• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces

    2022-07-02 07:44:30ShuangxinHeChaoyangWangXuanZhouLeitingDongandSatyaAtluri

    Shuangxin He,Chaoyang Wang,Xuan Zhou,★,Leiting Dong,★and Satya N.Atluri

    1School of Aeronautic Science and Engineering,Beihang University,Beijing,China

    2Department of Mechanical Engineering,Texas Tech University,Lubbock,USA

    ABSTRACT The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.

    KEYWORDS Symmetric Galerkin boundary element method;rotational inertia;gravitational force;weak singularity;stress intensity factor

    Nomenclature

    EYoung’s modulus

    νPoisson’s ratio

    μShear modulus

    ρDensity

    giGravitational acceleration

    ωiAngular velocity

    1 Introduction

    The Symmetric Galerkin Boundary Element Method (SGBEM) [1–3] has gained increasing popularity in fracture and crack-growth analysis of solid structures due to its attractive features of symmetric coefficient matrices,weak-singularity,and that only boundary &crack-surface elements are needed.The papers by Bonnet et al.[3–5] are devoted to the formulation,numerical evaluation and implementation of SGBEM.Atluri et al.[6–9] utilized a simple and straightforward methodology to develop regularized traction Boundary Integral Equations (tBIE) for two and three-dimensional linear-elastic solids containing cracks,and also developed weakly-singular SGBEMs for the fracture and fatigue analysis of various complex structures.However,for the fracture mechanics problems such as turbine discs and turbine blades of aircraft engines,concrete gravity dam,etc.,SGBEM may lose its advantages,because evaluation of domain integral terms resulting from body forces such as rotational inertia and gravitational loads leads to the meshing of the interior of the domain.For this reason,a method to evaluate such domain integral terms using only boundary meshes,is desired to efficiently analyze cracked structures considering body forces with SGBEM.

    For the conventional collocation boundary element method based on Somigliana’s identity for the displacement vector,a few methods were developed for this purpose.Considering centrifugal loads presented in rotating gas turbines,Cruse et al.[10,11] transformed domain integrals to boundary integrals by utilizing the divergence theorem.By making use of the Galerkin vector or the Green’s second identity,Danson [12] transformed the volume integral terms to boundary integral terms,for three kinds of body forces,i.e.,gravitational loads,the rotational inertia and steady-state thermal loads.Gao [13] also developed a radial integration technique and applied it to deal with various body forces.Brebbia et al.[14] developed the dual reciprocity method [15]which converts the associated domain integrals into boundary integrals by using a series of basis functions to approximate the body force fields.Brebbia et al.[16] extended the idea of dual reciprocity and proposed another approach,multiple reciprocity method.

    Different from the conventional collocation boundary element method [17–19] based on the Somigliana’s identity,formulations of SGBEM [5,8,20] result in weak-form displacement Boundary Integral Equations (dBIE) and weak-form traction Boundary Integral Equations (tBIE).As a matter of fact,the domain integrals caused by body forces appear both in dBIE and tBIE.Moreover,it is beneficial to use tBIE to derive weak-form equations on crack-surfaces,where displacement discontinuities are to be solved as unknowns [5].Thus,if SGBEM is utilized for linear fracture analysis of cracked structures,while for domain integrals appearing in dBIE,one may refer to the above-mentioned transformation techniques,the treatment for domain integral terms appearing in tBIE needs further study.

    This paper presents the weakly singular traction boundary integral equation for solids undergoing rotational inertia and gravitational Loads.By using the divergence theorem (div) or the radial integration method (RIM),domain integrals induced by rotational inertia or gravitational forces are transformed into boundary integrals correspondingly.The derived formulas show that these transformed boundary integral terms have no influence upon the coefficient matrix of SGBEM,but only affect the right-hand-side vector.The transformed boundary integral terms derived by the divergence theorem and radial integration method,possessing 1/rsingularity,is weakly singular.Numerical examples demonstrate that only a few Gauss points are sufficient to evaluate boundary integrals.The developed SGBEM with only weakly-singular boundary integrals are thus applied to simulate various examples of 3D solids with/without considering rotational inertia and gravitational loads.

    This paper is organized as follows.In Section 2,transformation from domain integrals induced by gravitational and rotational inertia forces to the boundary integrals by div or RIM respectively is carried out.Some numerical examples for solids undergoing rotational inertia or gravitational loads are presented in Sections 3 and 4 with and without cracks correspondingly.In Section 5,we complete this paper with some concluding remarks.

    2 Weakly Singular Galerkin Boundary Integral Equations and Boundary Element Method with Rotational Inertia and Gravitational Loads

    Consider a linear elastic,homogenous and isotropic solid undergoing an infinitesimal elastostatic deformation,as shown in Fig.1.Ωis the solution domain of the problem with the boundary?Ω.ξrepresents the field point at a generic location in Cartesian coordinates.x is the source point of the 3D Kervin’s solution [21] where a unit load in an arbitrary directionpis applied.The displacement fundamental solutionin thejdirection corresponding to this unit load and other kernel functionsderived byare listed in the appendix.One may also refer to other forms of these kernel functions in [5,20].

    The symmetric Galerkin formulations of displacement and traction Boundary Integral Equations (d &tBIE) for linear elastic solids can be found in [8].The derivation of the conventional boundary element method and SGBEM [5,8,20] generally ignored body forces.Here,the domain integrals considering body forces are added in the equations:

    In the above two equations,if the domain integral or boundary integral is with respect to the field point,the integral domain is denoted byΩξor Γξ,respectively;otherwise for source point,the integral domain is denoted by Sx.up(x)andtp(x)are the displacement and the traction at the source point,respectively.δis the variational symbol which is used to import the Galerkin weight function.fj(ξ)is the body force per unit volume.ni(ξ)is the component of outward unit normal at a field point on the boundary.Dtis a surface tangential operator:

    whereerstis the permutation coefficient defined bye123=e231=e312=1;e321=e213=e132=-1;erst=0 if any two of the indices are identical.

    In this paper,the domain integral:

    appearing in traction boundary integral Eq.(2) considering rotational inertia and gravitational loads is transformed into weakly singular boundary integral,using the divergence theorem or the radial integration method.

    The radial integration method is introduced here briefly.For further details,one may refer to [13].Domain integral on the left-hand-side of Eq.(5) with a general functionf (ξ)may be written in Cartesian coordinate system(x1,x2,x3)or in spherical coordinate system(r,θ,φ)with the origin at the source pointPshown in Fig.2.

    Figure 2:Cartesian and spherical coordinate systems

    In the spherical coordinate system

    where

    In the spherical coordinate system,the area of infinitesimal elementdS on the spherical surface can be expressed as

    If the field point is on the boundary Γ of domainΩ,geometric projective transformation can be established between the spherical surface infinitesimal elementdS and the real boundary surface infinitesimal elementdΓ shown in Fig.3.

    whereniis the component of outward unit normal of field point on the real boundary surfacedΓ,riis the Cartesian component ofr,i.e.,

    Figure 3:Spherical surface dS and real boundary dΓ

    By some derivations,the domain integral can be rewritten as

    whereF(r)is evaluated by a radial integration ofR2f (ξ)on the segment linking the source point and the field point,i.e.,

    ?r/?nis the directional derivative at the field point on the boundary,which may be expressed as

    where(),idenotes the partial differentiation with respect to the Cartesian component of field point if not otherwise stated.Andr,ican be expressed as

    Some useful formulas related tor(r/=0) are listed as follows:

    In Subsections 2.1 and 2.2,the domain integral terms with rotational inertia and gravitational loads in tBIE are transformed into weakly singular boundary integral terms by two methods of divergence theorem and radial integration method,respectively.

    2.1 Transformation of Domain Integrals with Gravitational Loads to Boundary Integrals

    Consider a solid body with a constant mass densityρ,and a constant gravitational fieldgi=const.The body force will also be constant,where

    In this section,the body forcefj(ξ)in Eq.(4) is defined as gravitational force.The purpose of this section is transforming the domain integral of Eq.(4) considering gravitational force into the boundary integral.Note that-x)in Eq.(4) is the stress field of Kelvin’s solution:

    whereνis the Poisson’s ratio;δabis the Kronecker Delta.

    Thus,the constant gravity forcefican be taken outside the integral in Eq.(4).Then we get

    2.1.1 Using Divergence Theorem to Transform Domain Integrals with Gravitational Forces

    Substitution of Eq.(19) into Eq.(26),we have

    Substituting Eq.(22) into Eq.(27),we have

    Using divergence theorem and Eq.(16),we can get that

    Note that,a singularity of 1/rappears in the boundary integral of Eq.(29).This integral is weakly-singular [8],thus Cauchy principal value integral [22] does not need to be taken into account.The numerical integration method to evaluate this weakly-singular integral is stated briefly in Section 2.3.3.

    2.1.2 Using the Radial Integration Method to Transform Domain Integrals with Gravitational Forces

    Using radial integration method,Eq.(26) can be rewritten as

    where

    From Eq.(13) and Fig.2,one can find thatR,iis the cosine betweenrand coordinate axisi,i.e.,R,i=r,i.Thus,R,ican be taken out of this radial integral Eq.(31) directly.Substitution of Eq.(31) into Eq.(30) gives

    Note that,when the field point approaches the source point,?r/?n→0.Singularity of the boundary integral in Eq.(32) therefore is weaker than that in Eq.(29).

    2.2 Transform Domain Integrals with Rotational Inertia to Boundary Integrals

    About an analytical expression of the rotational inertial force in detail,one may refer to [19].Here we introduce it briefly.Consider a solid body of uniform mass densityρrotating about one axis with angular velocityωi.For simplicity and without loss of the generality,we consider that the axis of rotation passes through the origin of Cartesian coordinate system shown in Fig.4.

    Figure 4:The rotational axis passing through the origin of Cartesian coordinate system

    By the D’Alembert’s principle,body force resulting from the rotational inertia is

    Eq.(33) may be written in index notation as

    where

    Note thathjiis constant and can be described in a more straightforward way:

    Then this dynamic problem can be treated as an elastostatics problem.Using Eqs.(4),(25)and (34),we get

    2.2.1 Using Divergence Theorem to Transform Domain Integrals with Inertial Force

    Similar to the derivation of Eq.(28),the inertial force domain integrals with the rotational inertia can be written as

    Substituting Eqs.(39) and (40) into Eq.(38) and using Eq.(17),

    We get

    Then using the divergence theorem,we get

    Note that the boundary integrals in Eq.(42) have the property of 1/rweak-singularity.

    2.2.2 Using Radial Integration method to Transform Domain Integrals with Inertial Force

    Using radial integration method,Eq.(37) may be rewritten as

    As is mentioned above,R,jcan be taken outside the integral directly.Note that,F(r)is the radial integral about the field pointξ.Substitution of Eq.(9) into Eq.(44) gives

    Note that,for radial integralF(r),source point x is constant.We can directly compute this radial integral.Substitution of Eq.(45) into Eq.(43) gives

    Eq.(46) is the boundary integral form with the rotational inertia force obtained by the radial integration method.

    2.3 Weakly-Singular SGBEM with Numerical Implementation

    We have obtained weakly singular boundary integrals transformed from domain integrals considering rotational inertia and gravitational loads by the divergence theorem or radial integration method.In this section,the displacement and traction boundary integral equations considering crack surfaces and rotational inertia and gravitational loads are given.Then numerical evaluation of weakly singular double layer surface integrals by using quadrilateral elements is introduced briefly.

    2.3.1 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by

    Divergence Theorem

    Consider a crack embedded in the domainΩshown in Fig.5.The crack surfaces are denoted asS+CandS-Cwhich are geometrically coincident.The outward normal direction ofS+Cis opposite to that ofS-C.With the assumption that the traction acting on crack surfaces satisfies thatt+j+t-j=0,the boundary of the domainΩcan be defined as

    whereSuis the part of boundary where displacement is known andStis the part of boundary where traction is known.The displacement discontinuity on crack surfaces may be defined as

    whereis the displacement of point x+onis the displacement of point x-onS-C;Δumust be zero around the crack front.Points x+and x-are geometrically coincident.

    Figure 5:Displacement discontinuity in domain Ω

    If the weak-form traction boundary integral equation is applied onSt,we may get that

    And if the weak-form traction boundary integral equation is applied on the crack surfacesSc,we may get that

    Finally,the weak-form displacement boundary integral equation is applied on the prescribed displacement boundary surfacesSu,we may get that

    Eqs.(49)–(51) are the weakly-singular traction and displacement boundary integral equations considering rotational inertia and gravitational loads obtained by using divergence theorem.Eandνare Young’s modulus and Poisson’s ratio of the isotropic solid,respectively.Then we may discretize boundary surfaces?Ωinto boundary elements.Traction field functions can be written in terms of nodal shape functions asatSt;similarly displacement field functions can be written asatSt,where an overline denotes that the nodal variables are known.In this way,the discretized traction and displacement SGBEM equations are obtained,and we denote this method as SGBEM-div in this paper.

    2.3.2 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by the Radial Integration Method

    Similar to Eqs.(49)–(51),the weakly-singular traction and displace BIE considering rotational inertia and gravitational loads by radial integration method can be written as follows:

    By the same discretization procedure mentioned above for Eqs.(52)–(54),the SGBEM equations obtained by radial integration method can be obtained,and we denote this as SGBEM-RIM in this paper.

    It can be seen that,for Eqs.(49),(50) using the divergence theorem,there exists 1/rsingularity in boundary integral terms containing rotational inertia and gravitational loads;while for Eqs.(52),(53) using the radial integration method,there exists 1/r·?r/?nin boundary integral terms containing rotational inertia and gravitational loads.As is mentioned above,when the field point approaches the source point,?r/?n→0.In other words,by the radial integration method,the obtained boundary integral terms may have weaker singularity compared with those obtained by the divergence theorem.

    2.3.3 Numerical Evaluation of Weakly-Singular Double Surface Integrals Using Quadrilateral Elements

    In this paper,8-noded quadrilateral isoparametric elements are selected for the numerical implementation,and quarter-point singular quadrilateral elements with two mid-side nodes shifted towards the crack front as shown in Fig.6 are adopted at the crack front.For the numerical evaluation of double surface integrals by quadrilateral isoparametric elements in detail,one may refer to [3],here it is introduced briefly.

    Figure 6:A quarter-point singular quadrilateral element

    As shown in Fig.7,there are four quadrilateral elementsA,B,C,D.In the computation of the double layer surface (Sx&Γξ) integrals,two elements will form a pair.One appears in the Sx,while the other appears in Γξ.There exist four kinds of cases: coincident elements,e.g.,Ax&Aξ;adjacent elements sharing one edge,e.g.,Ax&Bξsharing edgepq;adjacent elements sharing one vertex,e.g.,Ax&Cξsharing vertexp;distinct elements,e.g.,Ax&Dξ.Numerical integral for a pair of distinct elements do not need special treatment.But for the first three cases,a coordinate transformation is used for numerical integration,which can introduce a Jacobian exploited to cancel singularity of the boundary integral.

    Figure 7:Cases of pairs of quadrilateral elements

    For a pair of distinct elements,standard isoparametric coordinate transformation is used together with the standard Gauss-Legendre quadrature.As an example,the double layer surface integral considering gravitational loads obtained by the divergence theorem in Eq.(49) is considered at here.

    For simplicity,we rewrite it as

    whereare isoparametric coordinates corresponding to Cartesian coordinatesx1,x2,ξ1,ξ2.It should be noted that,in Eq.(56),includes the Jacobians of the coordinate transformation.

    For cases of coincident elements,adjacent elements sharing one edge,adjacent elements sharing one vertex,further coordinate transformations are given in below to cancel the singularity caused by 1/rappearing in Eq.(56).

    For a pair of coincident elements,local isoparametric coordinates are shown in Fig.8.The boundary integral domain is partitioned into 8 subdomains.For each case we may implement a further transformation of variables listed in Table 1.

    Table 1:Transformation of variables for a pair of coincident elements

    Figure 8:Isoparametric coordinates for a pair of coincident elements

    In Table 1,v1,v2,v3,v4are defined as follows:

    The Jacobian for such a variable transformation can be used to cancel the singularity in Eq.(56):

    For a pair of coincident elements,Eq.(56) can be rewritten as

    For a pair of common-edge elements,local isoparametric coordinates are shown in Fig.9.

    Figure 9:Local isoparametric coordinates for a pair of common-edge elements

    This boundary integral domain is partitioned into 6 subdomains.For each case we may implement a transformation of variables listed in Table 2.

    Table 2:A transformation of variables and Jacobians for common-edge elements

    In Table 2,v1,v2,v3,v4,v5andJ1,J2are defined as follows:

    Jacobians of the variable transformation are

    For a pair of elements with a common vertex,local isoparametric coordinates is shown in Fig.10.

    Figure 10:Isoparametric coordinates for a pair of elements with a common vertex

    This boundary integral domain is partitioned into 4 subdomains.For each case,a transformation of variables listed in Table 3 is implemented.

    Variablesv1,v2,v3,v4are defined as follows:

    The Jacobian of the variable transformation can be used to cancel the singularity in Eq.(56):

    3 Numerical Examples without Cracks

    In this section and the next section some examples without or with crack are implemented respectively to verify SGBEM-div or SGBEM-RIM developed in Section 2.

    3.1 Numerical Test of the Effect of the Number of Integration Points

    In this section,the double surface integral term in Eq.(55),for a pair of coincident square elements,is evaluated using the quadrature method given in Section 2.3.3,considering the problem of a cube of two kinds of meshes undergoing gravity given in Section 3.2.Fig.11 shows the logarithmic value of the absolute value of relative errors for the numerical integration of both a pair of square elements and a pair of distorted elements.The error is very small when the number of Gauss integration points is larger than 6.Thus,8 gauss points are used for the evaluation of double layer surface integrals in the following examples except for the cube undergoing gravitational loads in Section 3.2.

    The effect of the number of integration points is shown in Fig.12,where the relative error is defined as follows: relative error=[I(n)-I(48)]/I(48)×100%,where I(n) is evaluated double surface integral withnGauss points.

    Figure 11:Relative errors for the evaluated weakly-singular boundary integral

    3.2 A Cube Undergoing Gravitational Loads

    We consider a cube with dimensions of 10 mm×10 mm×10 mm [13],which is discretized into 96 quadratic boundary elements with 290 boundary nodes.Two kinds of meshes of the cube is presented in Fig.12.The surfacez=0 is completely fixed.The elastic constants are chosen to be the Young’s modulusE=1000Mpa and the Poisson’s ratioν=0.

    Figure 12:Mesh of a cube (a) elements being square,(b) elements being distorted

    The gravitational forceρg3=-10 Mpa/mm is considered.And the analytical solution for the vertical displacement is

    Because the analytical solution is only quadratic with respect to z coordinate,3 Gauss points are used for the evaluation of vertical displacements along the directionzshown in Table 4.The computational results of both square and distorted elements are in excellent agreement with the exact solution.

    Table 4:Vertical displacements of cube undergoing gravitational loads

    3.3 A Rotating Disk

    In the second example,a disk with inner radius of 0.1m and outer radius of 0.2 m,rotating at a constant angular speedω=10000rpm(Fig.13),is considered.The thickness of this disk ist=0.02m.The elastic constants are chosen to be the Young’s modulusE=7000Mpa and the Poisson’s ratioν=0.3;densityρ=2800 kg/m3.All the boundary surface of this disk is free from traction.The distribution of displacement in a rotating elastic disk

    can be found in [23] whereRis the radial coordinate,Ethe Young’s modulus andνthe Poisson’s ratio.The boundary of the disk is discretized with 3 elements in radial direction,16 elements in circumferential direction,and 1 element in axial direction (Fig.14).4 nodes on the x-y plane highlighted in Fig.14 are fixed in z direction;2 nodes on the x-z plane are fixed in y direction;and 2 nodes on the y-z plane are fixed in x direction.

    Figure 13:A rotating disk

    Figure 14:SGBEM dense mesh of the rotating disk

    Table 5 shows the computed radial displacements with the mesh shown in Fig.14.“Exact”denotes exact solutions by the Eq.(61).For each point,“Maximum error” of SGBEM-div and SGBEM-RIM is computed with the exact solution as the reference.As can be seen,computational results by SGBEM-div and SGBEM-RIM are in excellent agreement with the exact solutions.

    Table 5:Radial displacements by SGBEM-div and -RIM (10-3 m)

    4 Numerical Examples with Cracks

    In this section,numerical examples with cracked solids considering body forces are given.In each example,after obtaining the displacement discontinuities for the quarter-point node using the developed SGBEM method,displacement extrapolation is used to calculate the stress intensity factors.

    4.1 A Cuboid Hanging under Its Own Weight with a Through-Thickness Crack

    Consider a solid cuboid with a crack of length 2a(see Fig.15) under gravitational loads [24],wherel=4,b=1,h=0.5l,a=0.1,t=0.2,ρg=-10.The elastic constants are chosen to beE=1000 andν=0.

    Figure 15:A cracked cuboid hanging under its own weight

    Computed stress intensity factors are presented in Table 6,in which “Error” means the relative error between SGBEM–div and FEM solution.For this through-thickness crack,KIresults computed by SGBEM-RIM are in better agreement with the FEM solution.

    Table 6: KI for the problem shown in Fig.15

    4.2 A Rotating Disk with a through-Thickness Crack

    A rotating disk with a through-thickness crack (a=0.03 m) is computed shown in Fig.16.The rotating disk is identical to the disk in Section 3.3.Again,excellent agreement between the computed SGBEM results and FEM results are shown in Tables 7 and 8.

    Figure 16:SGBEM mesh of a cracked rotating disk

    Table 7:KI of through-thickness crack on rotating disk (MPa)

    Table 7:KI of through-thickness crack on rotating disk (MPa)

    z/t 0.25 0.5 0.75 SGBEM-div 36.497 36.540 36.494 FEM 36.150 36.303 36.150 Error 0.96% 0.65% 0.95%

    Table 8:KI of through-thickness crack on rotating disks (MPa)

    Table 8:KI of through-thickness crack on rotating disks (MPa)

    z/t 0.25 0.5 0.75 SGBEM-RIM 36.498 36.541 36.495 FEM 36.150 36.303 36.150 Error 0.96% 0.66% 0.95%

    4.3 A Rotating Disk with Semi-Elliptic Surface Cracks

    This section gives a series of results for a cracked disk in Fig.17 with various semi-elliptic surface cracks,shown in Fig.18.All the parameters of this disk are identical to that of disk in Section 3,except for the semi-elliptic cracks.Various semi-elliptic cracks with a fixed depth (a=0.004 m),and various semi-elliptic cracks with a fixed length/depth ratio (b/a=2),are computed using both SGBEM-div and SGBEM-RIM.

    Figure 17:A disk with a semi-elliptic surface crack

    Figure 18:Various semi-elliptic cracks with a fixed depth (a=0.004 m),and various semi-elliptic cracks with a fixed length/depth ratio (b/a=2)

    For simplicity,we give the stress intensity factor KI at point P,i.e.,the deepest point of various semi-elliptic cracks,as shown in Figs.19,and 20.These results can be used for the benchmark solutions for future studies.

    Figure 19:KI at the deepest point of semi-elliptic cracks with a fixed depth (a=0.004 m)

    Figure 20:KI at the deepest point of semi-elliptic cracks with a fixed length/depth ratio (b/a=2)

    5 Conclusions

    In this paper,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces is developed.By using the divergence theorem (div) or the radial integration method (RIM),rotational inertia or gravitational forces induced domain integrals are transformed into boundary integrals.The derived boundary integral terms with the gravitational and inertial forces are weakly-singular,which only influence the SGBEM right-hand-side vector.

    Several numerical examples of solids with and without cracks undergoing body forces are studied.The calculated stress intensity factors and displacements show high accuracy compared with reference solutions.The test of numerical integration also shows that only a small number of quadrature points are needed.

    The symmetric Galerkin boundary element method considering gravity and inertia loads presented in this paper appears promising in the fracture analysis of structural components with body forces,such as dams and rotating machineries.Furthermore,with some effort,the methodology given in this study can also be extended to deal with domain integrals for SGBEM with thermoelastic problems,which will be given in a subsequent work.

    Funding Statement: The first four authors acknowledge the support of the National Natural Science Foundation of China (12072011).

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    蜜桃亚洲精品一区二区三区| 亚洲五月天丁香| av在线天堂中文字幕| 亚洲av一区综合| 母亲3免费完整高清在线观看| 禁无遮挡网站| 非洲黑人性xxxx精品又粗又长| 国内精品久久久久久久电影| 母亲3免费完整高清在线观看| 亚洲人与动物交配视频| 法律面前人人平等表现在哪些方面| 尤物成人国产欧美一区二区三区| 校园春色视频在线观看| 亚洲第一欧美日韩一区二区三区| 女人十人毛片免费观看3o分钟| 两个人视频免费观看高清| 日本a在线网址| 在线观看美女被高潮喷水网站 | 亚洲电影在线观看av| 1000部很黄的大片| 日韩中文字幕欧美一区二区| 亚洲专区中文字幕在线| 精品福利观看| 三级国产精品欧美在线观看| 国内少妇人妻偷人精品xxx网站| 日本免费一区二区三区高清不卡| 亚洲精品亚洲一区二区| 国产极品精品免费视频能看的| 国产毛片a区久久久久| 1000部很黄的大片| 99国产极品粉嫩在线观看| 老熟妇仑乱视频hdxx| 精品电影一区二区在线| 欧美日本视频| 中文资源天堂在线| 国产精品1区2区在线观看.| 小说图片视频综合网站| 成年版毛片免费区| 日本黄大片高清| 欧美日韩黄片免| 国产av在哪里看| 久久99热这里只有精品18| 国产不卡一卡二| 哪里可以看免费的av片| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 男人的好看免费观看在线视频| xxxwww97欧美| 亚洲avbb在线观看| 国产高清videossex| 亚洲人成网站高清观看| 免费av观看视频| 老汉色∧v一级毛片| 老汉色∧v一级毛片| 无遮挡黄片免费观看| 宅男免费午夜| 欧美一区二区亚洲| 久久天躁狠狠躁夜夜2o2o| 非洲黑人性xxxx精品又粗又长| aaaaa片日本免费| 日韩欧美在线二视频| 精品久久久久久久人妻蜜臀av| 国内精品一区二区在线观看| 老汉色∧v一级毛片| 成人国产一区最新在线观看| 一进一出抽搐gif免费好疼| 欧美+亚洲+日韩+国产| 国产精品久久久久久精品电影| 免费大片18禁| 国产成人av教育| 九色国产91popny在线| 国产毛片a区久久久久| 精品一区二区三区人妻视频| 在线十欧美十亚洲十日本专区| 免费av不卡在线播放| 搡女人真爽免费视频火全软件 | 免费观看人在逋| 午夜免费观看网址| 欧美又色又爽又黄视频| 麻豆成人av在线观看| 中文字幕av在线有码专区| 99热这里只有精品一区| 精品无人区乱码1区二区| 久久久久国内视频| 国产精品女同一区二区软件 | www国产在线视频色| 欧美成狂野欧美在线观看| 51午夜福利影视在线观看| 国产av不卡久久| 丰满人妻一区二区三区视频av | 成年女人永久免费观看视频| 高清日韩中文字幕在线| 婷婷精品国产亚洲av在线| 欧美三级亚洲精品| 白带黄色成豆腐渣| 日韩国内少妇激情av| 午夜免费男女啪啪视频观看 | 动漫黄色视频在线观看| 一进一出抽搐gif免费好疼| 悠悠久久av| 亚洲成人中文字幕在线播放| 男女午夜视频在线观看| 欧美区成人在线视频| 亚洲欧美日韩东京热| 亚洲人成网站高清观看| 欧美日韩亚洲国产一区二区在线观看| 精品无人区乱码1区二区| 亚洲欧美日韩卡通动漫| 丝袜美腿在线中文| 欧美性猛交╳xxx乱大交人| 岛国视频午夜一区免费看| 国内揄拍国产精品人妻在线| 精品久久久久久,| 日韩精品青青久久久久久| 人妻夜夜爽99麻豆av| 又紧又爽又黄一区二区| 亚洲最大成人中文| 国产午夜精品论理片| 麻豆一二三区av精品| 免费人成在线观看视频色| 国产 一区 欧美 日韩| 国内久久婷婷六月综合欲色啪| 欧美成人免费av一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产亚洲欧美在线一区二区| 日韩成人在线观看一区二区三区| 国产精品久久久久久久电影 | 90打野战视频偷拍视频| 国产成人福利小说| 五月玫瑰六月丁香| 亚洲,欧美精品.| 18禁国产床啪视频网站| 国产欧美日韩一区二区三| 色综合亚洲欧美另类图片| 国产精品av视频在线免费观看| 美女免费视频网站| 国产真人三级小视频在线观看| 人人妻人人澡欧美一区二区| 日本黄大片高清| 麻豆久久精品国产亚洲av| 国产老妇女一区| 小说图片视频综合网站| 波野结衣二区三区在线 | 国产野战对白在线观看| 91久久精品电影网| 大型黄色视频在线免费观看| 久久精品国产清高在天天线| 乱人视频在线观看| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 一本精品99久久精品77| 欧美日韩国产亚洲二区| 一级毛片高清免费大全| 久久久久精品国产欧美久久久| 亚洲精品456在线播放app | 亚洲精品亚洲一区二区| 日韩免费av在线播放| 国产午夜精品久久久久久一区二区三区 | 热99re8久久精品国产| 午夜免费男女啪啪视频观看 | 两人在一起打扑克的视频| 亚洲成人久久爱视频| 久9热在线精品视频| 日韩亚洲欧美综合| 精品熟女少妇八av免费久了| 国产精华一区二区三区| www.www免费av| 免费看十八禁软件| 一边摸一边抽搐一进一小说| 中国美女看黄片| 一本久久中文字幕| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清| 岛国在线免费视频观看| 日本a在线网址| 欧美zozozo另类| 啪啪无遮挡十八禁网站| 丝袜美腿在线中文| 久久天躁狠狠躁夜夜2o2o| 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 欧美成狂野欧美在线观看| 狂野欧美白嫩少妇大欣赏| 日本黄色片子视频| 欧美极品一区二区三区四区| 亚洲不卡免费看| www.熟女人妻精品国产| 中文在线观看免费www的网站| 亚洲在线自拍视频| 国产伦精品一区二区三区四那| 人人妻人人看人人澡| 国产伦精品一区二区三区四那| 在线观看舔阴道视频| 国产免费男女视频| 黄色成人免费大全| 三级国产精品欧美在线观看| 97碰自拍视频| 亚洲精品一区av在线观看| 无遮挡黄片免费观看| 一级a爱片免费观看的视频| 色噜噜av男人的天堂激情| 免费av毛片视频| 亚洲18禁久久av| 噜噜噜噜噜久久久久久91| 一夜夜www| www.www免费av| 欧美色欧美亚洲另类二区| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 午夜福利18| 国产精品一及| 九九久久精品国产亚洲av麻豆| 99热只有精品国产| 波多野结衣高清作品| 九色成人免费人妻av| 九九热线精品视视频播放| 国产亚洲欧美在线一区二区| 男女之事视频高清在线观看| 免费人成视频x8x8入口观看| 日本 欧美在线| 99精品久久久久人妻精品| 少妇人妻精品综合一区二区 | 精品一区二区三区av网在线观看| 一级毛片女人18水好多| 日韩欧美在线乱码| 老司机在亚洲福利影院| 欧美区成人在线视频| 亚洲专区中文字幕在线| 日韩精品青青久久久久久| 五月伊人婷婷丁香| 国产精品久久久人人做人人爽| 天堂动漫精品| 亚洲av电影在线进入| 99久久无色码亚洲精品果冻| 高清毛片免费观看视频网站| 三级毛片av免费| 欧美极品一区二区三区四区| 亚洲av成人精品一区久久| netflix在线观看网站| h日本视频在线播放| 成人av一区二区三区在线看| av中文乱码字幕在线| 日韩欧美一区二区三区在线观看| 长腿黑丝高跟| 超碰av人人做人人爽久久 | 精品午夜福利视频在线观看一区| 欧美大码av| 亚洲中文日韩欧美视频| 欧美乱色亚洲激情| www日本在线高清视频| 久久精品91蜜桃| 伊人久久大香线蕉亚洲五| 最新中文字幕久久久久| 18禁国产床啪视频网站| 久久6这里有精品| 美女高潮的动态| 精品久久久久久久久久久久久| netflix在线观看网站| 亚洲中文字幕日韩| 国产成人系列免费观看| 51国产日韩欧美| 精品午夜福利视频在线观看一区| 脱女人内裤的视频| 中文字幕高清在线视频| 亚洲成人久久性| www.999成人在线观看| 丰满乱子伦码专区| 真人一进一出gif抽搐免费| 午夜福利成人在线免费观看| 婷婷亚洲欧美| 男人舔奶头视频| 热99在线观看视频| 天美传媒精品一区二区| 最近在线观看免费完整版| 欧美成人免费av一区二区三区| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 九九久久精品国产亚洲av麻豆| 天天躁日日操中文字幕| 日韩欧美在线二视频| 网址你懂的国产日韩在线| 亚洲精品亚洲一区二区| 亚洲av日韩精品久久久久久密| 母亲3免费完整高清在线观看| 性色avwww在线观看| 日本撒尿小便嘘嘘汇集6| 高清在线国产一区| 国产伦一二天堂av在线观看| 老汉色∧v一级毛片| 午夜a级毛片| 欧美性感艳星| 一级作爱视频免费观看| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 午夜免费观看网址| 国产精品女同一区二区软件 | 精品久久久久久久久久免费视频| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| av视频在线观看入口| 国产中年淑女户外野战色| 最近最新中文字幕大全电影3| 无限看片的www在线观看| 此物有八面人人有两片| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 国内精品久久久久久久电影| 可以在线观看毛片的网站| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 嫩草影院精品99| 男人和女人高潮做爰伦理| 精品人妻一区二区三区麻豆 | 国产成人欧美在线观看| 国产精品电影一区二区三区| 久久精品91蜜桃| 国产精品久久久久久精品电影| 99国产精品一区二区蜜桃av| 少妇人妻精品综合一区二区 | 国产乱人伦免费视频| 一区福利在线观看| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 欧美午夜高清在线| 亚洲人与动物交配视频| 在线a可以看的网站| 亚洲av成人av| 国产69精品久久久久777片| 熟女电影av网| 免费观看人在逋| 最近最新中文字幕大全电影3| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 一本综合久久免费| 国产高清视频在线观看网站| bbb黄色大片| 久久久精品大字幕| 国产午夜福利久久久久久| 97超视频在线观看视频| 午夜免费激情av| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 乱人视频在线观看| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 亚洲国产欧美人成| 久久草成人影院| 国产亚洲精品久久久久久毛片| 热99在线观看视频| 女警被强在线播放| 小蜜桃在线观看免费完整版高清| 在线观看av片永久免费下载| 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 久久这里只有精品中国| 亚洲精品影视一区二区三区av| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人伦免费视频| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放| 国产成人av教育| 在线播放无遮挡| 免费看a级黄色片| 日本免费a在线| 特大巨黑吊av在线直播| 天天一区二区日本电影三级| 啦啦啦免费观看视频1| 国产高清有码在线观看视频| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 精品久久久久久,| 69人妻影院| 久久精品国产99精品国产亚洲性色| 18+在线观看网站| 国产精品一区二区免费欧美| 可以在线观看毛片的网站| 国产乱人视频| 国产精品精品国产色婷婷| 性欧美人与动物交配| 欧美绝顶高潮抽搐喷水| 国产真实伦视频高清在线观看 | 免费在线观看亚洲国产| 亚洲国产欧美网| ponron亚洲| 极品教师在线免费播放| 欧美一级毛片孕妇| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av | 日韩大尺度精品在线看网址| 国产一区二区三区视频了| 欧美一区二区国产精品久久精品| 国产高清videossex| av中文乱码字幕在线| 欧美xxxx黑人xx丫x性爽| 制服人妻中文乱码| 国产黄片美女视频| 免费av毛片视频| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 波多野结衣高清无吗| 综合色av麻豆| 亚洲精品乱码久久久v下载方式 | 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看 | 噜噜噜噜噜久久久久久91| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 一级毛片女人18水好多| 亚洲精品成人久久久久久| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 啦啦啦免费观看视频1| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区 | 99久久精品热视频| 一级黄片播放器| 999久久久精品免费观看国产| 最近最新中文字幕大全免费视频| 午夜视频国产福利| 高清日韩中文字幕在线| 精品午夜福利视频在线观看一区| 男人舔奶头视频| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 免费看日本二区| 此物有八面人人有两片| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 成人午夜高清在线视频| 久久精品国产综合久久久| 国产精品亚洲美女久久久| 18禁国产床啪视频网站| 国产真实乱freesex| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看| 一本综合久久免费| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 中文字幕人成人乱码亚洲影| 久久久久性生活片| 午夜两性在线视频| 亚洲欧美日韩卡通动漫| 久久精品国产综合久久久| 久久婷婷人人爽人人干人人爱| 内地一区二区视频在线| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 中亚洲国语对白在线视频| www日本在线高清视频| 舔av片在线| 看片在线看免费视频| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产 | 99国产综合亚洲精品| 一区二区三区国产精品乱码| 在线免费观看的www视频| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 国产av在哪里看| 午夜激情福利司机影院| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 成人av一区二区三区在线看| 成年人黄色毛片网站| 国产午夜福利久久久久久| 中文字幕精品亚洲无线码一区| 啦啦啦免费观看视频1| 真实男女啪啪啪动态图| 国产精品自产拍在线观看55亚洲| 婷婷精品国产亚洲av| 国产淫片久久久久久久久 | 国产免费av片在线观看野外av| 中文字幕久久专区| 性色av乱码一区二区三区2| 国产视频一区二区在线看| 黄色片一级片一级黄色片| 欧美在线黄色| 国产成人av激情在线播放| 欧美性猛交╳xxx乱大交人| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 国产激情欧美一区二区| 超碰av人人做人人爽久久 | 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| aaaaa片日本免费| 国产伦精品一区二区三区视频9 | 国产成年人精品一区二区| 欧美日本视频| 中国美女看黄片| 欧美+亚洲+日韩+国产| 精品久久久久久成人av| 国产一区二区在线av高清观看| 日本熟妇午夜| 成年人黄色毛片网站| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 激情在线观看视频在线高清| 国产真实乱freesex| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 香蕉丝袜av| 日韩中文字幕欧美一区二区| 成年免费大片在线观看| 日韩欧美三级三区| 欧美乱色亚洲激情| 毛片女人毛片| 丁香欧美五月| 脱女人内裤的视频| 亚洲aⅴ乱码一区二区在线播放| 老汉色∧v一级毛片| 久久草成人影院| 波多野结衣高清作品| 午夜免费男女啪啪视频观看 | 日本黄大片高清| www国产在线视频色| 欧美黑人欧美精品刺激| 伊人久久精品亚洲午夜| 麻豆国产av国片精品| 啦啦啦免费观看视频1| 啦啦啦观看免费观看视频高清| 69人妻影院| 两个人的视频大全免费| 99久国产av精品| 久久精品影院6| 欧美激情久久久久久爽电影| 久99久视频精品免费| 国产主播在线观看一区二区| 成人欧美大片| 国产精品 国内视频| 欧美+亚洲+日韩+国产| 欧美国产日韩亚洲一区| 久久久精品欧美日韩精品| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 欧美黄色片欧美黄色片| 免费看光身美女| av女优亚洲男人天堂| 午夜a级毛片| 中文字幕高清在线视频| 最近最新免费中文字幕在线| av天堂在线播放| 精品久久久久久久久久久久久| 最近视频中文字幕2019在线8| 在线天堂最新版资源| 首页视频小说图片口味搜索| 十八禁网站免费在线| 成人国产综合亚洲| 无人区码免费观看不卡| 久久婷婷人人爽人人干人人爱| 国产亚洲精品综合一区在线观看| 嫁个100分男人电影在线观看| 精品久久久久久,| 免费观看精品视频网站| 久久6这里有精品| 好男人电影高清在线观看| 国产高清videossex| 免费大片18禁| 悠悠久久av| 国产久久久一区二区三区| 舔av片在线| 国产99白浆流出| 校园春色视频在线观看| 久久久久久国产a免费观看| 麻豆成人av在线观看| 国产97色在线日韩免费| 国产欧美日韩精品亚洲av| 白带黄色成豆腐渣| 亚洲欧美激情综合另类| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 很黄的视频免费| 88av欧美| 白带黄色成豆腐渣| 欧美色欧美亚洲另类二区| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 久久久久性生活片| 天堂动漫精品| 亚洲av二区三区四区| 成年免费大片在线观看| 哪里可以看免费的av片| 老司机在亚洲福利影院| 欧美色欧美亚洲另类二区| 十八禁网站免费在线| 国语自产精品视频在线第100页| 国产视频内射| АⅤ资源中文在线天堂| 变态另类成人亚洲欧美熟女| 欧美中文日本在线观看视频| 国产精品三级大全| 欧美区成人在线视频| 欧美成人免费av一区二区三区| 90打野战视频偷拍视频| 国产一级毛片七仙女欲春2| 日韩欧美在线二视频|