• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超圖自動(dòng)學(xué)習(xí)與最優(yōu)聚類框架結(jié)合的波段選擇

    2022-07-04 03:55:02年米雪汪國(guó)強(qiáng)
    關(guān)鍵詞:工程學(xué)院波段哈爾濱

    年米雪,聶 萍,汪國(guó)強(qiáng)

    (黑龍江大學(xué) 電子工程學(xué)院, 哈爾濱 150080)

    HSI processing has attracted considerable attention in recent years. HSI can provide rich band information from different wavelengths, and gets widely used in various research field, such as biological analysis and medical imaging processing. HSI records the reflectance of electromagnetic waves of different wavelengths, and the reflectance of each electromagnetic wave-lengths and the reflectance of each electromagnetic wave are stored in a 2-D image[1-3]. Hence, an HSI is a data cube containing of hundreds of 2-D images. Though significant successes in the field of HSI application have been obtained, how to deal with the large dimensional data is still a challenging problem so high correlation and dependence among them cause huge computational complexity as well as “Hughes”[4-5]. In view of this, the reduction in HSI is deemed to be a very important work. According to the involvement of the labeled and the unlabeled samples, band selection can be divided into supervised, semisupervised, and unsupervised methods[6- 8]. Supervised and semisupervised methods utilize the labeled samples to guide the selection process. However, the acquisitions of the labeled samples are a difficult task, sometimes they are not very practical in real application. With the development of imaging techniques, hyperspectral sensors are capable of deepening the characterization of various objects with hundreds of contiguous bands. For classification, a wealth of spectral bands not only increase the computational and storage burden of training a classifier but may also degrade the classification accuracy. For instance, due to the lack of labeled pixels, the generalization capability of the classifier is limited when high-dimensional bands are fed back. The problem is namely the curse of dimensionality. In addition, many adjacent bands may be heavily redundant and fail to provide additional discriminative information. Reducing the number of bands, that is, dimensionality reduction, is an effective strategy to solve the aforementioned challenges. In the field of HSI, three techniques are implemented including feature extraction (FE)[9], unmixing, and band selection (BS)[10]. Band selection has three advantages over the other two techniques. First, it only obtains a subset of the original bands and does not generate new features, thereby preserving the physical information from the selected bands. Second, the FE and unmixing techniques typically need all test samples to extract new features,endmembers and corresponding abundances during the test phase[11]. Compared with them, band selection only stores the information related to a few selected bands, which greatly reduces the storage and computational burden. Third, band selection can be combined with the feature extraction and unmixing techniques to improve the efficiency and performance of the latter. For HSI, it is a challenging task to select discriminative bands due to the lack of labeled samples and complex noise. To tackle these issues, we present a band selection method with hypergraph autolearning and optimal clustering framework.

    1 Algorithm description

    1.1 Hypergraph autolearning

    We use the method of randomly dividing band space as defined in the following to obtain subspaces. First, the dimension of thevth subspace is determined by the following formula:

    dv=?[(1-σ1)τmin+σ1τmax]B」

    (1)

    wheredvrepresents the number of available bands for thevth subspace, andσ1∈[0,1] is a uniform random variable. Second, the band associated with this subspace is selected one by one, whose index is determined by the following formula:

    ind=?1+σ2B」

    (2)

    where ind represents the index of the selected band, andσ2∈[0,1] is a uniform random variable. This step is repeated untildvbands selects for thevth subspace. The above-mentioned process of generating subspaces is repeated until all bands appear in one of subspaces at least. In this way, we can get a large number of labeled low-dimensional samples.

    3)Hypergraph-based information sharing: First, subspaces reflect different representations of given training samples. In other words, representations from different subspaces have the same structural distribution. Such as if two representations belong to the same class in one of subspaces, they belong to the same class in other subspaces. Second, the correlation between representations is viewed dependent. For example, the representations of the two training samples in one of LVs are highly correlated; however, this may not be true in other subspaces. Although graph-based methods have been proposed to share information between views from the perspective of preserving local manifold structure, they force the representations from different views to share the same structural distribution and correlation.The method not only reduces the flexibility of information sharing but also is susceptible to unfriendly views and conveys unreliable information.

    4)We propose a novel hypergraph-based information sharing model to solve the problems by dividing the information carried by subspaces into structure information and view-dependent information. The structure information, such as the label distribution, can be shared to convey reliable information. The view-dependent information, such as the difference between representations in the spectral dimension, can be used to preserve the specificity of subspaces. Considering that all subspaces have the same label distribution and share the common label matrix Y, we use label information to construct hyperedges so that representations from the same class are located in the same hyperedge. Hence, different subspaces share the same set of hyperedgesε={ε,…,εC} and incident matrixH∈Rn×C. The degreeecof the hyperedgeεc(1≤c≤C) is equal to the number of samples belonging to the classC, and the bands of representations from different subspaces are different. That is, although the representations from the same class belong to the same hyperedge, the compactness between them varies for different subspaces and is viewed dependent, which is utilized to preserve the specificity of subspaces. This can be done by automatically assigning different weights to the same hyperedge related to various subspaces. Hence, from the perspective of preserving manifold structure, a hypergraph autolearning-based information sharing model can be modeled as

    (3)

    (4)

    1.2 OCF

    (5)

    Without loss of generality, we assume that functionDsis supposed to be maximized. So our optimization problem turns to be

    (6)

    After the optimization problem is clarified, the solution will be given in two steps, named as problem decomposition and subproblem combination, respectively. Mappingfhere is still a general form, which means that the solution will be available for arbitrary definition off.

    (7)

    Then, by enumerating all the possible value ofsk-1, (7) can be derived into

    (8)

    By substitutingk=1 into (7), we have

    (9)

    (10)

    It is easy to see that there is

    (11)

    For more details about the framework, refer to the pseudocode shown in Algorithm 1.

    Algorithm1OCF(DsIsMaximized)Input:SetofbandsXL1,mappingandclus-ternumberK.1:forl 1toLdo2:M1l=f(Ml1)3:Q1l←04:endfor5:fork 2toKdo6:forl ktoLdo7:M1l←-∞8:p?←09:fork←2toKdo10:ifMkl

    ContinuedAlgorithm1OCF(DsIsMaxi-mized)11:Mkl←Mk-1p+f(Xlp+1)12:p?←p13:endif14:endfor15:Qkl←p?16:endfor17:endfor18:s?K←L19:fork←K-1toldo20:s?k←Qk+1s?k+121:endforOutput:CBIVcorrespondingtoMKL:s?=(s?1,s?2,…,s?K-1)T

    2 Experiment and analysis

    To verify the feasibility and effectiveness, the proposed method is compared with scalable one-pass self-representation learning for hyperspectral band selection(SOP-SRL)[12], local-view-assisted discriminative band selection with hypergraph autolearning(LvaHAI)[13]and a fast neighborhood grouping method for hyperspectral band selection(FNGBS)[14].

    2.1 Experimental data sets

    The experimental environment is the 10th generation intelligent Intel six core processor with the main frequency of 2.60 Hz, and the memory is 16 GB. All the methods are implemented in MATLAB R2016b. Experimental data sets are Salinas Valley, Pavia University and Pavia Center from three public hyperspectral image data sets.

    1)Pavia University image acquired with the Reflective Optics System Imaging Spectrometer (ROSIS) sensor have 1.3 m spatial resolutions. This data set consists of 610×340 pixels with 9 classes, in which each pixel has 115 spectrum bands ranging from 0.43 to 0.86 μm. After removing 12 noisy bands, the remaining 103 bands are used for BS and classification. Table 1 show the number of training samples and test samples on PaviaU.

    2) Pavia Center image was also obtained by the ROSIS sensor over Pavia, northern Italy. Hence, it has the same spatial and spectral resolutions as the first data set. In this data set, 1 096×715 pixels from nine classes are included. After noisy spectra are removed, the number of available bands is 102 for the experiments. Table 2 show the number of training samples and test samples on Pavia Center

    Table 1 Number of training samples and test samples on PaviaU

    Table 2 Number of training samples and test samples on Pavia Center

    3)Salinas valley image covers an area located in Salinas Valley, CA, USA. This image was obtained by the Airborne Visible/Infrared Imaging Spectrometer, having 3.7 m spatial resolutions. It consists of 517×217 pixels with 16 classes. When the 20 noise bands (108-112, 154-167, and 224) in terms of water absorption are removed, 204 bands are retained for experimental analysis. The number of training samples and test samples on Salinas are showed as Table 3.

    Table 3 Number of training samples and test samples on Salinas

    2.2 Experimental setup

    K-nearest Neighbor (KNN) classification is adopted for experiment. KNN is the simplest classifier

    in machine learning, which determines the sample category according to the category of K similar training data. The optimal K value is selected through cross-verification. Therefore, the K value is finally selected as 5. Additionally, since we mention that these classifiers are supervised,10% samples from each class based on selected bands are randomly chosen as the training set; the remaining 90% samples are used for test. Moreover, in order to reduce the influence of random selection of 10% samples, the algorithm runs ten times to obtain the average results. Because the desired number of bands that should be selected is unknown, we implement experiments in the range of 5~30 bands to explain the influence of different numbers of bands on classification accuracy. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient are used as evaluation indexes for hyperspectral image classification.

    2.3 Analysis of experimental results

    The whole band space is first randomly divided into several subspaces of different dimensions, then, for different subspaces, a robust hinge loss function for isolated pixels regularized by the row-sparsity is adopted to measure the importance of the corresponding bands. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections, to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces resulting in the optimal selection of expected bands from a global perspective. Finally, a simple and effective clustering strategy is proposed to select bands,which is fed into a classifier for classification. Classification performance indexes of different number of bands in three data sets are shown in Fig.1~Fig.3. It can be seen that different number of bands have an impact on the performance of classification results. The method proposed in this paper has achieved satisfactory results on OA, AA and Kappa. When the number of bands selected is small, the accuracy of the algorithm is unstable, and when the number of bands is more than 25, the accuracy of the algorithm tends to be stable.

    Fig.1 Relationship between the number of bands and Kappa coefficient

    Fig.2 Relationship between the number of bands and AA

    Fig.3 Relationship between the number of bands and OA

    In order to better verify the effectiveness and superiority of this method, KNN is used as a classifier, and this method is compared with LvaHAI, SOP-SRL and FNGBS which are three latest algorithms. The experimental results are shown in Fig.4, Fig.5 and Fig.6. As can be seen from Fig.4, for Pavia data set, the OA coefficient of this algorithm on KNN classifier is always higher than that of other algorithms. By selecting different number of bands, the algorithm shows excellent classification performance when the number of bands is small. In the case of selecting 10 bands, the OA of this algorithm on Pavia data set is 84.69%, which has exceeded LvaHAI, SOP-SRL and FNGBS. But, as the number of bands continues to increase, when the number of bands increases to 15, the performance does not increase significantly, which may be related to the fact that the subspace contains fewer and fewer bands, so that the current band cannot be judged and updated with more favorable information, indicating that the method is more effective in low dimension.As can be seen from Fig.5, for the Pavia University data set, the OA performance of this algorithm is always higher than that of other algorithms, which further illustrates the superiority of this algorithm. Compared with LvaHAI and FNGBS, this algorithm has better stability. For Salinas data sets, when the number of bands is small, this algorithm performs better than FNGBS algorithm. To sum up, the overall performance of the algorithm is better than other algorithms, with better robustness, even in the case of small samples can also have a good performance.

    Fig.4 OA metrics of the PaviaC dataset

    Fig.5 OA metrics of the PaviaU dataset

    Fig.6 OA metrics of the Salinas dataset

    In order to verify the effectiveness and superiority of the algorithm, 15 bands are taken as examples to classify the ground objects in three data sets respectively, and the classification results are shown in Table 4. As can be seen from Table 2, OA index of this algorithm is higher than other algorithms in Pavia and Pavia University data sets, with an increase of 1.04% and 1.05% respectively compared with LvaHAI algorithm. In the Pavia University data sets, the Kappa index of this algorithm is 4.73% higher than that of SOP-SRL. For Salinas and Pavia University data sets, compared with SOP-SRL and LvaHAI algorithms, AA and Kappa in this paper have certain advantages.

    Table 4 Classification results of different methods on three data sets

    3 Conclusions

    A band selection method with hypergraph autolearning and optimal clustering framework is proposed. The whole band space is randomly divided into several subspaces of different dimensions, each subspace denotes a set of low-dimensional representations of training samples consist of bands associated with it. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces. Finally, a simple and effective clustering strategy is proposed to select bands. Through experimental comparison and analysis on three public hyperspectral image data sets, the proposed method has good performance in OA, AA and Kappa, thus verifying the feasibility and effectiveness of the proposed band selection method.

    猜你喜歡
    工程學(xué)院波段哈爾濱
    春日暖陽(yáng)
    我平等地嫉妒每一個(gè)去哈爾濱的人
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    奇妙的哈爾濱之旅
    《老哈爾濱的回憶》國(guó)畫(huà)
    新聞傳播(2016年13期)2016-07-19 10:12:05
    M87的多波段輻射過(guò)程及其能譜擬合
    感受哈爾濱的冬天
    女人被狂操c到高潮| 亚洲国产精品久久男人天堂| 亚洲成人久久爱视频| 日韩欧美免费精品| 日韩中文字幕欧美一区二区| 99精品在免费线老司机午夜| 精品人妻一区二区三区麻豆 | 亚州av有码| 久久国产精品影院| 波多野结衣巨乳人妻| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看吧| 天堂动漫精品| 国产男靠女视频免费网站| 中文字幕人妻熟人妻熟丝袜美| 最后的刺客免费高清国语| 免费av观看视频| 午夜久久久久精精品| 蜜桃亚洲精品一区二区三区| 无人区码免费观看不卡| 日韩亚洲欧美综合| 免费观看人在逋| 久久久久久久午夜电影| 黄色女人牲交| 无遮挡黄片免费观看| 神马国产精品三级电影在线观看| 午夜两性在线视频| 欧美乱色亚洲激情| 人妻丰满熟妇av一区二区三区| 十八禁国产超污无遮挡网站| 性欧美人与动物交配| 搡老妇女老女人老熟妇| 久久久成人免费电影| 久久欧美精品欧美久久欧美| 不卡一级毛片| 网址你懂的国产日韩在线| 欧美激情国产日韩精品一区| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av天美| 成年女人毛片免费观看观看9| 免费观看的影片在线观看| 亚洲性夜色夜夜综合| 亚洲av免费在线观看| 精品久久久久久,| 国产成+人综合+亚洲专区| 国产aⅴ精品一区二区三区波| 午夜福利成人在线免费观看| 午夜精品在线福利| 亚洲狠狠婷婷综合久久图片| 男女下面进入的视频免费午夜| 色在线成人网| 国产野战对白在线观看| 免费在线观看影片大全网站| 日本成人三级电影网站| 欧美最新免费一区二区三区 | 国产高潮美女av| 9191精品国产免费久久| 精品国内亚洲2022精品成人| 亚洲不卡免费看| 在线看三级毛片| 久久午夜亚洲精品久久| 性色avwww在线观看| 俺也久久电影网| 欧美色视频一区免费| 99在线视频只有这里精品首页| 午夜精品久久久久久毛片777| 国产精品嫩草影院av在线观看 | 亚洲一区二区三区色噜噜| 亚洲人成网站在线播放欧美日韩| 欧美区成人在线视频| 国产午夜福利久久久久久| 国产精品亚洲一级av第二区| 亚洲专区国产一区二区| 激情在线观看视频在线高清| 成年版毛片免费区| 亚洲人成网站在线播放欧美日韩| 欧美日韩黄片免| 成人三级黄色视频| 精品久久久久久久久亚洲 | 亚洲成av人片在线播放无| 精品一区二区三区av网在线观看| 真实男女啪啪啪动态图| 久久人妻av系列| 国内精品久久久久精免费| 天堂影院成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品日产1卡2卡| 日本在线视频免费播放| 精品一区二区三区av网在线观看| 国产在线精品亚洲第一网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老女人水多毛片| 脱女人内裤的视频| 窝窝影院91人妻| 亚洲国产日韩欧美精品在线观看| 亚洲av中文字字幕乱码综合| 精品久久久久久久人妻蜜臀av| 美女被艹到高潮喷水动态| 成人欧美大片| 亚洲人成网站高清观看| 国产高清三级在线| 亚洲av中文字字幕乱码综合| 一本综合久久免费| 亚洲最大成人中文| 国产精品一区二区三区四区免费观看 | 欧美色欧美亚洲另类二区| 在线免费观看不下载黄p国产 | 老鸭窝网址在线观看| 一本一本综合久久| 欧美成人a在线观看| 国产欧美日韩一区二区精品| 成人性生交大片免费视频hd| xxxwww97欧美| 欧美中文日本在线观看视频| 欧美成人免费av一区二区三区| 麻豆av噜噜一区二区三区| 欧美中文日本在线观看视频| 中文字幕免费在线视频6| 国产在视频线在精品| 最近最新中文字幕大全电影3| 国产在线精品亚洲第一网站| 校园春色视频在线观看| 精品人妻一区二区三区麻豆 | 99国产精品一区二区三区| 在线十欧美十亚洲十日本专区| 婷婷亚洲欧美| 在线a可以看的网站| 国产一区二区三区视频了| 国产三级中文精品| 亚洲美女黄片视频| 亚洲自拍偷在线| 国产免费av片在线观看野外av| 亚州av有码| 香蕉av资源在线| 哪里可以看免费的av片| 我要搜黄色片| 午夜老司机福利剧场| 国产欧美日韩一区二区精品| xxxwww97欧美| 又爽又黄a免费视频| 欧美潮喷喷水| 久久久久久久久久成人| 婷婷精品国产亚洲av| 一个人看的www免费观看视频| 亚洲 欧美 日韩 在线 免费| 大型黄色视频在线免费观看| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久com| 一进一出抽搐动态| 最近最新免费中文字幕在线| 亚洲狠狠婷婷综合久久图片| 国产精品女同一区二区软件 | 他把我摸到了高潮在线观看| 亚洲国产欧洲综合997久久,| 免费观看人在逋| 国产精华一区二区三区| 国产精品美女特级片免费视频播放器| 色视频www国产| 色av中文字幕| 成人美女网站在线观看视频| 亚洲av中文字字幕乱码综合| 午夜精品一区二区三区免费看| 美女被艹到高潮喷水动态| 亚洲va日本ⅴa欧美va伊人久久| 免费av不卡在线播放| 老熟妇仑乱视频hdxx| 18禁黄网站禁片免费观看直播| 美女高潮喷水抽搐中文字幕| АⅤ资源中文在线天堂| 婷婷六月久久综合丁香| 他把我摸到了高潮在线观看| 国产成人福利小说| 亚洲aⅴ乱码一区二区在线播放| 我要看日韩黄色一级片| 天美传媒精品一区二区| 久久久久国内视频| 18禁黄网站禁片午夜丰满| 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 中文字幕av在线有码专区| 搞女人的毛片| 国产免费一级a男人的天堂| 国产男靠女视频免费网站| 国内少妇人妻偷人精品xxx网站| 18禁黄网站禁片免费观看直播| 免费高清视频大片| 日韩av在线大香蕉| 国产麻豆成人av免费视频| 国产成人欧美在线观看| 很黄的视频免费| 狂野欧美白嫩少妇大欣赏| 丰满人妻熟妇乱又伦精品不卡| 赤兔流量卡办理| 亚洲人成网站在线播放欧美日韩| 国产精品影院久久| 一进一出好大好爽视频| 久久人人爽人人爽人人片va | 久久九九热精品免费| 99久国产av精品| 小蜜桃在线观看免费完整版高清| 一个人看视频在线观看www免费| 国产精品国产高清国产av| 国产精品永久免费网站| 尤物成人国产欧美一区二区三区| 真人做人爱边吃奶动态| 天天一区二区日本电影三级| 国产白丝娇喘喷水9色精品| 小说图片视频综合网站| 日本免费一区二区三区高清不卡| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 日本一二三区视频观看| 一级av片app| 国产伦精品一区二区三区四那| 白带黄色成豆腐渣| 久久久久久九九精品二区国产| 亚洲美女视频黄频| or卡值多少钱| 亚洲最大成人手机在线| 亚洲欧美精品综合久久99| 中文字幕久久专区| 天天一区二区日本电影三级| 91午夜精品亚洲一区二区三区 | 18禁黄网站禁片免费观看直播| 亚洲熟妇熟女久久| 国产黄色小视频在线观看| 真人一进一出gif抽搐免费| 精品99又大又爽又粗少妇毛片 | 啦啦啦韩国在线观看视频| 日韩欧美在线乱码| 成年女人看的毛片在线观看| 亚洲片人在线观看| 国产精品一及| or卡值多少钱| 日韩欧美精品免费久久 | 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 中文字幕人成人乱码亚洲影| 天堂√8在线中文| 欧美成人性av电影在线观看| 三级毛片av免费| 欧美国产日韩亚洲一区| 国产伦在线观看视频一区| 永久网站在线| 欧美在线黄色| 综合色av麻豆| a在线观看视频网站| 国产中年淑女户外野战色| 色尼玛亚洲综合影院| 日本成人三级电影网站| 他把我摸到了高潮在线观看| 午夜老司机福利剧场| 午夜老司机福利剧场| 国产亚洲欧美98| 免费观看精品视频网站| 又紧又爽又黄一区二区| 91av网一区二区| 综合色av麻豆| 国产精华一区二区三区| 成熟少妇高潮喷水视频| 免费av观看视频| 国产一区二区三区视频了| 国产蜜桃级精品一区二区三区| 日韩av在线大香蕉| 国产69精品久久久久777片| av专区在线播放| 欧美区成人在线视频| 中文字幕人成人乱码亚洲影| 亚洲性夜色夜夜综合| 简卡轻食公司| 精品久久久久久成人av| 色5月婷婷丁香| 国产三级在线视频| 色综合站精品国产| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 国产久久久一区二区三区| 99国产精品一区二区三区| 波多野结衣高清无吗| 国产免费av片在线观看野外av| 在线观看美女被高潮喷水网站 | 精品无人区乱码1区二区| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 亚洲成人中文字幕在线播放| 国产成人福利小说| 俺也久久电影网| 色综合欧美亚洲国产小说| 国产午夜精品论理片| 大型黄色视频在线免费观看| 精品午夜福利在线看| 国产高清有码在线观看视频| 男女之事视频高清在线观看| 免费观看的影片在线观看| 天堂影院成人在线观看| 在线观看免费视频日本深夜| 搡女人真爽免费视频火全软件 | 99热这里只有是精品在线观看 | 亚洲,欧美精品.| a在线观看视频网站| 99久久成人亚洲精品观看| 国产乱人伦免费视频| 成人三级黄色视频| 99国产综合亚洲精品| 麻豆av噜噜一区二区三区| 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 亚洲国产色片| 亚洲欧美日韩高清在线视频| 精品国产亚洲在线| 久久久久久久久久成人| 成人av一区二区三区在线看| 97超视频在线观看视频| 午夜免费激情av| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 91麻豆精品激情在线观看国产| 十八禁人妻一区二区| 真实男女啪啪啪动态图| 一区二区三区激情视频| 在线免费观看的www视频| 禁无遮挡网站| 十八禁国产超污无遮挡网站| 国产精品久久久久久久电影| 丰满的人妻完整版| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 亚洲精品在线美女| АⅤ资源中文在线天堂| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| www.999成人在线观看| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| av黄色大香蕉| 网址你懂的国产日韩在线| 热99在线观看视频| 亚洲黑人精品在线| 亚洲欧美精品综合久久99| 一本综合久久免费| 日韩欧美精品v在线| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 一个人看视频在线观看www免费| 午夜福利18| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 国产黄片美女视频| 少妇被粗大猛烈的视频| 老鸭窝网址在线观看| 亚洲精品乱码久久久v下载方式| av福利片在线观看| 欧美黑人欧美精品刺激| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 麻豆成人av在线观看| 久久精品国产自在天天线| 中亚洲国语对白在线视频| 精品久久久久久久久久久久久| 国产视频一区二区在线看| 久久人人爽人人爽人人片va | 老司机午夜福利在线观看视频| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久| 亚洲精品久久国产高清桃花| 天堂网av新在线| 久久热精品热| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 成人国产综合亚洲| 国产精品,欧美在线| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看| 国产真实伦视频高清在线观看 | 亚洲最大成人av| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲无线在线观看| aaaaa片日本免费| 国产探花极品一区二区| 精品久久久久久久久亚洲 | 天美传媒精品一区二区| 亚洲avbb在线观看| 国内精品一区二区在线观看| 精品国产三级普通话版| 一区二区三区免费毛片| 精品一区二区三区av网在线观看| 人妻夜夜爽99麻豆av| or卡值多少钱| 精品午夜福利视频在线观看一区| 亚洲专区国产一区二区| 久久久久久久久大av| 国产真实乱freesex| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 日本 欧美在线| 国产激情偷乱视频一区二区| 欧美又色又爽又黄视频| 久久6这里有精品| 国产aⅴ精品一区二区三区波| 欧美区成人在线视频| 少妇的逼好多水| 性欧美人与动物交配| 亚洲色图av天堂| 88av欧美| 久久草成人影院| 永久网站在线| 少妇裸体淫交视频免费看高清| 欧美高清性xxxxhd video| 人妻夜夜爽99麻豆av| 亚洲av第一区精品v没综合| 一本精品99久久精品77| 日本免费一区二区三区高清不卡| 91在线精品国自产拍蜜月| 国产又黄又爽又无遮挡在线| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 男插女下体视频免费在线播放| 18+在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 成人三级黄色视频| 久久久色成人| 国内精品一区二区在线观看| 丰满乱子伦码专区| 久久精品国产亚洲av天美| 最近在线观看免费完整版| 国产精品人妻久久久久久| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 国内揄拍国产精品人妻在线| 三级毛片av免费| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 亚洲av五月六月丁香网| 日本 av在线| 简卡轻食公司| 亚洲av二区三区四区| 九色成人免费人妻av| 在线免费观看不下载黄p国产 | 成人精品一区二区免费| 国产蜜桃级精品一区二区三区| 久久草成人影院| 我的老师免费观看完整版| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品在线美女| 天美传媒精品一区二区| 99热精品在线国产| 在线观看一区二区三区| 麻豆成人午夜福利视频| 韩国av一区二区三区四区| 国产精品一及| 国内精品久久久久久久电影| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇熟女久久| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| av在线老鸭窝| 亚洲精品成人久久久久久| 欧美成狂野欧美在线观看| 午夜免费男女啪啪视频观看 | 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 女人十人毛片免费观看3o分钟| 欧美高清成人免费视频www| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 18禁在线播放成人免费| 乱码一卡2卡4卡精品| 亚洲自拍偷在线| 1024手机看黄色片| 久久精品国产亚洲av涩爱 | 伦理电影大哥的女人| 国产亚洲欧美在线一区二区| 尤物成人国产欧美一区二区三区| 91av网一区二区| 日韩 亚洲 欧美在线| .国产精品久久| 最近中文字幕高清免费大全6 | 国产人妻一区二区三区在| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | ponron亚洲| 给我免费播放毛片高清在线观看| h日本视频在线播放| 国产精品女同一区二区软件 | 国产探花在线观看一区二区| 久久99热这里只有精品18| 99久国产av精品| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3| 一区福利在线观看| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 日韩亚洲欧美综合| 又紧又爽又黄一区二区| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 国产精品久久久久久久久免 | 精品久久国产蜜桃| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 久久草成人影院| 色在线成人网| 久久久久性生活片| 大型黄色视频在线免费观看| 国产淫片久久久久久久久 | 国产91精品成人一区二区三区| 国产精品永久免费网站| 国产男靠女视频免费网站| bbb黄色大片| 精品人妻偷拍中文字幕| 最近在线观看免费完整版| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 久久国产精品影院| 色播亚洲综合网| 黄色一级大片看看| 91在线精品国自产拍蜜月| 国产午夜精品论理片| a级毛片a级免费在线| 丁香六月欧美| 久久精品影院6| 男女那种视频在线观看| www.色视频.com| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 能在线免费观看的黄片| 999久久久精品免费观看国产| 欧美成人一区二区免费高清观看| 天天一区二区日本电影三级| 制服丝袜大香蕉在线| 国产午夜精品论理片| 亚洲无线在线观看| a级一级毛片免费在线观看| 长腿黑丝高跟| 亚洲人成网站高清观看| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 观看免费一级毛片| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 欧美国产日韩亚洲一区| 国产不卡一卡二| 精品99又大又爽又粗少妇毛片 | 大型黄色视频在线免费观看| 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 麻豆成人午夜福利视频| av在线蜜桃| 简卡轻食公司| 日韩免费av在线播放| 国产精品美女特级片免费视频播放器| 国产高潮美女av| 简卡轻食公司| 精品人妻偷拍中文字幕| 三级毛片av免费| 国产野战对白在线观看| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 深夜a级毛片| 特大巨黑吊av在线直播| 在线观看一区二区三区| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 欧洲精品卡2卡3卡4卡5卡区| 久久这里只有精品中国| 久久伊人香网站| 黄色女人牲交| 一本精品99久久精品77| 欧美黄色片欧美黄色片| 天堂网av新在线| 亚洲狠狠婷婷综合久久图片| 亚洲无线观看免费| 国产精品女同一区二区软件 | 国产精品电影一区二区三区| 少妇的逼好多水| 日日摸夜夜添夜夜添小说| 欧美性猛交黑人性爽| 中文资源天堂在线| 男女之事视频高清在线观看| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 国产精品98久久久久久宅男小说| 亚洲精品久久国产高清桃花| 亚洲中文字幕一区二区三区有码在线看| 成年人黄色毛片网站|