• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超圖自動(dòng)學(xué)習(xí)與最優(yōu)聚類框架結(jié)合的波段選擇

    2022-07-04 03:55:02年米雪汪國(guó)強(qiáng)
    關(guān)鍵詞:工程學(xué)院波段哈爾濱

    年米雪,聶 萍,汪國(guó)強(qiáng)

    (黑龍江大學(xué) 電子工程學(xué)院, 哈爾濱 150080)

    HSI processing has attracted considerable attention in recent years. HSI can provide rich band information from different wavelengths, and gets widely used in various research field, such as biological analysis and medical imaging processing. HSI records the reflectance of electromagnetic waves of different wavelengths, and the reflectance of each electromagnetic wave-lengths and the reflectance of each electromagnetic wave are stored in a 2-D image[1-3]. Hence, an HSI is a data cube containing of hundreds of 2-D images. Though significant successes in the field of HSI application have been obtained, how to deal with the large dimensional data is still a challenging problem so high correlation and dependence among them cause huge computational complexity as well as “Hughes”[4-5]. In view of this, the reduction in HSI is deemed to be a very important work. According to the involvement of the labeled and the unlabeled samples, band selection can be divided into supervised, semisupervised, and unsupervised methods[6- 8]. Supervised and semisupervised methods utilize the labeled samples to guide the selection process. However, the acquisitions of the labeled samples are a difficult task, sometimes they are not very practical in real application. With the development of imaging techniques, hyperspectral sensors are capable of deepening the characterization of various objects with hundreds of contiguous bands. For classification, a wealth of spectral bands not only increase the computational and storage burden of training a classifier but may also degrade the classification accuracy. For instance, due to the lack of labeled pixels, the generalization capability of the classifier is limited when high-dimensional bands are fed back. The problem is namely the curse of dimensionality. In addition, many adjacent bands may be heavily redundant and fail to provide additional discriminative information. Reducing the number of bands, that is, dimensionality reduction, is an effective strategy to solve the aforementioned challenges. In the field of HSI, three techniques are implemented including feature extraction (FE)[9], unmixing, and band selection (BS)[10]. Band selection has three advantages over the other two techniques. First, it only obtains a subset of the original bands and does not generate new features, thereby preserving the physical information from the selected bands. Second, the FE and unmixing techniques typically need all test samples to extract new features,endmembers and corresponding abundances during the test phase[11]. Compared with them, band selection only stores the information related to a few selected bands, which greatly reduces the storage and computational burden. Third, band selection can be combined with the feature extraction and unmixing techniques to improve the efficiency and performance of the latter. For HSI, it is a challenging task to select discriminative bands due to the lack of labeled samples and complex noise. To tackle these issues, we present a band selection method with hypergraph autolearning and optimal clustering framework.

    1 Algorithm description

    1.1 Hypergraph autolearning

    We use the method of randomly dividing band space as defined in the following to obtain subspaces. First, the dimension of thevth subspace is determined by the following formula:

    dv=?[(1-σ1)τmin+σ1τmax]B」

    (1)

    wheredvrepresents the number of available bands for thevth subspace, andσ1∈[0,1] is a uniform random variable. Second, the band associated with this subspace is selected one by one, whose index is determined by the following formula:

    ind=?1+σ2B」

    (2)

    where ind represents the index of the selected band, andσ2∈[0,1] is a uniform random variable. This step is repeated untildvbands selects for thevth subspace. The above-mentioned process of generating subspaces is repeated until all bands appear in one of subspaces at least. In this way, we can get a large number of labeled low-dimensional samples.

    3)Hypergraph-based information sharing: First, subspaces reflect different representations of given training samples. In other words, representations from different subspaces have the same structural distribution. Such as if two representations belong to the same class in one of subspaces, they belong to the same class in other subspaces. Second, the correlation between representations is viewed dependent. For example, the representations of the two training samples in one of LVs are highly correlated; however, this may not be true in other subspaces. Although graph-based methods have been proposed to share information between views from the perspective of preserving local manifold structure, they force the representations from different views to share the same structural distribution and correlation.The method not only reduces the flexibility of information sharing but also is susceptible to unfriendly views and conveys unreliable information.

    4)We propose a novel hypergraph-based information sharing model to solve the problems by dividing the information carried by subspaces into structure information and view-dependent information. The structure information, such as the label distribution, can be shared to convey reliable information. The view-dependent information, such as the difference between representations in the spectral dimension, can be used to preserve the specificity of subspaces. Considering that all subspaces have the same label distribution and share the common label matrix Y, we use label information to construct hyperedges so that representations from the same class are located in the same hyperedge. Hence, different subspaces share the same set of hyperedgesε={ε,…,εC} and incident matrixH∈Rn×C. The degreeecof the hyperedgeεc(1≤c≤C) is equal to the number of samples belonging to the classC, and the bands of representations from different subspaces are different. That is, although the representations from the same class belong to the same hyperedge, the compactness between them varies for different subspaces and is viewed dependent, which is utilized to preserve the specificity of subspaces. This can be done by automatically assigning different weights to the same hyperedge related to various subspaces. Hence, from the perspective of preserving manifold structure, a hypergraph autolearning-based information sharing model can be modeled as

    (3)

    (4)

    1.2 OCF

    (5)

    Without loss of generality, we assume that functionDsis supposed to be maximized. So our optimization problem turns to be

    (6)

    After the optimization problem is clarified, the solution will be given in two steps, named as problem decomposition and subproblem combination, respectively. Mappingfhere is still a general form, which means that the solution will be available for arbitrary definition off.

    (7)

    Then, by enumerating all the possible value ofsk-1, (7) can be derived into

    (8)

    By substitutingk=1 into (7), we have

    (9)

    (10)

    It is easy to see that there is

    (11)

    For more details about the framework, refer to the pseudocode shown in Algorithm 1.

    Algorithm1OCF(DsIsMaximized)Input:SetofbandsXL1,mappingandclus-ternumberK.1:forl 1toLdo2:M1l=f(Ml1)3:Q1l←04:endfor5:fork 2toKdo6:forl ktoLdo7:M1l←-∞8:p?←09:fork←2toKdo10:ifMkl

    ContinuedAlgorithm1OCF(DsIsMaxi-mized)11:Mkl←Mk-1p+f(Xlp+1)12:p?←p13:endif14:endfor15:Qkl←p?16:endfor17:endfor18:s?K←L19:fork←K-1toldo20:s?k←Qk+1s?k+121:endforOutput:CBIVcorrespondingtoMKL:s?=(s?1,s?2,…,s?K-1)T

    2 Experiment and analysis

    To verify the feasibility and effectiveness, the proposed method is compared with scalable one-pass self-representation learning for hyperspectral band selection(SOP-SRL)[12], local-view-assisted discriminative band selection with hypergraph autolearning(LvaHAI)[13]and a fast neighborhood grouping method for hyperspectral band selection(FNGBS)[14].

    2.1 Experimental data sets

    The experimental environment is the 10th generation intelligent Intel six core processor with the main frequency of 2.60 Hz, and the memory is 16 GB. All the methods are implemented in MATLAB R2016b. Experimental data sets are Salinas Valley, Pavia University and Pavia Center from three public hyperspectral image data sets.

    1)Pavia University image acquired with the Reflective Optics System Imaging Spectrometer (ROSIS) sensor have 1.3 m spatial resolutions. This data set consists of 610×340 pixels with 9 classes, in which each pixel has 115 spectrum bands ranging from 0.43 to 0.86 μm. After removing 12 noisy bands, the remaining 103 bands are used for BS and classification. Table 1 show the number of training samples and test samples on PaviaU.

    2) Pavia Center image was also obtained by the ROSIS sensor over Pavia, northern Italy. Hence, it has the same spatial and spectral resolutions as the first data set. In this data set, 1 096×715 pixels from nine classes are included. After noisy spectra are removed, the number of available bands is 102 for the experiments. Table 2 show the number of training samples and test samples on Pavia Center

    Table 1 Number of training samples and test samples on PaviaU

    Table 2 Number of training samples and test samples on Pavia Center

    3)Salinas valley image covers an area located in Salinas Valley, CA, USA. This image was obtained by the Airborne Visible/Infrared Imaging Spectrometer, having 3.7 m spatial resolutions. It consists of 517×217 pixels with 16 classes. When the 20 noise bands (108-112, 154-167, and 224) in terms of water absorption are removed, 204 bands are retained for experimental analysis. The number of training samples and test samples on Salinas are showed as Table 3.

    Table 3 Number of training samples and test samples on Salinas

    2.2 Experimental setup

    K-nearest Neighbor (KNN) classification is adopted for experiment. KNN is the simplest classifier

    in machine learning, which determines the sample category according to the category of K similar training data. The optimal K value is selected through cross-verification. Therefore, the K value is finally selected as 5. Additionally, since we mention that these classifiers are supervised,10% samples from each class based on selected bands are randomly chosen as the training set; the remaining 90% samples are used for test. Moreover, in order to reduce the influence of random selection of 10% samples, the algorithm runs ten times to obtain the average results. Because the desired number of bands that should be selected is unknown, we implement experiments in the range of 5~30 bands to explain the influence of different numbers of bands on classification accuracy. Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient are used as evaluation indexes for hyperspectral image classification.

    2.3 Analysis of experimental results

    The whole band space is first randomly divided into several subspaces of different dimensions, then, for different subspaces, a robust hinge loss function for isolated pixels regularized by the row-sparsity is adopted to measure the importance of the corresponding bands. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections, to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces resulting in the optimal selection of expected bands from a global perspective. Finally, a simple and effective clustering strategy is proposed to select bands,which is fed into a classifier for classification. Classification performance indexes of different number of bands in three data sets are shown in Fig.1~Fig.3. It can be seen that different number of bands have an impact on the performance of classification results. The method proposed in this paper has achieved satisfactory results on OA, AA and Kappa. When the number of bands selected is small, the accuracy of the algorithm is unstable, and when the number of bands is more than 25, the accuracy of the algorithm tends to be stable.

    Fig.1 Relationship between the number of bands and Kappa coefficient

    Fig.2 Relationship between the number of bands and AA

    Fig.3 Relationship between the number of bands and OA

    In order to better verify the effectiveness and superiority of this method, KNN is used as a classifier, and this method is compared with LvaHAI, SOP-SRL and FNGBS which are three latest algorithms. The experimental results are shown in Fig.4, Fig.5 and Fig.6. As can be seen from Fig.4, for Pavia data set, the OA coefficient of this algorithm on KNN classifier is always higher than that of other algorithms. By selecting different number of bands, the algorithm shows excellent classification performance when the number of bands is small. In the case of selecting 10 bands, the OA of this algorithm on Pavia data set is 84.69%, which has exceeded LvaHAI, SOP-SRL and FNGBS. But, as the number of bands continues to increase, when the number of bands increases to 15, the performance does not increase significantly, which may be related to the fact that the subspace contains fewer and fewer bands, so that the current band cannot be judged and updated with more favorable information, indicating that the method is more effective in low dimension.As can be seen from Fig.5, for the Pavia University data set, the OA performance of this algorithm is always higher than that of other algorithms, which further illustrates the superiority of this algorithm. Compared with LvaHAI and FNGBS, this algorithm has better stability. For Salinas data sets, when the number of bands is small, this algorithm performs better than FNGBS algorithm. To sum up, the overall performance of the algorithm is better than other algorithms, with better robustness, even in the case of small samples can also have a good performance.

    Fig.4 OA metrics of the PaviaC dataset

    Fig.5 OA metrics of the PaviaU dataset

    Fig.6 OA metrics of the Salinas dataset

    In order to verify the effectiveness and superiority of the algorithm, 15 bands are taken as examples to classify the ground objects in three data sets respectively, and the classification results are shown in Table 4. As can be seen from Table 2, OA index of this algorithm is higher than other algorithms in Pavia and Pavia University data sets, with an increase of 1.04% and 1.05% respectively compared with LvaHAI algorithm. In the Pavia University data sets, the Kappa index of this algorithm is 4.73% higher than that of SOP-SRL. For Salinas and Pavia University data sets, compared with SOP-SRL and LvaHAI algorithms, AA and Kappa in this paper have certain advantages.

    Table 4 Classification results of different methods on three data sets

    3 Conclusions

    A band selection method with hypergraph autolearning and optimal clustering framework is proposed. The whole band space is randomly divided into several subspaces of different dimensions, each subspace denotes a set of low-dimensional representations of training samples consist of bands associated with it. A hypergraph model that automatically learns the hyperedge weights preserves the local manifold structure of these projections to ensure that samples of the same class have a small distance, and a consensus matrix is used to integrate the importance of bands corresponding to different subspaces. Finally, a simple and effective clustering strategy is proposed to select bands. Through experimental comparison and analysis on three public hyperspectral image data sets, the proposed method has good performance in OA, AA and Kappa, thus verifying the feasibility and effectiveness of the proposed band selection method.

    猜你喜歡
    工程學(xué)院波段哈爾濱
    春日暖陽(yáng)
    我平等地嫉妒每一個(gè)去哈爾濱的人
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    奇妙的哈爾濱之旅
    《老哈爾濱的回憶》國(guó)畫(huà)
    新聞傳播(2016年13期)2016-07-19 10:12:05
    M87的多波段輻射過(guò)程及其能譜擬合
    感受哈爾濱的冬天
    高清毛片免费看| 中文字幕精品亚洲无线码一区| 亚洲欧美精品综合久久99| 联通29元200g的流量卡| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 我要搜黄色片| 美女高潮的动态| 麻豆一二三区av精品| 在线a可以看的网站| 看非洲黑人一级黄片| 亚洲av一区综合| 最近的中文字幕免费完整| 淫妇啪啪啪对白视频| 精品福利观看| 午夜a级毛片| 免费看美女性在线毛片视频| 性欧美人与动物交配| 免费av观看视频| 久久热精品热| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 久久人妻av系列| 亚洲av二区三区四区| 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 搡老熟女国产l中国老女人| 女同久久另类99精品国产91| 1000部很黄的大片| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 欧美bdsm另类| 久久韩国三级中文字幕| 日本在线视频免费播放| 国产精品久久久久久久电影| 欧美精品国产亚洲| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 99热6这里只有精品| 午夜视频国产福利| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 看免费成人av毛片| 午夜福利高清视频| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 桃色一区二区三区在线观看| 国产免费男女视频| 一区福利在线观看| 一个人观看的视频www高清免费观看| 99久国产av精品| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 亚洲欧美清纯卡通| 国产综合懂色| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 久久午夜亚洲精品久久| 成人精品一区二区免费| 欧美日本亚洲视频在线播放| 91麻豆精品激情在线观看国产| 亚洲精品国产成人久久av| 狂野欧美激情性xxxx在线观看| 亚洲内射少妇av| 国产精品三级大全| 日韩欧美三级三区| 亚洲自偷自拍三级| a级毛片a级免费在线| 亚洲精品粉嫩美女一区| 成人特级av手机在线观看| 69人妻影院| a级毛色黄片| 淫妇啪啪啪对白视频| 人妻制服诱惑在线中文字幕| 国产av麻豆久久久久久久| 精品午夜福利视频在线观看一区| 少妇人妻精品综合一区二区 | 国产精品一区二区免费欧美| 国产乱人偷精品视频| 久久久久精品国产欧美久久久| 内射极品少妇av片p| 国产真实伦视频高清在线观看| 久久综合国产亚洲精品| 亚洲久久久久久中文字幕| 久久久久久久久久成人| 国产不卡一卡二| 在线观看美女被高潮喷水网站| 亚洲国产色片| 成年女人毛片免费观看观看9| 在线免费观看不下载黄p国产| 久久午夜亚洲精品久久| 国产男人的电影天堂91| 亚洲av美国av| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜 | 色吧在线观看| 老熟妇仑乱视频hdxx| 男女啪啪激烈高潮av片| 村上凉子中文字幕在线| www日本黄色视频网| 国产一区亚洲一区在线观看| 久久久久九九精品影院| 亚洲中文日韩欧美视频| 美女免费视频网站| 毛片一级片免费看久久久久| 日本黄色片子视频| 久久久久精品国产欧美久久久| 老司机福利观看| 亚洲欧美中文字幕日韩二区| 一本一本综合久久| 成年免费大片在线观看| 免费看av在线观看网站| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜爱| 高清毛片免费观看视频网站| 成人鲁丝片一二三区免费| 亚洲人成网站高清观看| 禁无遮挡网站| 国产精品不卡视频一区二区| 国内精品一区二区在线观看| 一个人看的www免费观看视频| ponron亚洲| www.色视频.com| 精品免费久久久久久久清纯| 99久久精品国产国产毛片| 成人亚洲精品av一区二区| 久久久久久久久中文| 国产亚洲精品久久久久久毛片| 精品久久久久久久久亚洲| 国产精品一及| 99久久中文字幕三级久久日本| 在线观看av片永久免费下载| 亚洲电影在线观看av| 美女大奶头视频| 日韩中字成人| 色综合站精品国产| 国产淫片久久久久久久久| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 日本色播在线视频| 少妇的逼好多水| 日韩欧美精品免费久久| av在线播放精品| 欧美日韩乱码在线| 偷拍熟女少妇极品色| 国产精华一区二区三区| 精品久久久久久久久久久久久| 国产精品99久久久久久久久| av.在线天堂| 国产成人91sexporn| 国产淫片久久久久久久久| 久久久久免费精品人妻一区二区| 免费av毛片视频| 亚洲国产色片| h日本视频在线播放| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 国产精品久久久久久久电影| 免费观看人在逋| 少妇人妻精品综合一区二区 | ponron亚洲| 不卡一级毛片| 精品一区二区三区视频在线观看免费| 亚洲精品日韩在线中文字幕 | 亚洲乱码一区二区免费版| 嫩草影院入口| 尾随美女入室| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9| 大香蕉久久网| 少妇丰满av| 舔av片在线| 色播亚洲综合网| 69av精品久久久久久| av视频在线观看入口| 一本一本综合久久| 久久久精品大字幕| 人妻制服诱惑在线中文字幕| 村上凉子中文字幕在线| 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 精华霜和精华液先用哪个| 毛片女人毛片| 中文字幕av在线有码专区| 一区福利在线观看| 国产亚洲欧美98| 高清午夜精品一区二区三区 | 精品人妻熟女av久视频| 人人妻人人澡人人爽人人夜夜 | 麻豆国产97在线/欧美| 深爱激情五月婷婷| 精品久久国产蜜桃| 国产一区二区三区在线臀色熟女| 春色校园在线视频观看| 亚洲在线自拍视频| 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 免费大片18禁| 成人美女网站在线观看视频| 男人舔奶头视频| 美女内射精品一级片tv| 中国美白少妇内射xxxbb| 久久久久久久久大av| 午夜激情福利司机影院| 不卡一级毛片| 99久久无色码亚洲精品果冻| 久久亚洲国产成人精品v| 我的女老师完整版在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 男女之事视频高清在线观看| 午夜免费男女啪啪视频观看 | 国产av一区在线观看免费| 悠悠久久av| 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 久久99热这里只有精品18| 久久精品夜色国产| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 18禁在线播放成人免费| 淫妇啪啪啪对白视频| 嫩草影视91久久| 免费大片18禁| 午夜激情欧美在线| 国产伦精品一区二区三区四那| 欧美区成人在线视频| 亚洲中文字幕一区二区三区有码在线看| 2021天堂中文幕一二区在线观| 欧美精品国产亚洲| videossex国产| 一级av片app| 成人高潮视频无遮挡免费网站| 色噜噜av男人的天堂激情| 最后的刺客免费高清国语| 少妇的逼水好多| 国产精品福利在线免费观看| 免费大片18禁| 最近手机中文字幕大全| 久久久久九九精品影院| 久99久视频精品免费| 老女人水多毛片| 悠悠久久av| 欧美性猛交黑人性爽| 国产美女午夜福利| 国产探花在线观看一区二区| 精品福利观看| 日韩欧美在线乱码| 久久精品国产自在天天线| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 成人三级黄色视频| 精品无人区乱码1区二区| 九九在线视频观看精品| 欧美激情在线99| 久久久精品大字幕| 色吧在线观看| 国产人妻一区二区三区在| 久久久久久久久久成人| 哪里可以看免费的av片| 亚洲国产精品国产精品| avwww免费| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 亚洲欧美成人综合另类久久久 | 午夜久久久久精精品| 亚洲无线观看免费| 国产爱豆传媒在线观看| 久久精品夜夜夜夜夜久久蜜豆| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 亚洲av成人精品一区久久| 国产高清激情床上av| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜 | 日韩欧美在线乱码| 色综合站精品国产| 国产色爽女视频免费观看| 在线观看一区二区三区| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 国产亚洲av嫩草精品影院| 三级经典国产精品| 国产精品久久久久久av不卡| 婷婷亚洲欧美| 色播亚洲综合网| 日韩国内少妇激情av| 狂野欧美激情性xxxx在线观看| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 在线免费观看的www视频| 久久精品国产亚洲av天美| 深夜a级毛片| 中文字幕精品亚洲无线码一区| 成人av一区二区三区在线看| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 亚洲专区国产一区二区| 久久久久国内视频| 波野结衣二区三区在线| 精品一区二区三区视频在线观看免费| 我的女老师完整版在线观看| 我要看日韩黄色一级片| 高清毛片免费观看视频网站| 日本黄色片子视频| 少妇熟女aⅴ在线视频| av国产免费在线观看| av在线播放精品| 高清毛片免费看| 国产精品一区二区性色av| 欧美性感艳星| 在线播放国产精品三级| 中文字幕av成人在线电影| 日日摸夜夜添夜夜爱| 日本免费a在线| 极品教师在线视频| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 在线看三级毛片| 一级黄色大片毛片| or卡值多少钱| 波多野结衣高清作品| 最近手机中文字幕大全| 日韩欧美国产在线观看| 在线a可以看的网站| 久久这里只有精品中国| 欧美zozozo另类| 中出人妻视频一区二区| .国产精品久久| 国产av不卡久久| 一区二区三区免费毛片| 99热这里只有是精品50| av天堂在线播放| 黄色视频,在线免费观看| 国产aⅴ精品一区二区三区波| 成年女人看的毛片在线观看| 插阴视频在线观看视频| 精品一区二区三区视频在线观看免费| 最近在线观看免费完整版| 寂寞人妻少妇视频99o| 春色校园在线视频观看| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 最近2019中文字幕mv第一页| 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 99热全是精品| 久久久久久九九精品二区国产| 69av精品久久久久久| 在线国产一区二区在线| 久久这里只有精品中国| 国内精品宾馆在线| av在线老鸭窝| 国产黄片美女视频| 久久精品久久久久久噜噜老黄 | 日日摸夜夜添夜夜添小说| 亚洲成人久久性| 欧美zozozo另类| 成人精品一区二区免费| 亚洲不卡免费看| 你懂的网址亚洲精品在线观看 | 久久久欧美国产精品| 精品国产三级普通话版| 久久久久性生活片| 国产极品精品免费视频能看的| 99久久无色码亚洲精品果冻| 亚洲无线观看免费| 深夜精品福利| 在线观看午夜福利视频| 成人国产麻豆网| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 国产精品一区二区三区四区久久| 亚洲四区av| 亚洲丝袜综合中文字幕| 你懂的网址亚洲精品在线观看 | 欧美中文日本在线观看视频| 人人妻人人看人人澡| 成人国产麻豆网| 老女人水多毛片| 亚洲成人久久性| 午夜爱爱视频在线播放| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品有码人妻一区| 一本精品99久久精品77| 精品久久久久久久久av| 欧美高清成人免费视频www| 美女xxoo啪啪120秒动态图| 国产成人freesex在线 | 看免费成人av毛片| 日韩强制内射视频| 十八禁国产超污无遮挡网站| 不卡一级毛片| 波多野结衣高清作品| 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看 | 最近的中文字幕免费完整| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 男女那种视频在线观看| 午夜福利在线在线| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 嫩草影院新地址| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 国内精品一区二区在线观看| 最近手机中文字幕大全| 亚洲精品亚洲一区二区| 晚上一个人看的免费电影| 国产蜜桃级精品一区二区三区| 亚洲av成人精品一区久久| 女生性感内裤真人,穿戴方法视频| 欧美日本视频| 超碰av人人做人人爽久久| 亚洲欧美成人精品一区二区| 久久久久久九九精品二区国产| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 男女啪啪激烈高潮av片| 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 国产av不卡久久| 国产又黄又爽又无遮挡在线| 欧美bdsm另类| 性欧美人与动物交配| 1000部很黄的大片| 性色avwww在线观看| 亚洲av五月六月丁香网| 免费观看人在逋| 亚洲精华国产精华液的使用体验 | 狂野欧美激情性xxxx在线观看| 六月丁香七月| 成人永久免费在线观看视频| 久久久久久久午夜电影| 联通29元200g的流量卡| www日本黄色视频网| 性欧美人与动物交配| 日本与韩国留学比较| 亚洲人与动物交配视频| 1000部很黄的大片| 一本一本综合久久| 欧美日韩综合久久久久久| 亚洲五月天丁香| 伦理电影大哥的女人| 一个人免费在线观看电影| 欧美高清成人免费视频www| 精品久久国产蜜桃| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 如何舔出高潮| 国产真实伦视频高清在线观看| 成年免费大片在线观看| 国产精品久久久久久亚洲av鲁大| 日韩 亚洲 欧美在线| 91久久精品电影网| 好男人在线观看高清免费视频| 午夜福利在线观看免费完整高清在 | 成人特级av手机在线观看| 国产av麻豆久久久久久久| 久久精品综合一区二区三区| 青春草视频在线免费观看| 波多野结衣高清作品| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 国产 一区 欧美 日韩| 色综合亚洲欧美另类图片| 高清毛片免费看| 99久久精品热视频| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 亚洲不卡免费看| 婷婷六月久久综合丁香| 亚洲国产精品久久男人天堂| 精品久久久久久久久亚洲| 成人国产麻豆网| 97超碰精品成人国产| 亚洲国产欧美人成| 精品一区二区三区av网在线观看| 国产私拍福利视频在线观看| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 亚洲真实伦在线观看| 最近的中文字幕免费完整| 国产乱人视频| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 亚洲四区av| 不卡一级毛片| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 日韩高清综合在线| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 全区人妻精品视频| 床上黄色一级片| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 国产成人a区在线观看| 精品午夜福利在线看| 亚洲三级黄色毛片| 色吧在线观看| 国产中年淑女户外野战色| 夜夜夜夜夜久久久久| 免费观看在线日韩| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品 | 亚洲欧美成人综合另类久久久 | 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 久久精品国产亚洲av天美| 久久久成人免费电影| 久久精品国产亚洲av天美| 国产成人91sexporn| 老女人水多毛片| 99久久中文字幕三级久久日本| 中文字幕久久专区| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 在线播放无遮挡| 狠狠狠狠99中文字幕| 网址你懂的国产日韩在线| 最近手机中文字幕大全| 永久网站在线| 亚洲国产精品成人久久小说 | a级毛色黄片| 悠悠久久av| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 久久久色成人| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线| 亚洲成人久久性| 国产黄色视频一区二区在线观看 | 国产真实乱freesex| 亚洲成人久久性| 久久久国产成人免费| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 别揉我奶头 嗯啊视频| av免费在线看不卡| 美女被艹到高潮喷水动态| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放 | 18禁在线无遮挡免费观看视频 | 亚洲av熟女| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 婷婷亚洲欧美| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 最近在线观看免费完整版| 在线观看av片永久免费下载| 性欧美人与动物交配| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清视频在线播放一区| 午夜激情福利司机影院| 国产 一区精品| 99riav亚洲国产免费| 美女被艹到高潮喷水动态| 一级毛片久久久久久久久女| 变态另类成人亚洲欧美熟女| 国产精华一区二区三区| 久久热精品热| 特大巨黑吊av在线直播| 日韩欧美三级三区| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 俺也久久电影网| 中文字幕av成人在线电影| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 中文字幕人妻熟人妻熟丝袜美| 国产一区亚洲一区在线观看| 一级毛片aaaaaa免费看小|