate:0.2–1.0 mV s?1).As displayed in Figure 5a,it is visible that the CV curves at different scan rates have amazing similarity with only slight deviation in peak positions, indicating that the polarizability of VS4in ether-based electrolyte is relatively low. Judging by the literatures, the relationship between the current (i) and scan rate (ν) conforms to the power-law: i = aνb. The analysis of charge storage behavior can be explained by the value of b,where b = ~0.5 corresponds to diffusion-controlled reaction, and ~1.0 represents surface-controlled mechanism or capacitance.[42–44]The fitted b value of the cathodic peaks (at ~0.78 and ~0.45 V) and anodic peak (at~2.1 V) are 0.76, 1.00, and 0.7, respectively (Figure 5b), indicating that the (de)sodiation is largely controlled by the capacitive mechanism. The capacitance obtained by these two mechanisms is calculated using the formula: i(ν) = k1ν + k2ν1/2, where k1ν and k2ν1/2represent the current contribution to surface-controlled and diffusion-controlled reactions, respectively.[45]For the pseudo-capacitance contribution of the VS4-CN-Hs anode at the various scan rates (shadow area in Figure 5c and contribution ratio in Figure 5d),the value increases gradually from 53.0%to 70.7%.Thus,it can be concluded that the high capacity and excellent rate performance of the VS4-CN-Hs seems largely attributed to the high pseudo-capacitance contribution.

    Figure 4. Electrochemical performances of VS4-CN-Hs anode. a) CV curves between 0.01 and 3.0 V at a scanning rate of 0.1 mV s?1, b) Charge/discharge profiles at a current density of 0.1 A g?1, c)Rate property at various current densities (from 0.2 to 10 A g?1), d) Galvanostatic charge/discharge curves at various current densities (from 0.2 to 10 A g?1), e) Long?term cyclic stability at a high current density of 5 A g?1.

    To investigate the sodium storage mechanism in VS4-CN-Hs,ex situ TEM measurement was performed as shown in Figure 6. From Figure 6a, it seems that the curly nanosheets still maintain a good structural integrity, indicating that the Na+embedding does not cause significant structural collapse.Figure 6b,c show clear lattice stripes with d-spacing of 0.23 and 0.19 nm corresponding to the(220)and(200)planes of Na2S and metal V, respectively. Further, the diffused diffraction rings of the SAED pattern(Figure 6d)can be indexed to Na2S and metal V, and the HAADF-STEM and the corresponding EDX elemental mapping images (Figure 6e–h)display uniform distribution of Na,S,and V in the fully discharged product. These results confirm the occurrence of the conversion reaction(VS4→Na2S + V).

    3. Conclusion

    In summary,the VS4curly nanosheets self-assembled hierarchitectures were successfully developed through a simply solvothermal approach. Owing to VS4-CN-Hs providing large contact area and rich buffer space, it can effectively alleviate the volume expansion and improve the electrochemical reaction kinetics during the cycle.When evaluated in a wide current window of 0.01–3.0 V,VS4-CN-Hs exhibits exceptional electrochemical performance involving superior rate performance(e.g., 444 mA h g?1at 10 A g?1), outstanding cycling stability (e.g., at high current densities of 5 A g?1with the reversible capacities reach 386 mA h g?1after 1000 cycles)and high initial capacity (1019 mA h g?1at 0.1 A g?1with initial coulombic efficiency of 81%).

    4. Experimental Section

    Synthesis of VS4-CN-Hs: All chemicals, including ammonium metavanadate (NH4VO3, 99%), thioacetamide(C2H5NS,99%),and ethylene glycol(EG,99%),were used directly without further purification. The VS4-CN-Hs were produced by an effortless solvothermal approach. Typically, 7.5 mmol of C2H5NS was directly dissolved into 30 mL of EG under stirring to construct a faint yellow solution. Afterward, 1.5 mmol of NH4VO3was added into the above solution and the mixture was subjected to constant stirring. Subsequently, the obtained suspension was transmitted into an autoclave and heated at 160 °C for 36 h. Finally, the obtained product was collected and washed by centrifugation with water and ethanol.For comparison,VS4particles without 3D architecture were synthesized according to the previous work.[26]

    Materials characterization: The scanning electron microscopy (SEM) measurements were employed by a Hitachi SU-8220 to explore the sample morphology. Transmission electron microscope (TEM) images were conducted by FEI TALOS 200X transmission electron microscopy at 200 kV to investigate the microstructure of the products. X-ray diffraction (XRD, Rigaku D/max 2500, Cu Kα,λ = 0.15418 nm)patterns were operated with scan range of 10–80°and scan rate of 20° min?1. Raman spectra were tested by LabRAM HR with laser wavelength of 532 nm.And X-ray photoelectron spectroscopy(XPS)analysis was performed by a Escalab 250 Xi at voltage of 15 kV and current of 15 mA. The charge correction is calibrated by C 1s binding energy 284.8 eV (C–C bond) as the reference standard.

    Electrochemical measurements: The anode was prepared by mixing 60 wt%VS4-CN-Hs, 30 wt% carbon, and 10 wt% poly (vinylidenefluoride) in Nmethylpyrrolidone.Then,the stirred mixture coated on copper foil and cut it into a circle with a diameter of 12 mm. The 1 M NaPF6in 1,2-dimethoxyethane electrolyte (DME) solution was employed as electrolyte. The cells were convened in an argon-filled glove box.The galvanostatic charge/discharge tests were carried out in a NEWARE battery system, and the voltage window was run within 0.01–3.0 V.

    Figure 5. a) CV curves at scan rates from 0.2 to 1.0 mV s?1, b) b value issued from the relationship between peak current and CV scan rates, c) Evaluation of capacitive contribution to the total charge storage at various scan rates, d) Contribution ratio of the capacitive?controlled and diffusion?controlled capacities at various scan rates.

    Figure 6. a) TEM image of the VS4-CN-Hs anode measured at the first full discharging state (current density: 20 mA g?1), b, c) the corresponding HRTEM images, d) SAED pattern, e–h) HAADF-STEM and the corresponding EDX elemental mapping images.

    Acknowledgements

    The authors gratefully acknowledge the National Natural Science Foundation of China(Grant Nos.51925207,U1910210, 51872277, 51972067, 21606003, 51902062,51802043, and 51802044), the Fundamental Research Funds for the Central Universities (WK2060140026),the DNL cooperation Fund, CAS (DNL180310), the NationalSynchrotronRadiationLaboratory(KY2060000173), and Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No.2019B151502039).

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Informationis available from the Wiley Online Library or from the author.

    Keywords

    3D hierarchitecture, anode material, high rate capability,sodium-ionbattery,vanadium tetrasulfide

    Received: December 22, 2020

    Revised: March 9, 2021

    Published online: March 23, 2021

    [1] Y. Wu, W. Wang, J. Ming, M. Li, L. Xie, X. He, J. Wang, S. Liang, Y. Wu,Adv. Funct. Mater. 2019, 29, 1805978.

    [2] X. Zeng, M. Li, D. A. El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, K.Amine, Adv. Energy Mater. 2019, 9, 1900161.

    [3] R. Du, X. Hu, S. Xie, L. Hu, Z. Zhang, X. Lin, J. Power Sources 2020, 473,228568.

    [4] T. Ma, S. Wu, F. Wang, J. Lacap, C. Lin, S. Liu, M. Wei, W. Hao, Y. Wang,J. W. Park, ACS Appl. Mater. Inter. 2020, 12, 56086.

    [5] K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten, Adv. Energy Mater. 2020, 10, 2001310.

    [6] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonz′alez,T. Rojo, Energy Environ. Sci. 2012, 5, 5884.

    [7] L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Energy Environ. Sci.2018, 11, 2310.

    [8] M. Chen, Q. Liu, Z. Hu, Y. Zhang, G. Xing, Y. Tang, S. Chou, Adv. Energy Mater. 2020, 10, 2002244.

    [9] H. Tan, D. Chen, X. Rui, Y. Yu, Adv. Funct. Mater. 2019, 29, 1808745.

    [10] X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang, L. Y. Gan, Y. Feng, C. C. Li, Y.Yu, Adv. Funct. Mater. 2020, 31, 2009458.

    [11] A. Cheng, H. Zhang, W. Zhong, Z. Li, D. Cheng, Y. Lin, Y. Tang, H. Shao,Z. Li, Carbon 2020, 168, 691.

    [12] Y. Dong, Z. Zhu, Y. Hu, G. He, Y. Sun, Q. Cheng, I. P. Parkin, H. Jiang,Nano Res. 2020, 14, 74.

    [13] H. Wu, X. Chen, C. Qian, H. Yan, C. Yan, N. Xu, Y. Piao, G. Diao, M.Chen, Small 2020, 16, 2000695.

    [14] S. Xu, X. Gao, Y. Hua, A. Neville, Y. Wang, K. Zhang, Energy Storage Mater. 2020, 26, 534.

    [15] X. Li, Y. Sun, X. Xu, Y.-X. Wang, S.-L. Chou, A. Cao, L. Chen, S.-X. Dou,J. Mater. Chem. A 2019, 7, 25932.

    [16] Z. Zhao, S. Li, C. Li, Z. Liu, D. Li, Appl. Surf. Sci. 2020, 519, 146268.

    [17] C. Dong, L. Guo, H. Li, B. Zhang, X. Gao, F. Tian, Y. Qian, D. Wang, L.Xu, Energy Storage Mater. 2020, 25, 679.

    [18] J. Wang, N. Luo, J. Wu, S. Huang, L. Yu, M. Wei, J. Mater. Chem. A 2019, 7, 3691.

    [19] L. Yu, S. Zhao, Q. Wu, J. Zhao, G. Wei, Adv. Funct. Mater. 2020, 30, 2000427.

    [20] L. Shen, Y. Wang, F. Wu, I. Moudrakovski, P. V. Aken, J. Maier, Y. Yu,Angew. Chem. Int. Ed. 2019, 58, 7238.

    [21] C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu, K. Huang,Energy Environ. Sci. 2017, 10, 107.

    [22] S. Ding, B. Zhou, C. Chen, Z. Huang, P. Li, S. Wang, G. Cao, M. Zhang,Nano-Micro Lett. 2020, 12, 39.

    [23] R. Allmann, I. Baumann, A. Kutoglu, H. R¨osch, E. Hellner, Naturwissenschaften 1964, 51, 263.

    [24] K. Shimoda, K. Koganei, T. Takeuchi, T. Matsunaga, M. Murakami, H.Sakaebe, H. Kobayashi, E. Matsubara, RSC Adv. 2019, 9, 23979.

    [25] W. Li, J. Huang, L. Feng, L. Cao, Y. Liu, L. Pan, Mater. Lett. 2018, 230,105.

    [26] Z. Li, S. Ding, J. Yin, M. Zhang, C. Sun, A. Meng, J. Power Sources 2020,451, 227815.

    [27] F. Yang, W. Zhong, H. Wang, M. Ren, W. Liu, M. Li, L. Su, J. Alloys Compd. 2020, 834, 155204.

    [28] W. Li, J. Huang, L. Feng, L. Cao, S. He, Nanoscale 2018, 10, 21671.

    [29] G. Yang, H. Wang, B. Zhang, S. Foo, M. Ma, X. Cao, J. Liu, S. Ni, S. Madhavi, Y. Huang, Nanoscale 2019, 11, 9556.

    [30] W. Li, J. Huang, R. Li, L. Cao, X. Li, S. Chen, L. Feng, Chemsuschem 2019,12, 5183.

    [31] Y. Wang, C. Wang, X. Yi, Y. Hu, L. Wang, L. Ma, G. Zhu, T. Chen, Z. Jin,Energy Storage Mater. 2019, 23, 741.

    [32] M. Ramu, J. R. Chellan, N. Goli, P. Joaquim, V. Cristobal, B. C. Kim, Adv.Funct. Mater. 2019, 30, 1906586.

    [33] M. N. Kozlova, Y. V. Mironov, E. D. Grayfer, A. I. Smolentsev, V. I. Zaikovskii, N. A. Nebogatikova, T. Y. Podlipskaya, V. E. Fedorov, Chem. Eur.J. 2015, 21, 4639.

    [34] D. T. Pham, B. Sambandam, S. Kim, J. Jo, S. Kim, S. Park, V. Mathew,Y.-K. Sun, K. Kim, J. Kim, Energy Storage Mater. 2019, 19, 270.

    [35] S. S. Zhang, J. Mater. Chem. A 2015, 3, 7689.

    [36] Y. Li, Y. Liang, F. C. R. Hernandez, H. D. Yoo, Q. An, Y. Yao, Nano Energy 2015, 15, 453.

    [37] R. Tan, J. Yang, J. Hu, K. Wang, Y. Zhao, F. Pan, Chem. Commun. 2016,52, 986.

    [38] R. Sun, Q. Wei, Q. Li, W. Luo, Q. An, J. Sheng, D. Wang, W. Chen, L.Mai, ACS Appl. Mater. Inter. 2015, 7, 20902.

    [39] S. Wang, F. Gong, S. Yang, J. Liao, M. Wu, Z. Xu, C. Chen, X. Yang, F.Zhao, B. Wang, Y. Wang, X. Sun, Adv. Funct. Mater. 2018, 28,1801806.

    [40] R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu, L. Mai, Nano Energy 2017,35, 396.

    [41] W. Li, J. Huang, R. Li, L. Cao, X. Li, L. Feng, S. Chen, Chem. Eng. J. 2019,384, 123385.

    [42] Z. Wu, C. Lu, Y. Wang, L. Zhang, L. Jiang, W. Tian, C. Cai, Q. Gu, Z.Sun, L. Hu, Small 2020, 16, 2000698.

    [43] Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao, L. Gan, Q. Zhang, Y. Yu, S.Huang, Nano-Micro Lett. 2020, 12, 67.

    [44] X. Li, T. Liu, Y.-X. Wang, S.-L. Chou, X. Xu, A. Cao, L. Chen, J. Power Sources 2020, 451, 227790.

    [45] C. Cui, Z. Wei, G. Zhou, W. Wei, J. Ma, L. Chen, C. Li, J. Mater. Chem. A 2018, 6, 7088.

    欧美+日韩+精品| 日本av手机在线免费观看| 免费播放大片免费观看视频在线观看| 母亲3免费完整高清在线观看 | 精品久久久久久电影网| 香蕉国产在线看| 亚洲av成人精品一二三区| 国产成人精品婷婷| 亚洲综合精品二区| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 1024视频免费在线观看| 国产精品欧美亚洲77777| 免费在线观看视频国产中文字幕亚洲 | 少妇的逼水好多| 亚洲国产精品一区二区三区在线| 少妇人妻久久综合中文| 天天躁日日躁夜夜躁夜夜| 亚洲欧美日韩另类电影网站| 国产色婷婷99| 人成视频在线观看免费观看| 国产精品 国内视频| 免费看不卡的av| 日本wwww免费看| 国产黄频视频在线观看| 日韩一本色道免费dvd| 久久99精品国语久久久| 老鸭窝网址在线观看| 日韩,欧美,国产一区二区三区| 亚洲男人天堂网一区| 国产亚洲精品第一综合不卡| 天堂俺去俺来也www色官网| 亚洲精品成人av观看孕妇| 国产无遮挡羞羞视频在线观看| 婷婷成人精品国产| 久久久久久久大尺度免费视频| 国产欧美日韩一区二区三区在线| av在线app专区| 国产淫语在线视频| 免费大片黄手机在线观看| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 免费在线观看黄色视频的| 国产综合精华液| 亚洲精品aⅴ在线观看| 99国产综合亚洲精品| 免费黄频网站在线观看国产| 亚洲婷婷狠狠爱综合网| videossex国产| 日本欧美国产在线视频| 最近2019中文字幕mv第一页| 另类精品久久| 中文字幕制服av| 精品亚洲成a人片在线观看| 天天影视国产精品| 国产av一区二区精品久久| 尾随美女入室| 久久精品人人爽人人爽视色| 黄频高清免费视频| 国产黄色免费在线视频| 欧美亚洲 丝袜 人妻 在线| 99re6热这里在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲高清精品| 9热在线视频观看99| 大码成人一级视频| 国产精品亚洲av一区麻豆 | 免费高清在线观看日韩| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 国产麻豆69| 精品久久久久久电影网| 在线观看人妻少妇| 国产成人欧美| 国产日韩欧美视频二区| 一区福利在线观看| 超色免费av| 9色porny在线观看| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 一边亲一边摸免费视频| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 麻豆av在线久日| 视频区图区小说| 久久国产亚洲av麻豆专区| 欧美精品一区二区免费开放| 99国产综合亚洲精品| 亚洲经典国产精华液单| 在线精品无人区一区二区三| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 亚洲精品,欧美精品| 精品第一国产精品| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 精品一区二区三卡| 人人妻人人澡人人爽人人夜夜| 极品人妻少妇av视频| 亚洲国产最新在线播放| 精品一区二区三卡| 香蕉国产在线看| av在线播放精品| 999久久久国产精品视频| 女性生殖器流出的白浆| 色吧在线观看| 久久精品夜色国产| 欧美+日韩+精品| 欧美bdsm另类| 不卡av一区二区三区| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 欧美中文综合在线视频| 中文字幕亚洲精品专区| 免费女性裸体啪啪无遮挡网站| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 90打野战视频偷拍视频| 电影成人av| 国产一区二区三区综合在线观看| 午夜福利一区二区在线看| 狠狠精品人妻久久久久久综合| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 三级国产精品片| 深夜精品福利| 十分钟在线观看高清视频www| 亚洲欧美中文字幕日韩二区| 欧美黄色片欧美黄色片| 99热网站在线观看| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 三级国产精品片| 精品酒店卫生间| 七月丁香在线播放| 最近的中文字幕免费完整| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av网站在线播放免费| 韩国av在线不卡| 欧美激情极品国产一区二区三区| 一边亲一边摸免费视频| 久久久久久免费高清国产稀缺| 亚洲精品美女久久av网站| 国产精品秋霞免费鲁丝片| 精品卡一卡二卡四卡免费| 蜜桃国产av成人99| 十八禁高潮呻吟视频| 婷婷色av中文字幕| 宅男免费午夜| 成人毛片60女人毛片免费| 色吧在线观看| 夜夜骑夜夜射夜夜干| av在线老鸭窝| 永久网站在线| 欧美精品国产亚洲| 精品国产国语对白av| 18禁观看日本| 国产白丝娇喘喷水9色精品| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 中文欧美无线码| 男女边吃奶边做爰视频| 久久久久精品性色| 午夜福利乱码中文字幕| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 国产精品一二三区在线看| 欧美日本中文国产一区发布| 日本色播在线视频| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 日韩精品免费视频一区二区三区| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 男男h啪啪无遮挡| 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 国产白丝娇喘喷水9色精品| 在线观看免费日韩欧美大片| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 亚洲精品视频女| 美女xxoo啪啪120秒动态图| 九色亚洲精品在线播放| 国产精品香港三级国产av潘金莲 | 黄片播放在线免费| 老司机亚洲免费影院| 国产淫语在线视频| 国产精品 国内视频| 搡老乐熟女国产| 国产精品久久久久成人av| 欧美日韩精品网址| 韩国高清视频一区二区三区| 天堂俺去俺来也www色官网| 国产爽快片一区二区三区| 美女午夜性视频免费| 免费大片黄手机在线观看| 国产麻豆69| 啦啦啦视频在线资源免费观看| 曰老女人黄片| 久久久欧美国产精品| av在线观看视频网站免费| 色视频在线一区二区三区| 中文字幕亚洲精品专区| 精品亚洲成a人片在线观看| 欧美97在线视频| 中文字幕人妻丝袜一区二区 | 国产精品.久久久| 国产成人精品久久二区二区91 | 久久精品久久久久久久性| 老熟女久久久| 亚洲一区中文字幕在线| 亚洲,欧美精品.| 欧美日韩视频精品一区| 色视频在线一区二区三区| 国产亚洲精品第一综合不卡| 免费观看a级毛片全部| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 91久久精品国产一区二区三区| 婷婷成人精品国产| 人人妻人人澡人人爽人人夜夜| 国产极品粉嫩免费观看在线| 一边亲一边摸免费视频| 欧美日韩国产mv在线观看视频| 午夜激情av网站| 各种免费的搞黄视频| 中文字幕色久视频| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 久久久久久久久久人人人人人人| 精品久久蜜臀av无| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀 | 男女无遮挡免费网站观看| 天天躁夜夜躁狠狠久久av| 中文字幕色久视频| 久久久久精品性色| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 国产亚洲av片在线观看秒播厂| 香蕉丝袜av| 亚洲av.av天堂| 一级毛片我不卡| av在线老鸭窝| 母亲3免费完整高清在线观看 | 欧美精品亚洲一区二区| 亚洲久久久国产精品| 满18在线观看网站| 97在线视频观看| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 久久精品国产亚洲av高清一级| 午夜激情久久久久久久| 亚洲av.av天堂| 国产乱来视频区| 国产成人免费无遮挡视频| www.精华液| 国产一区二区在线观看av| 亚洲精品日韩在线中文字幕| 亚洲精品视频女| 国产精品av久久久久免费| 熟女电影av网| 精品国产露脸久久av麻豆| 电影成人av| 日韩不卡一区二区三区视频在线| 国产成人91sexporn| 国产精品欧美亚洲77777| 丝袜脚勾引网站| 午夜福利一区二区在线看| 亚洲精品视频女| 国产一区二区 视频在线| 婷婷色av中文字幕| 亚洲成色77777| av免费在线看不卡| 一级黄片播放器| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 欧美 亚洲 国产 日韩一| 精品视频人人做人人爽| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| www.精华液| 国产野战对白在线观看| 亚洲美女视频黄频| 国产精品久久久久久久久免| 国产精品无大码| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 咕卡用的链子| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 国产精品不卡视频一区二区| 欧美精品av麻豆av| 国产免费又黄又爽又色| 日韩大片免费观看网站| 男女午夜视频在线观看| 最黄视频免费看| 国产1区2区3区精品| 亚洲国产成人一精品久久久| 午夜福利乱码中文字幕| 永久免费av网站大全| 精品午夜福利在线看| 老司机影院成人| 久久精品国产a三级三级三级| 免费观看在线日韩| 久久久国产一区二区| 亚洲av综合色区一区| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃| 国产精品一国产av| 999精品在线视频| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 永久网站在线| 热99国产精品久久久久久7| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 1024香蕉在线观看| 久久久久人妻精品一区果冻| 国产xxxxx性猛交| 十分钟在线观看高清视频www| 韩国精品一区二区三区| 精品久久久久久电影网| 极品少妇高潮喷水抽搐| 色婷婷av一区二区三区视频| 精品亚洲成国产av| 七月丁香在线播放| 少妇精品久久久久久久| 亚洲av福利一区| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| av线在线观看网站| 日日撸夜夜添| 欧美精品高潮呻吟av久久| 色吧在线观看| 国产精品久久久久久av不卡| 国产一区二区激情短视频 | 少妇精品久久久久久久| 大码成人一级视频| 日韩电影二区| 欧美少妇被猛烈插入视频| 国产精品香港三级国产av潘金莲 | 国产国语露脸激情在线看| 晚上一个人看的免费电影| 国产精品成人在线| 老汉色∧v一级毛片| 在线观看免费日韩欧美大片| 免费看av在线观看网站| 日韩av不卡免费在线播放| 欧美 亚洲 国产 日韩一| 肉色欧美久久久久久久蜜桃| 美国免费a级毛片| 免费高清在线观看日韩| 亚洲精品国产av成人精品| 亚洲成人av在线免费| 99九九在线精品视频| 免费高清在线观看日韩| 国产在视频线精品| 在线看a的网站| 五月天丁香电影| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲 | 亚洲av福利一区| 免费少妇av软件| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 又粗又硬又长又爽又黄的视频| 国产又爽黄色视频| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 国产男女内射视频| kizo精华| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 久久韩国三级中文字幕| 大陆偷拍与自拍| av国产精品久久久久影院| 国产精品香港三级国产av潘金莲 | 日韩在线高清观看一区二区三区| 中文字幕色久视频| 韩国精品一区二区三区| 黄片无遮挡物在线观看| 久久久久网色| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| 日韩人妻精品一区2区三区| av卡一久久| 国产伦理片在线播放av一区| 男女边吃奶边做爰视频| 亚洲欧美色中文字幕在线| 看非洲黑人一级黄片| 国产精品免费视频内射| 免费高清在线观看日韩| 啦啦啦视频在线资源免费观看| 国产成人午夜福利电影在线观看| 熟女少妇亚洲综合色aaa.| 亚洲国产精品国产精品| 欧美日韩一级在线毛片| 青春草国产在线视频| 亚洲欧美一区二区三区黑人 | videosex国产| 综合色丁香网| 亚洲第一青青草原| 国产片内射在线| 午夜影院在线不卡| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| videosex国产| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 韩国高清视频一区二区三区| 视频区图区小说| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 国产毛片在线视频| 午夜日韩欧美国产| 国产女主播在线喷水免费视频网站| 在线免费观看不下载黄p国产| 日本av免费视频播放| 久久久久久人妻| 成人国语在线视频| 午夜福利一区二区在线看| 欧美日韩视频高清一区二区三区二| av有码第一页| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 在线观看www视频免费| 又大又黄又爽视频免费| 欧美精品高潮呻吟av久久| 免费av中文字幕在线| 亚洲成av片中文字幕在线观看 | 久久亚洲国产成人精品v| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 97精品久久久久久久久久精品| 国产精品一国产av| 亚洲少妇的诱惑av| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 在线观看免费高清a一片| 尾随美女入室| 亚洲成人手机| 欧美精品人与动牲交sv欧美| 久热久热在线精品观看| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院| 啦啦啦中文免费视频观看日本| 最近中文字幕2019免费版| 国产 精品1| 国产 一区精品| 久久精品国产亚洲av天美| 亚洲综合色网址| 免费在线观看完整版高清| 美女福利国产在线| 亚洲精品aⅴ在线观看| 国产亚洲一区二区精品| 久久久精品国产亚洲av高清涩受| 久久精品熟女亚洲av麻豆精品| 国产精品女同一区二区软件| 国产av精品麻豆| 日韩 亚洲 欧美在线| 69精品国产乱码久久久| 国产精品久久久av美女十八| 久久热在线av| 久久久久久久久久人人人人人人| 最近2019中文字幕mv第一页| 国产欧美日韩综合在线一区二区| 欧美97在线视频| 国产成人av激情在线播放| 国产男女超爽视频在线观看| 久久精品夜色国产| 又大又黄又爽视频免费| 成年动漫av网址| 观看美女的网站| 大陆偷拍与自拍| 97精品久久久久久久久久精品| 久久精品久久久久久噜噜老黄| 日本欧美视频一区| 观看美女的网站| 在线天堂最新版资源| 久久人人爽人人片av| 视频区图区小说| 一区福利在线观看| 久久 成人 亚洲| 纵有疾风起免费观看全集完整版| 亚洲av综合色区一区| 日韩大片免费观看网站| 欧美激情 高清一区二区三区| 精品国产国语对白av| 男的添女的下面高潮视频| 国产精品蜜桃在线观看| 国产一区亚洲一区在线观看| 黄片小视频在线播放| 9191精品国产免费久久| 国产黄色免费在线视频| 十八禁高潮呻吟视频| 亚洲精品国产色婷婷电影| 亚洲经典国产精华液单| 久久精品夜色国产| 精品久久久久久电影网| 国产又色又爽无遮挡免| 亚洲欧美一区二区三区久久| 国产精品国产三级专区第一集| 亚洲伊人色综图| 欧美中文综合在线视频| 女人久久www免费人成看片| 亚洲欧美中文字幕日韩二区| 最新中文字幕久久久久| 国产av一区二区精品久久| 男男h啪啪无遮挡| 久久免费观看电影| 久久人人97超碰香蕉20202| 亚洲精品国产一区二区精华液| 99国产精品免费福利视频| 亚洲精品国产av成人精品| 久久99蜜桃精品久久| av在线app专区| 久久影院123| 一级毛片黄色毛片免费观看视频| 亚洲三区欧美一区| 一本色道久久久久久精品综合| 人人妻人人爽人人添夜夜欢视频| 日本-黄色视频高清免费观看| 国产精品一二三区在线看| 国产精品亚洲av一区麻豆 | 国产熟女午夜一区二区三区| 青春草视频在线免费观看| 高清不卡的av网站| 日韩一本色道免费dvd| 乱人伦中国视频| 久久久久人妻精品一区果冻| 日本免费在线观看一区| 老汉色∧v一级毛片| av网站在线播放免费| 亚洲中文av在线| 国产精品99久久99久久久不卡 | 一级毛片我不卡| 中文欧美无线码| 国产免费又黄又爽又色| 黄色毛片三级朝国网站| 亚洲精品自拍成人| 高清在线视频一区二区三区| 国产精品女同一区二区软件| 男女免费视频国产| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 久久久国产精品麻豆| 国产精品免费视频内射| 亚洲av男天堂| 高清视频免费观看一区二区| 国产精品熟女久久久久浪| 最黄视频免费看| 少妇被粗大的猛进出69影院| 国产成人免费无遮挡视频| 视频在线观看一区二区三区| 高清在线视频一区二区三区| 青青草视频在线视频观看| 满18在线观看网站| 日韩制服丝袜自拍偷拍| 制服人妻中文乱码| 国产成人精品久久久久久| 纯流量卡能插随身wifi吗| 国产片内射在线| 日本免费在线观看一区| 女的被弄到高潮叫床怎么办| 激情五月婷婷亚洲| 中文字幕人妻丝袜制服| 久久久久久人人人人人| 夫妻午夜视频| 色网站视频免费| 蜜桃国产av成人99| 男女边吃奶边做爰视频| 精品国产露脸久久av麻豆| 黄色 视频免费看| 欧美少妇被猛烈插入视频| 香蕉丝袜av| 亚洲国产成人一精品久久久| 国产人伦9x9x在线观看 | 在线观看www视频免费| 一级片'在线观看视频| 欧美最新免费一区二区三区| 久久久精品区二区三区| 亚洲av福利一区| 欧美最新免费一区二区三区| 超碰97精品在线观看| 夫妻午夜视频| av.在线天堂| 伊人久久大香线蕉亚洲五| 成人漫画全彩无遮挡| 国产女主播在线喷水免费视频网站|