• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Analyzing for a Novel Continuum Model Considering Self-Stabilizing Control on Curved Road with Slope

    2022-07-02 07:44:22LiLeiZihaoWangandYongWu

    Li Lei,Zihao Wangand Yong Wu

    1School of Energy and Power Engineering,Shandong University,Jinan,250061,China

    2School of Control Science and Engineering,Shandong University,Jinan,250061,China

    3Department of Logistics Management,Ningbo University of Finance and Economics,Ningbo,315175,China

    ABSTRACT It is essential to fully understand master the traffic characteristics of the self-stabilizing control effect and road characteristics to ensure the regular operation of transportation.Traffic flow on curved roads and slopes is irregular and more complicated than that on the straight road.However,most of the research only considers the effect of self-stabilizing in the straight road.This study attempts to bridge this deficiency from the following three aspects.First,we review the potential influencing factors of traffic flow stability,which are related to the vehicle’s steady velocity,history velocity,and the turn radius of the road and the slope of the road.Based on the above review,an extended continuum model accounting for the self-stabilizing effect on a curved road with slope is proposed.Second,the linear stability criterion of the new model is derived by applying linear stability theory,and the neutral stability curve is obtained in detail.The modified KdV equation describing the evolution characteristics of traffic congestion is derived by using the nonlinear analysis method.Upon the theoretical analysis,the third aspect focuses on simulating the self-stabilizing effect under different slopes and radius,which demonstrates that the self-stabilizing effect is conducive to reducing congestion of the curved road with slope.

    KEYWORDS Traffic flow;KdV equation;self-stabilizing effect;gradient highway;curved road

    1 Introduction

    The accelerated development of modern intelligent transportation system not only alleviates traffic congestion,but also improves the stability of the transportation system [1–5].However,the stability of traffic system is also easily affected by various driver characteristics,such as self-stabilizing,memory,backward-looking,and road geometry (e.g.,slope and curved road).Therefore,it is a critical and urgent task to improve the stability of traffic flow by fully considering the driver characteristics and road geometry.

    Generally speaking,there are three types of traffic models: microscopic models [6–12],lattice models [13–20],and macroscopic hydrodynamic models [21–27].The macro model mainly refers to the continuous medium model of traffic flow,which regards a large number of vehicles as compressible continuous medium and studies the comprehensive average behavior of the vehicle group.This type of model tries to characterize the traffic flow with the average densityρ,average speedv,and flowqand study the functional relationship it satisfies.As early as 70 years ago,Lighthill et al.[28,29] first proposed the continuous medium model of traffic flow.Later in 1956,Richards [30] independently proposed the LWR model,which is analogous with continuum model.According to the basic idea of car-following theory,the motion equation (i.e.,acceleration equation) is introduced into the continuous medium model to form a high-order continuous medium model of traffic flow mechanics [31].Whihtma established a similar model,so the model is often called Pyane-Whihtam (PW) model [32].

    Traffic flow theory has been the focus of scientific research since it was put forward.Countless scientific and technological workers have devoted a lot of effort to exploration and research.Jiang et al.[33] proposed a full velocity difference model (FVDM) considering the positive and negative speed difference comprehensively.Zhang et al.proposed a macroscopic model considering the speed difference between adjacent vehicles on the slope [34].Sun et al.developed an extended micro model is proposed considering the driver’s desire for smooth driving on a curved road [35].Gong et al.[36] designed a hybrid system and simulated human driving and autonomous vehicles.By using Gamma-convergence,it is proved that the optimal control problem of the mean-field can be solved at the microscopic level.Peng et al.analyzed the impact of self-stabilization on traffic stability considering the current lattice’s historic flux for a two-lane freeway [37].Although these papers attempt to use simulation platforms to develop vehicle dynamics models,they did not connect driver characteristics with geometric characteristics of the road.Therefore,this study attempts to bridge this critical defect.

    The paper is organized as follows: Section 2 proposes a new continuum model considering the effect of self-stabilizing is constructed on the curved road with slope.Sections 3 and 4 present the linear and nonlinear analysis,and then the neutral stability curve and the KdV equation describing the nonlinear density wave are obtained.Section 5 carries out numerical experiments that demonstrate how the stability of traffic flow is affected by self-stabilizing,curved and slopes.Finally,the concludes are provided in Section 6.

    2 The Extended Continuum Traffic Flow Model

    In 2001,Jiang et al.[33] proposed the FVDM to solve the problem of vehicle retrogression based on previous studies.The model equation is

    where the headway and velocity difference between two adjacent vehicles areΔxn=xn+1-xnandΔvn=vn+1-vn;adenotes driver’s distance sensitivity coefficient;λis the sensitivity coefficient of driver to speed difference;V(Δxn(t))is optimal velocity function.

    Based on the FVD model,Li et al.[38] proposed a new car-following model.They considered the impact of the driver’s desire and the self-stabilizing control on traffic flow stability,and the extended model can be expressed as

    whereyn(t)=Δxn(t)is the headway difference between two adjacent vehicles;his the average space headway distance on the straight road;V(h)-vn(t-τ)is the driver’s desire for smooth driving;vn(h)-vn(t-τ)is the self-stabilizing control effect in the difference between the current and history velocity;λ1andλ2denote the reaction coefficients of two introduced factors,respectively;pis the reaction coefficient reflecting the uncertainty of vehicle’s speed;Vop(Δyn(t))is desired optimal velocity of vehiclen.

    For the sake of avoiding more fuel caused by frequent changes in driving speed during driving,drivers can hope to drive more smoothly.On account of the FVDM,Sun et al.[35]proposed a new car-following model of curve road and considered the impact of driver’s desire on traffic flow stability,and the extended model can be expressed as

    whereΔsn(t)=sn+1(t)-sn(t)is the headway between the vehiclenand vehiclen+1 on the curve road;τis the history time;rω(s)-rωn(t-τ)represents the drive’s desire for smooth driving.

    Zhou et al.[39] consider a situation such that vehicles are running on a single-lane gradient highway under a periodic boundary condition,which is described in Fig.1.Fig.1 shows the gravitational force acts upon vehicles on the slope of the gradient.

    Figure 1:Vehicles move on a gradient highway: uphill and downhill situation: uphill - and downhill +

    Kaur et al.[40] make full use of road geometry to study driver’s anticipation effect and further presented a new lattice model as follows:

    whereκ(0<κ≤1)is control parameter;R1is the radius of curvature,θis slope;φjrepresents the angle for the curved road atjthsite;hc(θ)is the necessary distance between two cars to avoid collision on the slope road;μandgmean the friction coefficient and gravitational acceleration,respectively.

    Through research on driver characteristics and control signals,the stability of traffic flow can be improved to a certain extent under certain conditions.However,road geometric characteristics also affect the stability of traffic flow,allowing of no to neglect.Distinguished with traditional studies,a modified car-following model on a single-lane gradient highway with curved is proposed with the consideration of the self-stabilizing effect as follows:

    whereωn(t)is the angular velocity of carnthat timet;αandrrepresent the radius and radian of the curved road.

    The highlight of our proposed model is to study the influence of self-stabilizing control and curved road with the slope on traffic flow stability from a macro perspective.Here,we can convert the micro variables in Eq.(8) into macro variables through the method proposed by Liu et al.[41],as follows:

    whereρ(s,t)andω(s,t)are macroscopic density and velocity on the curved with slope,respectively;Ve(ρ)is the equilibrium velocity and ˉV′(h)=-ρ2V′e(ρ).

    For simplification,we carry out time first-order Taylor expansion forω(s-ωτ,t-τ)while ignoring the non-linear terms,i.e.,

    Substituting macro variables into Eq.(8),we derive

    3 Linear Stability Analysis

    In the literature,the theory of fluid dynamics is used to describe the traffic flow state,and its continuity fluid dynamics equation is established to study [42,43].By combining the above formula with the continuous conservative equation,we have

    The equations are rewritten into matrices to simplify the analysis as follows:

    where

    According to Eq.(14),it is obvious that the average velocityωis equal to the characteristic velocityλ1andλ2,which proves that the model satisfies the characteristics of traffic flow anisotropy.

    Slight interference caused by driver behavior characteristics or external factors will spread upward with the traffic flow,and the traffic-free flow will develop into congestion flow gradually.If the slight disorder tends to be stable or disappear,the traffic flow can run smoothly,therefore controlling traffic congestion.Assuming that the traffic system is a homogeneous flow at the initial time,constantsρ0andω0represent the initial density and speed in the uniform state.Therefore,the steady-state solution of the uniform flow is

    By substituting Eq.(16) into Eq.(12) and neglecting the nonlinear higher-order terms,we obtain the following equation:

    The necessary and sufficient condition for the stability of linear systems is that the determinant of matrix coefficients returns to zero,i.e.,

    According to the criterion of control theory,the neutral stable condition for the traffic flow is obtained

    Performing the Taylor expansion forσkas follows:

    According to Eq.(21),we infer that

    This is similar to the velocity gradient model [44] and modified model.

    The neutral stability lines for different slopes of the gradient road are plotted in Fig.2.The neutral stability curves for uphill and downhill situations on the road,respectively,as shown in the illustration.In Fig.2a,the stability region becomes more significant and more prominent with the addition of slopeθon the uphill slope.In contract,in Fig.2b,in the downhill situations the stable area becomes larger and larger with the decrease of the slope.

    Figure 2:Neutral stability lines for different slopes in two situations: patterns (a) and (b) are corresponding to uphill and downhill situations respectively

    4 Nonlinear Analysis

    For the sake of explore the nonlinear analysis of the new model,we adopt a new coordinate system as follows [33]:

    By substituting Eq.(23) into (12),we obtain the following equation:

    Here,traffic flow is defined as the product of density and velocity of traffic flow asq=ρωr,which can be obtained from Eq.(23):

    Applying second-order Taylor expansion toq=ρωryields

    Substituting the Eq.(25) into the second row of Eq.(12),it can be written as

    The coefficientsb1andb2are determined by balancing the termsρzandρzzin Eq.(27),so we get

    Eq.(26) can be rewritten with Taylor expansions near the neutral stability condition

    Substituting the Eq.(24) into Eq.(29),and turning thetoρ,we obtain the following equation:

    Aiming at obtaining the standard KdV-Burgers equation,we perform the following transformations:

    Considering Eq.(24),the KdV-Burgers equation is obtained as follows:

    One analytical solution of the above KdV-Burgers equation is

    in whichζ0is an arbitrary constant.

    5 Numerical Simulation

    This section presents simulation studies to illustrate the effect of self-stabilizing of our developed dynamic model on a single-lane highway with slope.According to the time forward difference and space centre difference,the space and time are divided into space stepΔxand time stepΔt,for numerical simulation

    whereandrepresent density and speed on the condition of(i,j),and the space and time section are represented byiandj,respectively.

    5.1 Shock Waves and Rarefaction Waves

    Traffic wave is a kind of nonlinear wave,which can evolve into so-called “traffic shock”as time goes on.Therefore,we study the influence of small disturbance on the spatiotemporal evolution of density and velocity under crowding and sparsity.The Riemann initial conditions are considered as follows:

    whereandare the density of upstream and downstream,respectively.The corresponding initial speeds are expressed as follows:

    Then,we adopted equilibrium velocity function by Castillo et al.[45] as follows:

    whereρmis the density of vehicle under congestion flow;vfandnmrespectively denote free flow speed and the propagation speed of density wave under congestion density.Thus,we can obtain the evolution of Eqs.(36)–(39) (see Figs.3 and 4).The propagation of shock-wave and rarefaction-wave patterns can be smooth and backward in Figs.3 and 4.As time goes on,the resulting rarefaction wave disturbance propagates in the negative direction of x and is not amplified,which further validates that our proposed model satisfies the anisotropy.

    Figure 3:The shock wave in the initial Riemann condition (36): (a) time-space evolution of density and (b) time-space evolution of speed

    Figure 4:The rarefaction wave in the initial Riemann condition (37): (a) time-space evolution of density and (b) time-space evolution of speed

    5.2 Local Cluster Effect

    In this section,for clarity,we will verify the effects of self-stabilizing control strategy and different slopes and radius by conducting numerical simulation.The traditional method of stability simulation is to check the anti-disturbance ability of homogeneous traffic flow.In the literature [46],the average densityρ0has a generalized form as follows:

    where the road lengthL=32.2 km andΔρ0is density perturbation.We adopt the periodic boundary conditions as follows:

    Based on Kerner et al.[47],we introduce the equilibrium speed-density relationship as follows:

    First of all,Fig.5 is the nonlinear density wave of traffic flow with self-stabilizing control in the proposed macro traffic model on the uphill and downhill slope with curved roads.Figs.5a–5c are the uphill angle,when the road slope is sight,the influence of minor disturbance on the stability of traffic flow will not be amplified.However,Figs.5e–5g are the downhill angle,with the increase of slope angle,the impact of disruption is more and more prominent,and the traffic flow is more unstable.Therefore,with the change of a time,there will be time stop effect or traffic flow cluster effect.

    Figure 5:(continued)

    Figure 5:The evolution of the temporal and spatial on a downhill scenario with different θ when ρ0=0.055veh/m,r=20m,λ=0.6. (a)θ=6° (b)θ=4° (c)θ=2° (d)θ=0° (e)θ=2° (f)θ=4°(g)θ=6o

    To explore the second case of road geometric characteristics: the influence of curve on traffic flow,our numerical simulation is shown in Fig.6.It shows the evolution of traffic flow density with different curved road radii.Numerical simulation shows that when other conditions remain unchanged,the radius is large,the centripetal force is large,and the traffic flow is more unstable.It can be proved that the larger curve radius has a negative influence on the traffic stability.

    Next,we explore the effect of self-stabilizing control strategy on traffic flow stability as Fig.7.It shows that with the increasing control coefficient,the nonlinear density wave of traffic flow becomes more stable,which indicates that the stop and go phenomenon gradually disappears.Numerical simulation results illustrate that the effect of self-stability is helpful to improve the stability of traffic flow.

    Figure 6:Space-time evolution of the headway for different radius r=20m,40m,60m,80m when ρ0=0.055veh/m,λ=0.6,θ=2°(Downhill). (a)r=20m(b)r=40m(c)r=60m(d)r=80m

    Figure 7:(continued)

    Figure 7:Space-time evolution of the headway for different λ values when ρ0=0.055veh/m,r=20m,θ=2°(Downhill). (a)λ=0.2(b)λ=0.4(c)λ=0.6(d)λ=0.8

    6 Conclusion

    This paper introduces the effect of self-stabilizing control strategy and road geometric characteristics on traffic flow stability from a macro perspective.According to the maximum limit of the actual road slopes,different slopeθ=0°,2°,4°,6°,and different radiusr=20,40,60,80m are set.At the same time,the control strategy is obtained by using the historical speed and the current speed difference of the considered vehicles.We prove that the proposed traffic flow macro model guarantees the anisotropic characteristics.Under certain conditions,the model is analyzed theoretically,including linear and nonlinear stability analysis.Through Matlab simulation,the new model can accurately simulate traffic flow phenomena such as shock-wave and rarefaction-wave.The numerical simulation clearly verifies that the self-stabilizing strategy can effectively resist the influence of disturbance on the traffic flow and reduce the immense traffic pressure in the traffic flow.Road characteristic is also closely related to the stability of traffic flow,which is consistent with the theoretical study in this paper.

    Funding Statement: This work is supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY19A010002).

    Conflicts of Interest: We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work,there is no professional or other personal interest of any nature or kind in any product,service and/or company that could be construed as influencing the position presented in the manuscript entitled “Modeling and analyzing for a novel continuum model considering self-stabilizing control on curved road with slope”.

    亚洲成人免费av在线播放| 亚洲成人av在线免费| 人体艺术视频欧美日本| 欧美精品人与动牲交sv欧美| 国产精品免费大片| av卡一久久| 免费日韩欧美在线观看| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 99热网站在线观看| 精品少妇内射三级| 精品亚洲乱码少妇综合久久| 国产免费又黄又爽又色| 国产一卡二卡三卡精品 | 中文精品一卡2卡3卡4更新| av卡一久久| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 国产一区二区三区av在线| 伦理电影免费视频| 日本爱情动作片www.在线观看| 99久久综合免费| 男女之事视频高清在线观看 | 精品久久蜜臀av无| 天堂8中文在线网| 亚洲五月色婷婷综合| 美女中出高潮动态图| av.在线天堂| 亚洲av男天堂| 亚洲婷婷狠狠爱综合网| 伊人久久国产一区二区| 免费观看人在逋| 免费不卡黄色视频| 亚洲国产欧美网| 免费黄色在线免费观看| 亚洲精品国产区一区二| 亚洲av综合色区一区| 国产欧美日韩一区二区三区在线| 97在线人人人人妻| tube8黄色片| 国产免费又黄又爽又色| 两个人免费观看高清视频| 日韩电影二区| 欧美黑人精品巨大| 青春草国产在线视频| 超碰97精品在线观看| 欧美 日韩 精品 国产| 丝袜喷水一区| 久久人妻熟女aⅴ| 亚洲免费av在线视频| 色播在线永久视频| 波多野结衣av一区二区av| 人体艺术视频欧美日本| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 丝袜美腿诱惑在线| 精品久久久久久电影网| 国产av国产精品国产| 国产一级毛片在线| 免费高清在线观看日韩| 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 涩涩av久久男人的天堂| 久久99一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 又大又黄又爽视频免费| 精品久久久精品久久久| 青春草视频在线免费观看| 满18在线观看网站| 黑人猛操日本美女一级片| a 毛片基地| 美女中出高潮动态图| 精品福利永久在线观看| 青春草亚洲视频在线观看| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 哪个播放器可以免费观看大片| 看免费av毛片| 新久久久久国产一级毛片| 国产av精品麻豆| 色吧在线观看| 水蜜桃什么品种好| 99国产精品免费福利视频| 男人操女人黄网站| svipshipincom国产片| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜| 在线观看免费高清a一片| 国产精品99久久99久久久不卡 | 日本色播在线视频| 亚洲精品乱久久久久久| 黄色怎么调成土黄色| 国产精品嫩草影院av在线观看| 韩国高清视频一区二区三区| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 香蕉丝袜av| 最近最新中文字幕大全免费视频 | 国产福利在线免费观看视频| 母亲3免费完整高清在线观看| 天天操日日干夜夜撸| 日本色播在线视频| 精品久久久久久电影网| 国产精品三级大全| 校园人妻丝袜中文字幕| 卡戴珊不雅视频在线播放| av电影中文网址| 飞空精品影院首页| 一级毛片黄色毛片免费观看视频| 黑人猛操日本美女一级片| 麻豆精品久久久久久蜜桃| 深夜精品福利| 亚洲av成人精品一二三区| 久久精品国产综合久久久| 国产野战对白在线观看| 国产黄色免费在线视频| av在线播放精品| 亚洲国产精品国产精品| 亚洲中文av在线| 久久99一区二区三区| 久久性视频一级片| 国产成人免费观看mmmm| 少妇的丰满在线观看| 中文字幕最新亚洲高清| av国产精品久久久久影院| 欧美国产精品va在线观看不卡| 国产精品一区二区精品视频观看| 国产无遮挡羞羞视频在线观看| 亚洲欧美色中文字幕在线| 亚洲欧美成人精品一区二区| 狠狠婷婷综合久久久久久88av| 亚洲天堂av无毛| 看免费av毛片| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 国产精品 欧美亚洲| 韩国av在线不卡| 老汉色av国产亚洲站长工具| 国产麻豆69| 国产精品久久久久成人av| 精品一区二区三卡| 国产熟女午夜一区二区三区| av国产精品久久久久影院| 伊人久久国产一区二区| 男女下面插进去视频免费观看| 伦理电影免费视频| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 国产成人欧美在线观看 | 老汉色∧v一级毛片| 亚洲欧美成人精品一区二区| 国产福利在线免费观看视频| 电影成人av| 一区二区av电影网| xxx大片免费视频| 黄色毛片三级朝国网站| 欧美日韩av久久| 国产精品久久久久久久久免| 欧美在线黄色| 在线天堂中文资源库| 麻豆av在线久日| 爱豆传媒免费全集在线观看| 久久人人爽av亚洲精品天堂| 2021少妇久久久久久久久久久| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 欧美日韩视频高清一区二区三区二| 亚洲图色成人| 亚洲国产欧美一区二区综合| av卡一久久| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码 | 视频区图区小说| 可以免费在线观看a视频的电影网站 | 亚洲av在线观看美女高潮| 精品免费久久久久久久清纯 | 中文乱码字字幕精品一区二区三区| 亚洲第一青青草原| 99热国产这里只有精品6| 最近手机中文字幕大全| 啦啦啦 在线观看视频| 国产97色在线日韩免费| 丰满饥渴人妻一区二区三| 黑丝袜美女国产一区| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 亚洲 欧美一区二区三区| 久久久国产欧美日韩av| 男人操女人黄网站| 国产精品久久久久久精品电影小说| 亚洲精品美女久久久久99蜜臀 | 亚洲国产最新在线播放| 国产毛片在线视频| 午夜激情久久久久久久| 亚洲图色成人| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 欧美少妇被猛烈插入视频| 在线亚洲精品国产二区图片欧美| 丝袜人妻中文字幕| 欧美 亚洲 国产 日韩一| 高清视频免费观看一区二区| 一边亲一边摸免费视频| av线在线观看网站| 成人手机av| 久久人人爽av亚洲精品天堂| 国产亚洲一区二区精品| 满18在线观看网站| 9色porny在线观看| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 热re99久久国产66热| 另类亚洲欧美激情| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 最近最新中文字幕免费大全7| 亚洲精品第二区| 亚洲国产精品999| 你懂的网址亚洲精品在线观看| 久久久精品免费免费高清| 青春草国产在线视频| 久久精品国产a三级三级三级| 19禁男女啪啪无遮挡网站| av在线观看视频网站免费| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 午夜福利网站1000一区二区三区| 99九九在线精品视频| 久久久欧美国产精品| 久久这里只有精品19| 一级黄片播放器| 午夜福利在线免费观看网站| 我的亚洲天堂| 久热这里只有精品99| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 在线天堂中文资源库| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 日本av免费视频播放| 国产片特级美女逼逼视频| 亚洲国产日韩一区二区| 9色porny在线观看| 久久久欧美国产精品| 女人精品久久久久毛片| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 在线天堂中文资源库| 夫妻午夜视频| 搡老岳熟女国产| 视频区图区小说| 麻豆乱淫一区二区| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 精品酒店卫生间| 久久久精品94久久精品| 国产xxxxx性猛交| 国产极品粉嫩免费观看在线| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 丝袜美足系列| 五月开心婷婷网| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美在线一区| 亚洲伊人色综图| 国产精品无大码| 国产 精品1| 成人亚洲欧美一区二区av| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| 日本wwww免费看| 婷婷成人精品国产| 街头女战士在线观看网站| 成年人午夜在线观看视频| 夫妻性生交免费视频一级片| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 性少妇av在线| 观看av在线不卡| 啦啦啦中文免费视频观看日本| 老汉色∧v一级毛片| 国产免费现黄频在线看| 婷婷色综合大香蕉| 久久国产亚洲av麻豆专区| 人人妻,人人澡人人爽秒播 | 九色亚洲精品在线播放| 18禁国产床啪视频网站| 少妇被粗大猛烈的视频| 午夜福利视频精品| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人| 一本—道久久a久久精品蜜桃钙片| 男人爽女人下面视频在线观看| 欧美在线黄色| 18在线观看网站| 精品少妇久久久久久888优播| 纯流量卡能插随身wifi吗| 亚洲精品aⅴ在线观看| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 国精品久久久久久国模美| 深夜精品福利| 黄色怎么调成土黄色| 18禁国产床啪视频网站| www.熟女人妻精品国产| 午夜福利乱码中文字幕| 日本猛色少妇xxxxx猛交久久| 欧美精品高潮呻吟av久久| 性少妇av在线| 国产亚洲精品第一综合不卡| 国产成人免费观看mmmm| 无遮挡黄片免费观看| 久久久精品国产亚洲av高清涩受| 久久久久久久国产电影| 亚洲欧洲国产日韩| 亚洲图色成人| 色婷婷av一区二区三区视频| 精品亚洲成国产av| 色吧在线观看| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 国产色婷婷99| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 久久久久人妻精品一区果冻| 亚洲男人天堂网一区| 成人影院久久| 亚洲,欧美精品.| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| 极品人妻少妇av视频| 女的被弄到高潮叫床怎么办| 国产熟女午夜一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲欧美成人综合另类久久久| 女的被弄到高潮叫床怎么办| 午夜老司机福利片| 男人舔女人的私密视频| 菩萨蛮人人尽说江南好唐韦庄| 免费黄网站久久成人精品| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 久久这里只有精品19| av线在线观看网站| 成人国语在线视频| 一级爰片在线观看| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 国产精品免费大片| 国产又色又爽无遮挡免| 青青草视频在线视频观看| 亚洲,欧美,日韩| 国产成人av激情在线播放| 国产成人一区二区在线| 国产av国产精品国产| 国产一区二区激情短视频 | 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 国产成人啪精品午夜网站| 久久久精品免费免费高清| 久久久精品94久久精品| 亚洲视频免费观看视频| 天美传媒精品一区二区| 国产在线免费精品| 咕卡用的链子| 成年美女黄网站色视频大全免费| 国产 精品1| 麻豆av在线久日| 99热全是精品| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩制服丝袜自拍偷拍| 一本色道久久久久久精品综合| 丁香六月天网| 国产男女内射视频| 久久毛片免费看一区二区三区| 成人影院久久| 欧美日本中文国产一区发布| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 亚洲四区av| 午夜福利网站1000一区二区三区| 久久人人爽人人片av| 大香蕉久久成人网| 欧美成人精品欧美一级黄| 少妇被粗大猛烈的视频| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 80岁老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| 国产女主播在线喷水免费视频网站| 曰老女人黄片| 青草久久国产| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 国产成人系列免费观看| 丰满乱子伦码专区| 老汉色av国产亚洲站长工具| 99九九在线精品视频| 狠狠婷婷综合久久久久久88av| 老司机影院成人| 交换朋友夫妻互换小说| 久久久精品区二区三区| 亚洲欧美成人综合另类久久久| av在线app专区| av又黄又爽大尺度在线免费看| 久久狼人影院| 成人漫画全彩无遮挡| 亚洲精品美女久久av网站| 午夜日韩欧美国产| 国产福利在线免费观看视频| 亚洲熟女毛片儿| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 欧美国产精品一级二级三级| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 日韩 亚洲 欧美在线| 超色免费av| 18禁动态无遮挡网站| 亚洲伊人久久精品综合| 久久婷婷青草| 日本av手机在线免费观看| 精品酒店卫生间| 最近手机中文字幕大全| 1024视频免费在线观看| 激情视频va一区二区三区| 婷婷色综合大香蕉| tube8黄色片| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲国产日韩| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 久久毛片免费看一区二区三区| 一区福利在线观看| 欧美国产精品一级二级三级| 国产在线视频一区二区| 最近手机中文字幕大全| 午夜日本视频在线| 飞空精品影院首页| 各种免费的搞黄视频| 精品视频人人做人人爽| 午夜免费鲁丝| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 欧美人与善性xxx| 多毛熟女@视频| 日韩电影二区| 少妇人妻 视频| 免费看av在线观看网站| 丝袜人妻中文字幕| 国产精品熟女久久久久浪| 天天添夜夜摸| av在线播放精品| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频| 午夜久久久在线观看| 日韩 欧美 亚洲 中文字幕| 可以免费在线观看a视频的电影网站 | 免费看不卡的av| 免费久久久久久久精品成人欧美视频| 国产一区有黄有色的免费视频| 午夜老司机福利片| 男人舔女人的私密视频| 99香蕉大伊视频| 亚洲av综合色区一区| 大香蕉久久成人网| 日韩中文字幕欧美一区二区 | av免费观看日本| 国产精品久久久久久久久免| 日本av免费视频播放| 久久精品国产a三级三级三级| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 咕卡用的链子| 18在线观看网站| 嫩草影视91久久| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 在线观看一区二区三区激情| 七月丁香在线播放| 免费少妇av软件| 成人三级做爰电影| 成年动漫av网址| 国产高清国产精品国产三级| 欧美变态另类bdsm刘玥| 久久热在线av| 在线天堂中文资源库| av国产久精品久网站免费入址| 午夜福利免费观看在线| 啦啦啦在线免费观看视频4| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 国产免费现黄频在线看| 久久精品国产综合久久久| 欧美日韩综合久久久久久| 超碰成人久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 久久久久久免费高清国产稀缺| 国产精品无大码| 黄色 视频免费看| 午夜av观看不卡| 久久久久久人人人人人| 婷婷色综合大香蕉| 亚洲国产精品国产精品| 久久久久视频综合| 免费看不卡的av| 亚洲精品av麻豆狂野| 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 大香蕉久久成人网| 九九爱精品视频在线观看| 精品久久蜜臀av无| av视频免费观看在线观看| 久久综合国产亚洲精品| 女性生殖器流出的白浆| 一本久久精品| 51午夜福利影视在线观看| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 精品国产一区二区久久| 精品亚洲成国产av| 国产精品欧美亚洲77777| 久久av网站| 中文字幕高清在线视频| av.在线天堂| a 毛片基地| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频 | 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av | 日韩精品免费视频一区二区三区| 国产精品欧美亚洲77777| 久久天堂一区二区三区四区| 看免费av毛片| 丝袜美腿诱惑在线| 午夜激情av网站| 亚洲精品自拍成人| 国产乱来视频区| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 国产 一区精品| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 欧美精品人与动牲交sv欧美| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 满18在线观看网站| 嫩草影视91久久| 久久久久人妻精品一区果冻| 免费观看av网站的网址| 女的被弄到高潮叫床怎么办| 久久久精品94久久精品| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 中文精品一卡2卡3卡4更新| 性高湖久久久久久久久免费观看| 狂野欧美激情性bbbbbb| 亚洲免费av在线视频| 亚洲精品美女久久av网站| 日韩 亚洲 欧美在线| 女人精品久久久久毛片| 日韩,欧美,国产一区二区三区| 狂野欧美激情性bbbbbb| 最近最新中文字幕免费大全7| 久久鲁丝午夜福利片| 欧美日韩精品网址| 一级毛片 在线播放| 欧美日本中文国产一区发布| 最近的中文字幕免费完整| 亚洲成国产人片在线观看| 国产成人精品福利久久| 麻豆乱淫一区二区| 国产男人的电影天堂91| 国产成人精品在线电影| 在线观看www视频免费| 亚洲国产中文字幕在线视频| 精品国产露脸久久av麻豆| 久久久久久人人人人人|