• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aggregation Operators for Interval-Valued Pythagorean Fuzzy SoftSet with Their Application to Solve Multi-Attribute Group Decision Making Problem

    2022-07-02 07:43:54RanaMuhammadZulqarnainImranSiddiqueAiyaredIampanandDumitruBaleanu

    Rana Muhammad Zulqarnain,Imran Siddique,Aiyared Iampan and Dumitru Baleanu

    1Department of Mathematics,University of Management and Technology,Sialkot Campus,Lahore,54770,Pakistan

    2Department of Mathematics,University of Management and Technology,Lahore,54000,Pakistan

    3Department of Mathematics,School of Science,University of Phayao,Mae Ka,Mueang,Phayao,56000,Thailand

    4Department of Mathematics,Cankaya University,Balgat Ankara,06530,Turkey

    5Institute of Space Sciences,Magurele-Bucharest,077125,Romania

    6Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,40447,Taiwan

    ABSTRACT Interval-valued Pythagorean fuzzy softset(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy softset (IVIFSS) and interval-valued Pythagorean fuzzy set (IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy softweighted average (IVPFSWA) and interval-valued Pythagorean fuzzy softweighted geometric (IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.

    KEYWORDS Interval-valued Pythagorean fuzzy softset;IVPFSWA operator;IVPFSWG operator;MAGDM

    1 Introduction

    MAGDM is considered as the most appropriate technique to find the finest alternative from all possible alternatives,following criteria or attributes.Conventionally,it is supposed that all information that accesses the alternative in terms of attributes and their corresponding weights are articulated in the form of crisp numbers.On the other hand,in real-life circumstances,most of the decisions are taken in situations where the objectives and limitations are usually indefinite or ambiguous.To overcome such ambiguities and anxieties,Zadeh offered the notion of the fuzzy set (FS) [1],a prevailing tool to handle the obscurities and uncertainties in decision making (DM).Such a set allocates to all objects a membership value ranging from 0 to 1.Mostly,experts consider membership and a non-membership value in the DM process which cannot be handled by FS.Atanassov [2] introduced the idea of the intuitionistic fuzzy set (IFS) to overcome the aforementioned limitation.In 2011,Wang et al.[3] presented numerous operations on IFS,such as Einstein product,Einstein sum,etc.,and constructed some novel AOs.They also discussed some important properties of these operators and utilized their proposed operators to resolve multi-attribute decision making (MADM).Atanassov [4] presented a generalized form of IFS in the light of ordinary interval values,called interval-valued intuitionistic fuzzy set (IVIFS).Garg et al.[5] extended the concept of IFS and presented a novel concept of the cubic intuitionistic fuzzy set (CIFS) which is a successful tool to represent vague data by embedding both IFS and IVIFS directly.They also discussed several desirable properties of CIFS.

    The above-mentioned models have been well-recognized by the specialists but the existing IFS is unable to handle the inappropriate and vague data because it is considered to envision the linear inequality between the membership and non-membership grades.For example,if decision-makers choose membership and non-membership values 0.9 and 0.6 respectively,then the above-mentioned IFS theory is unable to deal with it because 0.9 + 0.6≥1.To resolve the aforesaid limitation,Yager [6] presented the idea of the Pythagorean fuzzy set (PFS) by amending the basic conditionκ+δ≤1 toκ2+δ2≤1 and developed some results associated with score function and accuracy function.Rahman et al.[7] developed the Pythagorean fuzzy Einstein weighted geometric operator and presented a MAGDM methodology utilizing their proposed operator.Zang et al.[8] developed some basic operational laws and prolonged the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method to resolve multi-criteria decision-making (MCDM) complications for PFS information.Wei et al.[9] offered the Pythagorean fuzzy power AOs along with basic characteristics,they also established a DM technique to resolve MADM difficulties based on presented operators.Wang et al.[10] offered the interaction operational laws for Pythagorean fuzzy numbers (PFNs) and developed power Bonferroni mean operators.To assess the professional health risk,IIbahar et al.[11] offered the Pythagorean fuzzy proportional risk assessment technique.Zhang [12] proposed a novel DM approach based on similarity measures to resolve multi-criteria group decision making (MCGDM)difficulties for the PFS.

    All of the aforementioned techniques have a wide range of applications,but owing to their ineffectiveness,they have several restrictions with the parameterization tool.Presenting a solution to this type of uncertainty and obfuscation Molodtsov [13] established the idea of soft sets (SS)and described some basic operations with their characteristics to handle the above-mentioned confusion and ambiguity.Maji et al.[14] expanded the concept of SS and developed many basic and binary operations for it.Maji et al.[15] developed the fuzzy soft set with some desirable properties by merging two existing notions FS and SS.Maji et al.[16] developed the notion of the intuitionistic fuzzy soft set (IFSS) and some fundamental operations with their necessary properties.Garg et al.[5] presented the cubic IFSS and established some AOs for cubic IFSS.They also planned a DM technique based on their developed operators.Zulqarnain et al.[17]planned the TOPSIS method based on the correlation coefficient for interval-valued IFSS to solve MADM problems.Jiang et al.[18] introduced the notion of the interval-valued intuitionistic fuzzy soft set (IVIFSS) and discussed some of their basic properties.Narayanamoorthy et al.[19]proposed the score function for a normal wiggly hesitant fuzzy set and utilized it to expose the deepest ideas hidden in the thought-level of the decision-makers.Narayanamoorthy et al.[20]introduced the hesitant fuzzy subjective and objective weight integrated method to find weights under hesitant fuzzy information.They also presented a novel ranking methodology for hesitant fuzzy sets.Ramya et al.[21] developed the interval-valued hesitant Pythagorean fuzzy set under the normal wiggly mathematical methodology and used it to solve the MCDM problem.Peng et al.[22] merged two well-known theories PFS and SS and offered the concept of Pythagorean fuzzy soft set (PFSS).Zulqarnain et al.[23] developed the AOs for PFSS with their application for the green supplier chain management.Zulqarnain et al.[24] introduced an advanced form of AOs considering the interaction and construct a DM approach based on their developed interactive AOs.Smarandache [25] prolonged the idea of SS to hypersoft sets (HSS) by substituting the single-parameter functionfwith a multi-parameter (sub-attribute) function.He privileges that HSS proficiently contracts with inexact data comparative to SS.

    MAGDM is a very effective and well-known tool to examine fuzzy data more effectively.Therefore,it is obvious from the published literature that the interval-valued structures are more general and increase more consideration in decision-making difficulties.The choice of vehicle is a key part of real-life and will advise on complications of MAGDM.Lack of thinking about the ambiguity of alternative associations will be the core motivation for some MAGDM concerns about the undesirable consequences.By using a wealth of existing content,it contains previous criticisms and suppressed sensitivities.Many logical and scientific tools/procedures are offended in the literature for choosing the most suitable vehicle.As far as we know,there is currently no work on the AOs of IVPFSS.Therefore,this article proposes some operational laws for interval-valued Pythagorean fuzzy soft numbers (IVPFSN).The presented IVPFSN is well worth observing the inaccurate information that occurs in the complications of daily life.Therefore,the main purpose of this work is to propose new IVPFSWA and IVPFSWG operators based on the established operational laws.An algorithm based on the proposed operators to solve the decision-making problem is proposed.To prove the effectiveness of the proposed decision-making method,we use a numerical example to illustrate it.The main benefit of the proposed operator is that the proposed operator can reduce to IVIFSS and IVFSS operators under some specific conditions of unconfidence.The organization of this paper is given as follows: Section 2 of this paper consists of some basic concepts which help us to develop the structure of the following research.In Section 3,some novel operational laws for IVPFSN have been proposed.Also,in the same section,IVPFSWA and IVPFSWG operators have been introduced based on our developed operators with their basic properties.In Section 4,a MAGDM approach has been constructed based on the proposed AOs.To ensure the practicality of the developed approach a numerical example has been presented for the selection of the best vehicle in Section 5.

    2 Preliminaries

    This section consists of some basic definitions which will provide a structure to form the following work.

    Definition 2.1[1]

    LetUbe a collection of objects then a fuzzy set (FS)AoverUis defined as

    A={(t,κ(t))|t∈U}

    where,κA(t):X→[0,1] is a membership grade function.

    Definition 2.2[26]

    LetUbe a collection of objects then an interval-valued fuzzy set (IVFS)AoverUis defined as

    where,κl(t),κu(t)∈[0,1] and represents the lower and upper bounds of the membership value.

    Definition 2.3[4]

    LetUbe a collection of objects then an interval-valued intuitionistic fuzzy set (IVIFS)AoverUis defined as

    Definition 2.4[27]

    LetUbe a collection of objects then an interval-valued Pythagorean fuzzy set (IVPFS)AoverUis defined as

    Definition 2.5[13]

    LetUbe a universal set and N={t1,t2,t3,...,tm} be set of attributes then a pair (F,N)is called a soft set (SS) overUwhereF: N→KUis a mapping andKUis known as a collection of all subsets of universal setU.

    Definition 2.6[19]

    LetUbe a universal set and N be a set of attributes then a pair (Ω,N)is called an intervalvalued intuitionistic fuzzy soft set (IVIFSS) overU.WhereΩ: N→IKUis a mapping andIKUis known as a collection of all interval-valued intuitionistic fuzzy subsets of universal setUandA?N.

    Definition 2.7

    LetUbe a universal set and N be set of attributes then a pair ((Ω,N)is called an intervalvalued Pythagorean fuzzy soft set (IVPFSS) overUwhereΩ: N→?KUis a mapping and?KUis known as the collection of all interval-valued Pythagorean fuzzy subsets of universal setU.

    Definition 2.8

    Definition 2.9

    3 Aggregation Operators for Interval Valued Pythagorean Fuzzy Soft Sets

    In this section,we are going to define operational laws under IVPFSNs.Based on these operational laws,we shall also present interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA) and interval-valued Pythagorean fuzzy soft geometric (IVPFSWG) operators.

    3.1 Operational Laws for Interval Valued Pythagorean Fuzzy Soft Numbers

    3.2 Interval Valued Pythagorean Fuzzy Soft Weighted Average Operator

    Theorem 3.1

    where ωiandνjare weight vector for expert’s and attributes respectively with given conditions

    Proof.We shall prove the IVPFSWA operator by utilizing the principle of mathematical induction:

    Forn=1,we getω1=1.Then,we have

    Form=1,we getν1=1.Then,we have

    This shows that the above theorem holds forn=1 andm=1.Now,consider the above theorem also holds form=α1+1,n=α2andm=α1,n=α2+1,such as

    Form=α1+1 andn=α2+1,we have

    Therefore,it holds form=α1+1 andn=α2+1.So,we can judge that the above theorem also holds for all values ofmandn.

    Example 3.1

    Letχ={x1,x2,x3} be the set of specialists with weightsωi=(0.38,0.45,0.17)Twho wants to choose a bike under some defined set of propertiesφ={e1=Resale Value,e2=Mileage,e3=Cost of bike} with weightsνj=(0.25,0.45,0.3)T.We suppose the rating values of the specialists for each property in the form of IVPFSNsis given as

    By using the above theorem,we have

    3.3 Properties of PFSWA Operator

    3.3.1 Idempotency

    Proof: As we know that allthen,we have

    Hence proved.

    3.3.2 Boundedness

    LetMeijbe a collection of PFSNs whereandthen

    Proof.As we know thatbe an IVPFSN,then

    Similarly,we can prove that

    Let IVPFSWA (Me11,Me12,...,Menm)=then inequalities (a) and(b) can be transferred into the form:andrespectively.

    So,by using the score function,we have

    Then,by order relation between two IVPFSNs,we have

    Hence proved.

    3.3.3 Shift Invariance

    IVPFSWA(Me11⊕Me,Me12⊕Me,...,Menm⊕Me)=IVPFSWA(Me11,Me12,...,Menm)⊕Me

    Proof.ConsiderMeandMeijbe two IVPFSNs.Then,by operational laws defined under IVPFSNs defined above,we have

    Hence proved.

    3.3.4 Homogeneity

    Prove that IVPFSWA(βMe11,βMe12,...,βMenm)=βIVPFSWA(Me11,Me12,...,Menm)for any positive real numberβ.

    Proof.LetMeijbe an IVPFSN andβ>0,then by using the operational laws mentioned above,we have

    So,

    which completes the proof.

    3.4 Interval Valued Pythagorean Fuzzy Soft Weighted Geometric Operator

    Theorem 3.2

    where ωiandνjare weight vector for expert’s and attributes respectively with given conditions

    Proof.We can prove the IVPFSWG operator by using the principle of mathematical induction as follows:

    Forn=1,we getω1=1.Then,we have

    Form=1,we getν1=1.Then,we have

    This shows that the above theorem holds forn=1 andm=1.Now,consider the above theorem also holds form=α1+1,n=α2andm=α1,n=α2+1,such as

    Form=α1+1 andn=α2+1,we have

    It is clarified from the above equation that the theorem holds form=α1+1 andn=α2+1.So,we can say that the theorem holds for all values ofmandn.

    Example 3.2

    Again,consider Example 3.1 with rating values of the specialists for each property in the form of IVPFSNsis given as

    By using the above theorem,we have

    3.5 Properties of IVPFSWG

    3.5.1 Idempotency

    Proof.As we know that allthen,we have

    Hence proved.

    3.5.2 Boundedness

    LetMeijbe a collection of PFSNs whereandthen

    Proof.As we know thatbe an IVPFSN,then

    Similarly,we can prove that

    Let IVPFSWG(Me11,Me12,...,Menm)=then inequalities (c) and(d) can be transferred into the form:

    respectively.

    So,by using the score function,we have

    Then,by order relation between two IVPFSNs,we have

    Hence proved.

    3.5.3 Shift Invariance

    IVPFSWG (Me11⊕Me,Me12⊕Me,...,Menm⊕Me)=IVPFSW(Me11,Me12,...,Menm)⊕Me

    Proof.ConsiderMeandMeijbe two IVPFSNs.Then,by operational laws defined under IVPFSNs defined above,we have

    Hence proved.

    3.5.4 Homogeneity

    Prove that IVPFSWG(βMe11,βMe12,...,βMenm)=βIVPFSWA(Me11,Me12,...,Menm)for any positive real numberβ.

    Proof: LetMeijbe an IVPFSN andβ>0,then by using the operational laws mentioned above,we have

    So,

    which completes the proof.

    4 Multi-Attribute Group Decision-Making Approach Based on Proposed Operators

    In this section,a decision-making (DM) approach for solving multi-attribute group decisionmaking (MAGDM) problems based on proposed IVPFSWA and IVPFSWG operators has been developed along with numerical examples.

    4.1 Proposed Approach

    The procedure to apply proposed IVPFSWG and IVPFSWA operators for solving the MAGDM problem is summarized in the following steps:

    Step-1: Obtain a decision matrix in the form of PFSNs for alternatives relative to experts.

    Step-2: By using the normalization formula,normalize the decision matrix to convert the rating value of cost type parameters into benefit type parameters.

    Step-3: Use the developed IVPFSWG and IVPFSWA operators to aggregate the IVPFSNsMeijfor each alternativeinto the decision matrixMij.

    Step-4: Calculate the score values ofMfor all alternatives.

    Step-5: Select the alternative having maximum score value and examine the ranking.

    4.2 Numerical Example

    Suppose a person wants to buy a car and he has four alternatives such as I1,I2,I3and I4.There are four considered attributes according to which the person has to take the decision such ase1;price of the car,e2;comfortability,e3;resale value,and,e4;growth rate with the weighted vectorν=(0.3,0.1,0.2,0.4)T.Heree1,e3are cost type parameters ande2,e4are benefit type parameters.The person hires a team of four expertsXr(r=1,2,3,4)for decision making with the weighted vectorω=(0.1,0.2,0.4,0.3)T.

    4.2.1 By IVPFSWA Operator

    Step-1: Obtain Pythagorean fuzzy soft decision matrices (Tables 1–4).

    Table 1:IVPFS decision matrix for I1

    Table 2:IVPFS decision matrix for I2

    Table 3:IVPFS decision matrix for I3

    Table 4:IVPFS decision matrix for I4

    Step-2: Becausee1,e3are cost type parameters,so utilized the normalization formula to obtain normalized Pythagorean fuzzy soft decision matrices are given in the following Tables 5–8.

    Table 5:Normalized IVPFS decision matrix for I1

    Table 6:Normalized IVPFS decision matrix for I2

    Table 7:Normalized IVPFS decision matrix for I3

    Table 8:Normalized IVPFS decision matrix for I4

    Step-3: Apply the proposed IVPFSWA operator on the acquired data,we will obtain an opinion of the decision-makers.

    Step-4: Use the score functionS=for the interval-valued Pythagorean fuzzy soft set to calculate the score values for all alternatives.S(Θ1)=0.0377,S(Θ2)=0.0834,S(Θ3)=0.0113,andS(Θ4)=0.0141.

    Step-5: From the above calculation,we getS(Θ2)>S(Θ1)>S(Θ4)>S(Θ3),which shows that I2is the best alternative.So,I2>I1>I4>I3.

    4.2.2 By IVPFSWG Operator

    Step-1: Obtain PFS decision matrices (Tables 1–4).

    Step-2: Use the normalization formula to normalize the obtained PFS decision matrices(Tables 5–8).

    Step-3: Apply the proposed IVPFSWG operator on the acquired data,we will obtain an opinion of the decision-makers

    Step-4: Use the score functionS=interval-valued for the Pythagorean fuzzy soft set to calculate the score values for all alternatives such asS(Θ1)=0.0524,S(Θ2)=0.0754,S(Θ3)=0.0241,andS(Θ4)=0.0114.

    Step-5: From the above calculation,we get the ranking of alternativesS(Θ2)>S(Θ1)>S(Θ3)>S(Θ4),which shows that I2is the best alternative.So,I2>I1>I3>I4.

    5 Comparative Studies

    To highlight the effectiveness of the presented method,a comparison between the proposed model and prevailing methods is proposed in the following section.

    5.1 Comparative Analysis with Interval-Valued Pythagorean Fuzzy Weighted Average Operator[28]

    Step-1: Obtain an IVPF decision matrices (Tables 1–4).

    Step-2: Use normalization formula to normalize the obtained IVPF decision matrices(Tables 5–8).

    Step-3: Apply the IVPFWA operator on the acquired data,then we get the opinion of decision-makers.

    As we have

    Step-4: Use the score functionfor IVPFS to calculate the score values for all alternatives.

    Step-5: Ranking of alternativesS(Θ2)>S(Θ4)>S(Θ3)>S(Θ1).So,I2>I4>I3>I1.Hence,the best alternative is I2.

    5.2 Comparison with Interval-Valued Pythagorean Fuzzy Weighted Geometric Operator[28]

    Step-1: Obtain an IVPF decision matrices (Tables 1–4).

    Step-2: Use normalization formula to normalize the obtained IVPF decision matrices(Tables 5–8).

    Step-3: Apply the IVPFWG operator on the acquired data,then we get the opinion of decision-makers.

    As we have

    Step-4: Use the score functionfor IVPFS to calculate the score values for all alternatives.

    Step-5: Ranking of alternatives,S(Θ2)>S(Θ3)>S(Θ4)>S(Θ1).So,I2>I3>I1>I4.Hence,the best alternative is I2.

    Similarly,we can get the outcomes utilizing several other existing operators for comparative studies.

    5.3 Comparative Analysis

    To verify the effectiveness of the proposed method,we compare the obtained results with some existing methods under the environment of IVPFS and IVIFSS.A summary of all results is given in Table 9.Zulqarnain et al.[17] developed aggregation operators for IVIFSS that are unable to accommodate the decision-makers choices when the sum of upper membership and nonmembership values of the parameters exceeds one.Peng et al.[27] interval-valued Pythagorean fuzzy weighted average operator and Rahman et al.[28] interval-valued Pythagorean fuzzy weighted geometric operator cannot handle the parametrized values of the alternatives.Furthermore,if only one parameter is supposed rather than more than one parameter,the interval-valued Pythagorean fuzzy soft set reduces to the interval-valued Pythagorean fuzzy set.Similarly,if the sum of upper values of membership and nonmembership degree is less or equal to 1.Then,IVPFSS reduced to IVIFSS.Thus,IVPFSS is the most generalized form of interval-valued Pythagorean fuzzy set.Hence,based on the above-mentioned facts,admittedly,the proposed operators in this paper are more powerful,reliable,and successful.

    Table 9:Comparison of proposed operators with some existing operators

    6 Conclusion

    In this work,we have introduced two novel aggregation operators such as IVPFSWA and IPFSWG operators.Firstly,we defined operational laws under an interval-valued Pythagorean fuzzy soft environment.Based on these operational laws,we developed the aggregation operators for IVPFSS such as IVPFSWA and IVPFSWG operators with their desirable properties.Furthermore,a DM approach has been established to resolve multi-attribute group decision-making (MAGDM)problems based on presented aggregation operators.To ensure the validity of the established technique,a comprehensive numerical example has been presented.To verify the effectiveness of the proposed method,a comparative analysis with some existing methods is presented.Finally,based on obtained results,it has been concluded that the proposed method in this research is the most feasible and successful method for the MAGDM problem.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久久久大精品| 91麻豆精品激情在线观看国产| 两个人的视频大全免费| 亚洲专区国产一区二区| 精品福利观看| 白带黄色成豆腐渣| 在线a可以看的网站| 亚洲人成网站在线播放欧美日韩| 午夜两性在线视频| 中文亚洲av片在线观看爽| 人妻夜夜爽99麻豆av| 午夜两性在线视频| 1000部很黄的大片| 嫩草影视91久久| 成人国产一区最新在线观看| 欧美午夜高清在线| 一区二区三区免费毛片| 久久伊人香网站| 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 亚洲av电影在线进入| 成人性生交大片免费视频hd| 中文字幕久久专区| 成人国产一区最新在线观看| 九九热线精品视视频播放| 久久久久九九精品影院| 99久久成人亚洲精品观看| 国产免费男女视频| av在线观看视频网站免费| 国产亚洲欧美在线一区二区| 麻豆国产av国片精品| 国产在视频线在精品| 老熟妇乱子伦视频在线观看| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 美女 人体艺术 gogo| 日韩 亚洲 欧美在线| 国产成人av教育| 99热6这里只有精品| 蜜桃久久精品国产亚洲av| 夜夜躁狠狠躁天天躁| 国产伦一二天堂av在线观看| 日韩中字成人| 国模一区二区三区四区视频| 精品久久久久久久久久免费视频| 国产精品伦人一区二区| 国产成人欧美在线观看| 老司机深夜福利视频在线观看| 又粗又爽又猛毛片免费看| 色哟哟·www| 久久久国产成人免费| 中文在线观看免费www的网站| 欧美高清成人免费视频www| 嫩草影视91久久| 精品久久久久久久久av| 亚洲人成伊人成综合网2020| a级一级毛片免费在线观看| 国产高清视频在线播放一区| 亚洲,欧美精品.| 久久久久九九精品影院| 美女被艹到高潮喷水动态| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 国产黄色小视频在线观看| 亚洲精品久久国产高清桃花| 18禁裸乳无遮挡免费网站照片| 给我免费播放毛片高清在线观看| 国产人妻一区二区三区在| 久久伊人香网站| 亚洲,欧美,日韩| 小说图片视频综合网站| 少妇高潮的动态图| 全区人妻精品视频| 亚洲乱码一区二区免费版| 国产精品一及| 少妇裸体淫交视频免费看高清| 真人一进一出gif抽搐免费| 免费黄网站久久成人精品 | or卡值多少钱| 99热这里只有是精品在线观看 | 岛国在线免费视频观看| 日本三级黄在线观看| h日本视频在线播放| 男女做爰动态图高潮gif福利片| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品 | 真实男女啪啪啪动态图| a级一级毛片免费在线观看| 国产老妇女一区| 高清日韩中文字幕在线| 国产精品一区www在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 91在线精品国自产拍蜜月| 成人亚洲精品av一区二区| 国产探花极品一区二区| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 在线a可以看的网站| 少妇人妻久久综合中文| 久久久久九九精品影院| 免费av观看视频| 中文欧美无线码| 女人十人毛片免费观看3o分钟| 99热这里只有是精品在线观看| 在线播放无遮挡| 亚洲自拍偷在线| 国产高清有码在线观看视频| 丝瓜视频免费看黄片| 亚洲成色77777| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 久久久久国产网址| 亚洲精品乱久久久久久| 国产 精品1| 久久亚洲国产成人精品v| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 精品亚洲乱码少妇综合久久| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| 搞女人的毛片| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 免费看不卡的av| 亚洲天堂av无毛| 男男h啪啪无遮挡| 中文在线观看免费www的网站| 肉色欧美久久久久久久蜜桃 | 中文资源天堂在线| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 我要看日韩黄色一级片| 久久精品国产a三级三级三级| 亚洲av成人精品一区久久| 国产精品国产av在线观看| 麻豆久久精品国产亚洲av| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| 日韩一区二区视频免费看| 免费看a级黄色片| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 亚洲欧美中文字幕日韩二区| 伊人久久精品亚洲午夜| www.色视频.com| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久com| 国产欧美日韩一区二区三区在线 | 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 久久久精品欧美日韩精品| 欧美日韩亚洲高清精品| 91久久精品电影网| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 久久综合国产亚洲精品| videos熟女内射| 午夜福利高清视频| 亚州av有码| 性插视频无遮挡在线免费观看| 人妻系列 视频| 99九九线精品视频在线观看视频| 免费观看性生交大片5| 99久国产av精品国产电影| 国产精品蜜桃在线观看| 成人综合一区亚洲| 久久精品国产亚洲av涩爱| 国产黄频视频在线观看| 免费观看的影片在线观看| 久热这里只有精品99| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 日韩欧美精品免费久久| 赤兔流量卡办理| 欧美bdsm另类| 99热6这里只有精品| 天天一区二区日本电影三级| 国产精品人妻久久久影院| 麻豆乱淫一区二区| 国产熟女欧美一区二区| av在线播放精品| 亚洲人成网站高清观看| av在线天堂中文字幕| 毛片女人毛片| 特级一级黄色大片| 国产成人精品婷婷| 99热这里只有精品一区| 永久免费av网站大全| 观看美女的网站| 久久精品国产鲁丝片午夜精品| 身体一侧抽搐| 精品久久久久久久末码| 成人欧美大片| 日本色播在线视频| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 一级二级三级毛片免费看| 亚洲天堂国产精品一区在线| 国产极品天堂在线| 欧美xxxx黑人xx丫x性爽| 天堂网av新在线| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频 | 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 亚洲欧美精品自产自拍| 99热网站在线观看| 欧美日韩国产mv在线观看视频 | 国产久久久一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 丰满乱子伦码专区| 国产亚洲精品久久久com| 免费黄频网站在线观看国产| 亚洲电影在线观看av| 国产精品一及| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 亚洲av中文av极速乱| 舔av片在线| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| av免费观看日本| 观看美女的网站| 丝袜喷水一区| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线 | 精品一区在线观看国产| 国产精品麻豆人妻色哟哟久久| 国产爱豆传媒在线观看| 国模一区二区三区四区视频| 黄色配什么色好看| 国产精品精品国产色婷婷| 中文字幕制服av| 精品人妻偷拍中文字幕| 国产亚洲精品久久久com| 久久久久久久久久成人| 激情五月婷婷亚洲| 一级毛片aaaaaa免费看小| 亚洲欧洲国产日韩| 女的被弄到高潮叫床怎么办| 亚洲欧美精品专区久久| 久久人人爽人人片av| 熟女电影av网| 校园人妻丝袜中文字幕| 可以在线观看毛片的网站| 美女国产视频在线观看| 特大巨黑吊av在线直播| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品久久久com| 99re6热这里在线精品视频| 高清av免费在线| 亚洲不卡免费看| 欧美亚洲 丝袜 人妻 在线| 一本一本综合久久| 十八禁网站网址无遮挡 | 欧美bdsm另类| 免费在线观看成人毛片| 亚洲欧美一区二区三区黑人 | 国产一区二区亚洲精品在线观看| 日日啪夜夜爽| 日韩伦理黄色片| 麻豆乱淫一区二区| 亚洲精品视频女| 高清欧美精品videossex| 五月开心婷婷网| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 精品久久久久久久久av| av在线老鸭窝| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 三级国产精品欧美在线观看| 亚洲综合精品二区| 少妇高潮的动态图| 一二三四中文在线观看免费高清| 熟女av电影| 九色成人免费人妻av| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频 | 精品一区二区三卡| 亚洲自偷自拍三级| 国产日韩欧美在线精品| 各种免费的搞黄视频| 国产91av在线免费观看| 精品国产乱码久久久久久小说| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| xxx大片免费视频| av在线app专区| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 两个人的视频大全免费| 高清欧美精品videossex| 久久女婷五月综合色啪小说 | 麻豆乱淫一区二区| 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 干丝袜人妻中文字幕| 亚洲一区二区三区欧美精品 | 国产av码专区亚洲av| 国产精品久久久久久精品电影| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 亚洲精品亚洲一区二区| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 中文字幕制服av| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站 | 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 欧美人与善性xxx| av一本久久久久| 久久这里有精品视频免费| 亚洲精品乱久久久久久| 免费少妇av软件| 丰满人妻一区二区三区视频av| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 久久精品国产亚洲网站| 免费高清在线观看视频在线观看| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 亚洲国产最新在线播放| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| 少妇裸体淫交视频免费看高清| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 人妻一区二区av| 男女边吃奶边做爰视频| 午夜免费观看性视频| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 18禁裸乳无遮挡动漫免费视频 | 夫妻午夜视频| 免费看不卡的av| 国产亚洲最大av| 午夜免费男女啪啪视频观看| 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 99热网站在线观看| 99热这里只有是精品50| 日韩大片免费观看网站| 国产成人精品一,二区| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 亚洲精品国产av蜜桃| 在线观看一区二区三区| 97在线人人人人妻| 色吧在线观看| 国产日韩欧美亚洲二区| 在线观看三级黄色| a级一级毛片免费在线观看| 久久久久久国产a免费观看| av在线app专区| 少妇人妻久久综合中文| 亚洲av成人精品一区久久| 成人国产麻豆网| 亚洲图色成人| 亚州av有码| 黄色欧美视频在线观看| 久久久久久国产a免费观看| 男人添女人高潮全过程视频| 国国产精品蜜臀av免费| 91狼人影院| 嫩草影院新地址| 黄色一级大片看看| 欧美成人一区二区免费高清观看| .国产精品久久| 一级毛片我不卡| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久| av在线蜜桃| 高清欧美精品videossex| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 欧美三级亚洲精品| 亚洲精品日本国产第一区| 成人毛片a级毛片在线播放| 简卡轻食公司| 国产精品福利在线免费观看| 欧美极品一区二区三区四区| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| 亚洲综合色惰| 最近最新中文字幕大全电影3| 亚洲av男天堂| 精品一区二区三卡| 舔av片在线| 日韩成人伦理影院| 亚洲,一卡二卡三卡| 99久久九九国产精品国产免费| 一二三四中文在线观看免费高清| 亚洲经典国产精华液单| 日本一二三区视频观看| 欧美xxⅹ黑人| 久久人人爽人人片av| 欧美日韩在线观看h| 午夜精品国产一区二区电影 | 久久人人爽人人片av| 亚洲成人精品中文字幕电影| 久久久久久久大尺度免费视频| 黄片wwwwww| 97在线人人人人妻| 国产成人福利小说| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| av天堂中文字幕网| 亚洲va在线va天堂va国产| 1000部很黄的大片| 亚洲欧美日韩另类电影网站 | av国产免费在线观看| 91精品国产九色| 草草在线视频免费看| 日日啪夜夜爽| 麻豆国产97在线/欧美| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 美女xxoo啪啪120秒动态图| 十八禁网站网址无遮挡 | 色哟哟·www| 亚洲国产精品999| 黄色怎么调成土黄色| 夫妻性生交免费视频一级片| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 国产av不卡久久| 久久这里有精品视频免费| 18禁在线播放成人免费| 免费av不卡在线播放| 亚洲综合精品二区| 男人舔奶头视频| 欧美丝袜亚洲另类| 视频区图区小说| 久久久a久久爽久久v久久| 久久久久久国产a免费观看| 免费av观看视频| 亚洲,一卡二卡三卡| 熟女电影av网| 人妻少妇偷人精品九色| 哪个播放器可以免费观看大片| 九草在线视频观看| 亚洲,一卡二卡三卡| 熟女电影av网| 一级毛片我不卡| 久久热精品热| 国产精品伦人一区二区| 2021天堂中文幕一二区在线观| 国内精品宾馆在线| 久久久午夜欧美精品| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 国产精品嫩草影院av在线观看| 欧美精品一区二区大全| 一级av片app| 国产成人免费观看mmmm| 久久久欧美国产精品| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 国产综合懂色| 国产成人福利小说| 国产伦在线观看视频一区| 蜜桃久久精品国产亚洲av| 99热网站在线观看| 国产精品国产av在线观看| 日日摸夜夜添夜夜爱| 身体一侧抽搐| 国产精品伦人一区二区| 亚洲自偷自拍三级| 久久久久久久久久成人| 午夜福利视频1000在线观看| 男女啪啪激烈高潮av片| 内地一区二区视频在线| 亚洲欧洲日产国产| 九草在线视频观看| 国产片特级美女逼逼视频| 日韩欧美精品v在线| 亚洲图色成人| 久久久久久久午夜电影| 人妻制服诱惑在线中文字幕| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 亚洲人成网站高清观看| 国产高清国产精品国产三级 | 亚洲天堂av无毛| 又黄又爽又刺激的免费视频.| 一级a做视频免费观看| 伊人久久精品亚洲午夜| 久久久色成人| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久丰满| 亚洲欧洲日产国产| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频| 在线看a的网站| 国产69精品久久久久777片| 精品一区二区免费观看| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| 人人妻人人澡人人爽人人夜夜| 99久久精品国产国产毛片| 街头女战士在线观看网站| 极品少妇高潮喷水抽搐| 欧美性猛交╳xxx乱大交人| 网址你懂的国产日韩在线| 一区二区三区乱码不卡18| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| 国产黄a三级三级三级人| 天天一区二区日本电影三级| 精品久久久久久久末码| 久久热精品热| 亚洲av在线观看美女高潮| 久久久精品94久久精品| 国产男女超爽视频在线观看| 人妻系列 视频| 免费电影在线观看免费观看| 免费av观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲精品自拍成人| 国产在线一区二区三区精| 国产高清国产精品国产三级 | 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 日本爱情动作片www.在线观看| 久久女婷五月综合色啪小说 | 免费观看av网站的网址| 国产精品伦人一区二区| 国产av不卡久久| 免费看光身美女| 亚洲av免费高清在线观看| av免费观看日本| 亚洲丝袜综合中文字幕| 大片免费播放器 马上看| 亚洲精品乱码久久久久久按摩| 国产爽快片一区二区三区| 国产亚洲午夜精品一区二区久久 | 大片免费播放器 马上看| 久久久午夜欧美精品| 在线观看人妻少妇| 色视频在线一区二区三区| 国产免费一级a男人的天堂| 国产爽快片一区二区三区| 精品一区在线观看国产| 全区人妻精品视频| 国产亚洲一区二区精品| 爱豆传媒免费全集在线观看| 成人高潮视频无遮挡免费网站| 高清欧美精品videossex| 亚洲成人中文字幕在线播放| 99热这里只有是精品50| 国产高清国产精品国产三级 | 国产精品秋霞免费鲁丝片| 欧美高清成人免费视频www| 六月丁香七月| 国产极品天堂在线| 天堂网av新在线| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 春色校园在线视频观看| 国产乱人视频| 国产视频内射| 国产 一区精品| 亚洲国产精品国产精品| 亚洲av一区综合| 中文天堂在线官网| 国产乱人偷精品视频| 国产一区二区亚洲精品在线观看| 国产成人午夜福利电影在线观看| 欧美性猛交╳xxx乱大交人| 欧美人与善性xxx| 一区二区三区免费毛片| 国产永久视频网站| 国产视频内射| 久久精品久久久久久噜噜老黄| 国产伦精品一区二区三区四那| 国产精品久久久久久av不卡| 日本与韩国留学比较| 亚洲av成人精品一区久久| 国产黄片视频在线免费观看| 久久久亚洲精品成人影院| 丝袜喷水一区| 国产成人免费无遮挡视频| 欧美亚洲 丝袜 人妻 在线| 在线观看一区二区三区激情| 一个人观看的视频www高清免费观看| 身体一侧抽搐|