• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurements of Hydrate Equilibrium Conditions for CH4, CO2, and CH4?+?C2H6?+?C3H8 in Various Systems by Step-heating Method*

    2009-05-14 12:33:08CHENLitao陳立濤SUNChangyu孫長宇CHENGuangjin陳光進(jìn)NIEYunqiang聶運強SUNZhansong孫占松andLIUYantao劉延濤
    關(guān)鍵詞:陳光

    CHEN Litao (陳立濤), SUN Changyu (孫長宇), CHEN Guangjin (陳光進(jìn)), NIE Yunqiang (聶運強), SUN Zhansong (孫占松) and LIU Yantao (劉延濤)

    ?

    Measurements of Hydrate Equilibrium Conditions for CH4, CO2, and CH4+?C2H6+?C3H8in Various Systems by Step-heating Method*

    CHEN Litao (陳立濤), SUN Changyu (孫長宇), CHEN Guangjin (陳光進(jìn))**, NIE Yunqiang (聶運強), SUN Zhansong (孫占松) and LIU Yantao (劉延濤)

    State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

    Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device. The experimental data for pure CH4or CO2+?deionized water systems showed good agreement with those in the literatures. This kind of method was then applied to CH4/CO2+?sodium dodecyl sulfate (SDS) aqueous solution, CH4/CO2+?SDS aqueous solution?+?silica sand, and (CH4+?C2H6+?C3H8) gas mixture?+?SDS aqueous solution systems, where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions. The feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems were determined. The experimental data for CO2+?silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96 μm. The formation equilibrium pressure was also measured by the reformation of hydrate.

    equilibrium condition, hydrate, step-heating, sodium dodecyl sulfate, silica sand

    1 INTRODUCTION

    Gas hydrate is a kind of nonstoichiometric clathrate crystals formed from low molecular weight gases and water under the conditions of low temperature and high pressure. Such gases include light hydrocarbons (CH4, C2H6, C3H8, and C2H4,.), CO2, hydrogen sulfide, and nitrogen,. Natural gas hydrate exists both onshore in permafrost zone and offshore under the ocean bottom widely. It has been considered to be future substitute energy due to its estimated giant amounts in nature [1]. The equilibrium conditions of natural gas hydrate are necessary for locating hydrate occurring regions and estimating the total amount of gas hydrate in nature. Equilibrium conditions of gas hydrate in inhibitor or electrolyte containing systems are also necessary for safe production of gas/oil industries [2, 3].

    In hydrate containing system, the existing phases may include gas (V), ice (I), liquid water (LW), liquid hydrocarbon (LH) and three structures hydrate (sI, sII, sH). According to the Gibbs phase rule, for hydrate formed by pure gas, the number of degrees of freedom is 1 if three phases exist in the system. That is to say the equilibrium pressure is unique at a determined temperature when three phase equilibrium is attained. As to gas mixtures, the equilibrium conditions are related to gases compositions. Three kinds of methods, isothermal pressure searching method, isobaric temperature searching method and isochoric curve method [4-8], are in general used to measure the equilibrium conditions of gas hydrate above ice point. One way of the isochoric curve method, called continuous-heating method, has also been used to measure hydrate equilibrium conditions in porous media systems [9-12].

    In comparison, the other way of the isochoric curve method, called step-heating method, is significantly more reliable and repeatable than conventional continuous-heating method for porous media systems [13-16]. After the formation of hydrate, temperature is set to an interest value and the system pressure is adjusted to be slightly below the estimated dissociation pressure of the hydrate. Part of hydrate dissociates to establish the H-I-V or the H-LW-V equilibrium at a certain temperature. Afterward, the temperature is raised to another interest value and new pressure-temperature equilibrium is determined.

    In this work, step-heating method was applied to bulk water, silica sand, and gas mixture hydrate systems. A kind of anionic surfactant was added to shorten the hydrate formation time. Hydrate equilibrium conditions were also measured by the reformation of hydrates. For gas mixture system, compositions of gas at every equilibrium stage were analyzed. This kind of measurement method exactly fits the meaning of “phase equilibrium” and it is expected to become a common method for hydrate equilibrium conditions measurement.

    2 EXPERIMENTAL

    2.1 Apparatus

    The experimental apparatus used in this work is similar to that used in our previous papers [8, 17-19], and the schematic diagram is shown in Fig. 1. The volume of the cylindrical transparent sapphire cell, which is the critical part of the apparatus, is about 50 cm3(the inner diameter is 25.4 mm and the length is 100 mm). As shown in Fig. 1, the sapphire cell is held by two flanges with gas inlet, liquid inlet, and thermal resistance ports. A movable piston driven by a hand volume pump is used to change the volume of the cell or compact the sample. The usually used hydraulic transmission fluid is aqueous solution of glycol. A magnetic stirrer for accelerating the equilibrium process could be chosen for aqueous liquid systems. The pressure is measured by MIDA-OEM pressure transducer manufactured by AdAstrA Company (Russia) with a precision of 0.1%. Temperature in the sapphire cell is measured by PT-100 platinum resistance thermometer with the precision of 0.1 K. The air bath temperature could be stable within ±0.1 K.

    Figure 1 Schematic of experimental apparatus

    2.2 Materials and preparation of samples

    Analytical grade CH4(99.99%), C2H6(99.95%), C3H8(99.95%), and CO2(99.95%) supplied by Beifen Gas Industry Corporation were used in preparing the gas phase component. For gas mixtures system, a Hewlett-Packard gas chromatograph (HP 6890) was used to analyze the composition. The sodium dodecyl sulfate (SDS, analytical reagent) was supplied by Beijing Reagents Corporation. An electronic balance with a precision of ±0.1 mg was used in measuring SDS weight. Deionized distilled water was used in preparing the aqueous solution. The silica sand of various meshes came from natural river sand.

    2.3 Experimental procedure

    Firstly, a desired quantity of the experimental samples, such as deionized distilled water, surfactant (SDS) aqueous solution, and/or SDS aqueous solution saturated silica sand with different size, was filled in the sapphire cell according to different experimental purpose. Afterward, the sapphire cell was sealed with flanges and equipped in the air bath. The gas space of the cell was purged with the prepared feed gas and evacuated to ensure the absence of air. Then the air-bath temperature was adjusted to the desired value. Once the cell temperature was kept constant, the gas sample was charged into the cell until the desired pressure was achieved. The gas sample might be pure CH4, pure CO2, or mixtures of CH4(89.3%, by mol)?+?C2H6(7.8%, by mol)?+?C3H8(2.9%, by mol) in different runs. The feed pressure was much higher than the estimated equilibrium pressure value at the specified temperature to ensure the hydrate formation. The estimated equilibrium pressure is calculated by CSMGem [1]. If it was bulk deionized water, the magnetic stirrer could be turned on to induce and accelerate the hydrate formation.

    After the pressure drop was less than 0.01 MPa·h-1, at which hydrate growth was thought at a very low rate, the system pressure was decreased slowly by discharging the remaining gas in the cell. In the first dissociation stage, the system pressure was decreased to about 0.5 MPa lower than the estimated equilibrium pressure at the first experimental temperature. The top valve of the cell was then closed to make it be an enclosed system. Part of the hydrate would then dissociate into gas and water. The changes of system pressure and temperature of the samples with elapsed time were recorded on-line by computer. If the system pressure increased less than 0.01 MPa in three hours, the enclosed system was then considered as approaching equilibrium. And the current temperature and pressure was then deemed as a set of equilibrium condition data.

    Afterward, the temperature of air bath was raised to the next experimental point. The residual hydrate would continue to dissociate because of the increasing temperature, and another group of-data would be obtained when equilibrium was attained. The experimental procedure was terminated until hydrate thoroughly dissociated. During the whole measurement process, gas was discharged only before the first dissociation stage. Therefore, the system was kept enclosed during the whole measurement process.

    For some groups of experiments, after hydrate thoroughly dissociated, the air bath temperature was decreased to reform hydrate step by step. Similar to dissociation process, formation equilibrium was attained when pressure decreased less than 0.01 MPa in three hours. The-equilibrium data was then determined by the hydrate reformation. The reformation experiment was terminated when reaching the initial dissociation temperature.

    For gas mixture systems, the compositions of gas mixtures changed with hydrate formation/dissociation because of the distillation of hydrate [20]. The composition of gas phase was no longer the same as the initial feed gas. In this work, gas compositions analyzed by gas chromatogram at the end of each equilibrium stage was assumed as the equilibrium composition at the equilibrium pressure and temperature.

    3 RESULTS AND DISCUSSION

    3.1 Pure gas?+?deionized water system

    The equilibrium conditions of pure CH4and CO2hydrate in deionized water were firstly measured to verify the reliability of the experimental method. The initial formation conditions were 273.4 K, 8.00 MPa for CH4system and 273.4 K, 3.30 MPa for CO2system, respectively. With the higher driving force, most of the water transformed to hydrate in 1-2 days. The coexistence of hydrate, liquid water and gas in the transparent sapphire cell was observed by naked eyes. The equilibrium conditions were obtained according to the above experimental procedure described in Section 2.3. The corresponding variations of pressure and temperature with time for CH4hydrate dissociation are shown in Fig. 2.

    Table 1 Equilibrium conditions measured in this work

    Table 1 (Continued)

    Note: DP, phase equilibrium data determined by dissociation process; RP, phase equilibrium data determined by reformation process.

    Figure 3 Comparison of measured equilibrium conditions in deionized water with literature data [1]■?CH4measured;○?CH4literature;▲?CO2measured;▽?CO2literature

    Figure 5 Comparison of equilibrium conditions for CO2+?deionized water system■?dissociation;△?reformation

    The obtained-equilibrium data for pure CH4and CO2in deionized water system are listed in Table 1 and shown in Fig. 3. The literature data [1] for the two systems are also depicted in Fig. 3 for comparison. The measured data and those in literatures are in good agreement. It is known that almost all the available literature data are measured either by isothermal pressure searching method or by isobaric temperature searching method [4-8]. These two methods have the common procedure of “searching” by changing either the pressure or temperature. It will take a long time on approaching the final pressure or temperature equilibrium. It may need 1-2 days to obtain a group of-data. In addition, the equilibrium conditions obtained from these two methods are determined by observing the existence of trace hydrate formation or dissociation. It is actually the formation conditions but not the equilibrium conditions although the difference among them is small and could always be neglected. The step-heating method, however, exactly determines the equilibrium conditions.

    For CO2+?deionized water hydrate system, hydrate was reformed to check the measured dissociation equilibrium-data. The variation of pressure and temperature with time, and the equilibrium data obtained are shown in Fig. 4 and Fig. 5, respectively. It could be found that the formation equilibrium conditions are coincided with dissociation equilibrium conditions, except a longer time is needed for one set of-data during the reformation process.

    3.2 Pure gas?+?SDS aqueous solution system

    SDS is a kind of hydrate formation promoter used to shorten the induction time and enhance the formation rate of hydrate [21-24]. For the step-heating method, adequate amount of hydrate should be prepared for the subsequent procedure. For bulk water system, the formation rate is slow and a great deal of hydrate is hard to be prepared quickly even stirring is used. For porous media system, stirring is impossible. SDS could be added in water to form hydrate quickly. The influence of SDS on the hydrate equilibrium condition was firstly checked.

    The equilibrium condition data of CH4+?0.065% (by mass) SDS aqueous solution and CO2+?0.065% (by mass) SDS aqueous solution are listed in Table 1 and shown in Fig. 6. In comparison, the experimental results of CH4and CO2in deionized water systems are also illustrated. It could be found that, in the experimental temperature and pressure range, equilibrium pressures hardly change after adding SDS at the same temperatures. This has been affirmed in CH4+?0.02% (by mass) SDS aqueous solution system by other researchers [25]. Therefore, 0.065% (by mass) SDS aqueous solution was used in the subsequent measurementassuming it having no influence on the phase equilibrium. During the measurements, it was found that the nucleation and growth of hydrate occurred readily.

    Hydrate was reformed in CO2+?0.065% (by mass) SDS aqueous solution system. The profiles of pressure and temperature during the whole dissociation and reformation processes are shown in Fig. 7, and the equilibrium data obtained from dissociation and reformation are shown in Fig. 8. It could be seen that good agreements are obtained for the two measurement process as shown in deionized water system.

    Figure 6 Comparison of CH4/CO2hydrate equilibrium conditions between SDS aqueous solutions and deionized water systems■?CH4+?deionized water;○?CH4+?0.065% (by mass) SDS aqueous solution;▲?CO2+?deionized water;◇?CO2+?0.065% (by mass) SDS aqueous solution

    Figure 8 Hydrate equilibrium conditions of CO2+?0.065% (by mass) SDS aqueous solution system■?dissociation;○?reformation equilibrium

    3.3 Pure gas?+?SDS?+?silica sand system

    It is well known that the existing searching methods mainly focus on the bulk water system, of which the hydrate formation and dissociation could be observed and confirmed by naked eye. For porous media system, the formation of hydrate can not be observed directly, so step-heating/continuous-heating method is then used. Equilibrium conditions of CH4/CO2+?silica sand systems were determined accordingly in this work. The sand used were 380-830 μm, 150-180 μm for CH4system and 96-109 μm, 80-96 μm for CO2system, respectively. SDS was used to enhance the hydrate formation rate with a concentration of 0.065% (by mass). Hydrate was reformed after dissociation for CH4system. The equilibrium conditions of CH4/CO2+?0.065% (by mass) SDS aqueous solution?+?silica sand system determined by dissociation and reformation process are listed in Table 1 and shown in Figs. 9 and 10. Excellent coincidence could be found.

    Figure 9 Hydrate equilibrium conditions of CH4+?0.065% (by mass) SDS aqueous solution?+?silica sand system ■?150-180 μm, dissociation;○?150-180 μm, reformation; ▼?380-830 μm, dissociation;▲?380-830 μm, reformation;△?bulk water

    Figure 10 Hydrate equilibrium conditions of CO2+?0.065% (by mass) SDS aqueous solution?+?(80-96) μm/(96-109) μm silica sand system ■?96-109 μm;○?80-96 μm;△?no silica sand

    3.4 Gas mixtures?+?0.065% (by mass) SDS aqueous solution system

    The measured equilibrium conditions of CH4+?C2H6+?C3H8+?0.065% (by mass) SDS aqueous solutions at 275.2 K are listed in Table 2. The initial composition of the mixture is CH4(89.3%, by mol)?+?C2H6(7.8%, by mol)?+?C3H8(2.9%, by mol). Equilibrium gas compositions at the equilibrium pressure and temperature are also listed in Table 2. It could be found that the C3H8mole fraction increases as hydrate dissociates. The lowest mole fraction of C3H8is 0.45% at the first equilibrium stage. Table 2 also lists the equilibrium pressures at every stage calculated by CSMGem [1]. The largest difference between measured and calculated pressure is 0.17 MPa at the first equilibrium. The relative larger difference at the first stage might be due to the coexistence of sI and sII hydrate for the mixture with higher CH4and lower C3H8contents [26].

    4 CONCLUSIONS

    Step-heating method was applied to several systems using the cylindrical transparent sapphire cell device. The systems include: CH4/CO2+?deionized water, CH4/CO2+?SDS aqueous solution, CH4/CO2+?SDS aqueous solution?+?silica sand, (CH4+?C2H6+?C3H8)?+?SDS aqueous solution. Comparisons of experimental data with the literature value show the feasibility and reliability of the step-heating method, especially for porous media systems and gas mixtures systems. Besides, it could be applied to almost all kinds of systems, this kind of measurement method is also simpler and less time consumption compared with the other searching methods.

    Table 2 Hydrate equilibrium conditions of CH4?+?C2H6?+C3H8?+?0.065% (by mass) SDS aqueous solutions at 275.2 K

    1 Sloan, E.D., Koh, C.A., Clathrate Hydrates of Natural Gases, 3rd edition, CRC Press, New York (2008).

    2 Makogon, Y.F., Hydrates of Hydrocarbons, Pennwell Publishing Company, Tulsa Oklahoma (1997).

    3 Qiu, J.H., Guo, T.M., “Kinetics of methane hydrate formation in pure water and inhibitor containing systems”,...., 10 (3), 316-322 (2002).

    4 Nixdorf, J., Oellrich, L.R., “Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixtures and natural gases”,, 139, 325-333 (1997).

    5 Kang, S.P., Chun, M.K., Lee, H., “Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2solutions”,, 147, 229-238 (1998).

    6 Fan, S.S, Liang, D.Q., Guo, K.H., “Hydrate equilibrium conditions for cyclopentane and a quaternary cyclopentane-rich mixture”,..., 46 (4), 930-932 (2001).

    7 Majumdar, A., Mahmoodaghdam, E., Bishnoi, P.R., “Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride”,..., 45, 20-22 (2000).

    8 Sun, C.Y., Chen, G.J., Lin, W., Guo, T.M., “Hydrate formation conditions of sour natural gases”,..., 48, 600-602 (2003).

    9 Cha, S.B., Ouar, H., Wildeman, T.R., Sloan, E.D., “A third-surface effect on hydrate formation”,..., 92, 6492-6494 (1988).

    10 Uchida, T., Ebinuma, T., Ishizaki, T., “Dissociation condition measurements of methane hydrate in confined small pores of porous glass”,..., 103, 3659-3662 (1999).

    11 Seo, Y.T., Lee, H., “Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures”,..., 105, 10084-10090 (2001).

    12 Dicharry, C., Gayet, P., Marion, G., Graciaa, A., Nesterov, A.N., “Modeling heating curve for gas hydrate dissociation in porous media”,..., 109, 17205-17211 (2005).

    13 Anderson, R., Llamedo, M., Tohidi, B., Burgass, R.W., “Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica”,..., 107, 3507-3514 (2003).

    14 Handa, Y.P., Stupin, D., “Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70? radius silica gel pores”,..., 96, 8599-8603 (1992).

    15 Zhang, W., Wilder, J.W., Smith, D.H., “Methane hydrate-ice equilibria in porous media”,..., 107, 13084-13089 (2003).

    16 Seshadri, K., Wilder, J.W., Smith, D.H., “Measurements of equilibrium pressures and temperatures for propane Hydrate in silica gels with different pore-size distributions”,..., 105, 2627-2631 (2001).

    17 Ma, C.F., Chen, G.J., Wang, F., Sun, C.Y., Guo, T.M., “Hydrate formation of (CH4+?C2H4) and (CH4+?C3H6) gas mixtures”,, 191, 41-47 (2001).

    18 Zhang, L.W., Huang, Q., Sun, C.Y., Ma, Q.L., Chen, G.J., “Hydrate formation conditions of methane?+?ethylene?+?tetrahydrofuran?+?water systems”,..., 51, 419-422 (2006).

    19 Huang, Q., Sun, C.Y., Chen, G.J., Yang, L.Y., “Hydrate formation conditions of (CH4+?CO2+?H2S) ternary sour natural gases”,.... (), 56 (7), 1159-1163 (2005). (in Chinese)

    20 Luo, Y.T., Zhu, J.H., Chen, G.J., “Numerical simulation of separating gas mixtures via hydrate formation in bubble column”,...., 15 (3), 345-352 (2007).

    21 Zhong, Y., Rogers, R.E., “Surfactant effects on gas hydrate formation”,..., 55, 4175-4187 (2000).

    22 Karaaslan, U., Uluneye, E., Parlaktuna, M., “Effect of an anionic surfactant on different type of hydrate structures”,...., 35, 49-57 (2002).

    23 Lin, W., Chen, G.J., Sun, C.Y., Guo, X.Q., Wu, Z.K., Liang, M.Y., Chen, L.T., Yang, L.Y., “Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate”,..., 59, 4449-4455 (2004).

    24 Sun, C.Y., Chen, G.J., Ma, C.F., Huang, Q., Luo, H., Li, Q.P., “The growth kinetics of hydrate film on the surface of gas bubble suspended in water or aqueous surfactant solution”,.., 306, 491-499 (2007).

    25 Gayet, P., Dicharry, C., Marion, G., Graciaa, A., Lachaise, J., Nesterov, A., “Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter”,..., 60, 5751-5758 (2005).

    26 Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A., Sloan, E.D., “Phase transitions in mixed gas hydrates: Experimental observations versus calculated data”,..., 110, 11468-11474 (2006).

    2008-10-06,

    2009-04-17.

    the National Natural Science Foundation of China (20676145, U0633003), the National Basic Research Program of China (2009CB219504) and the Program for New Century Excellent Talents in University of the State Ministry of Education.

    ** To whom correspondence should be addressed. E-mail: gjchen@cup.edu.cn

    猜你喜歡
    陳光
    錚錚鐵骨陳光和
    鐵軍(2022年11期)2022-11-03 02:48:12
    我們是好朋友
    夢究竟意味著什么
    我是你的眼
    陳光中:理工男變身“披薩達(dá)人”
    海峽姐妹(2018年1期)2018-04-12 06:44:17
    歷史的誤會——戰(zhàn)將陳光的最后歲月
    文史博覽(2016年6期)2016-11-22 06:30:57
    陳光中:立言者
    東西南北(2016年18期)2016-10-14 03:49:21
    我是你的眼
    林彪與“救命恩人”陳光的恩怨
    新傳奇(2015年1期)2015-04-29 03:46:41
    我供爸爸上大學(xué)
    亚洲欧美精品自产自拍| av在线蜜桃| 尾随美女入室| 色视频www国产| 日本爱情动作片www.在线观看| 人体艺术视频欧美日本| 九草在线视频观看| 精品久久久久久久人妻蜜臀av| 免费av观看视频| 校园人妻丝袜中文字幕| 国产成人福利小说| 久久精品夜夜夜夜夜久久蜜豆| 久久久久免费精品人妻一区二区| 亚洲国产成人一精品久久久| 精品久久久噜噜| 秋霞伦理黄片| 麻豆国产97在线/欧美| 麻豆久久精品国产亚洲av| 女人久久www免费人成看片| 亚洲精品国产av蜜桃| 欧美 日韩 精品 国产| 午夜福利视频精品| 欧美激情在线99| 久久精品久久久久久噜噜老黄| 男女那种视频在线观看| 欧美高清成人免费视频www| 少妇的逼水好多| 亚洲国产精品国产精品| 久99久视频精品免费| 一二三四中文在线观看免费高清| 国产精品一区二区性色av| 亚洲精品中文字幕在线视频 | 久久久久久久久久黄片| 久久久久久久久大av| 亚洲最大成人中文| 久久久久久久久久成人| 国产片特级美女逼逼视频| 深夜a级毛片| 纵有疾风起免费观看全集完整版 | 97超视频在线观看视频| 亚洲熟女精品中文字幕| 美女脱内裤让男人舔精品视频| 三级经典国产精品| 精品国内亚洲2022精品成人| 可以在线观看毛片的网站| 色尼玛亚洲综合影院| 成人二区视频| 婷婷色av中文字幕| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| av女优亚洲男人天堂| av一本久久久久| 日日撸夜夜添| 两个人的视频大全免费| 夫妻性生交免费视频一级片| 欧美日本视频| 精品99又大又爽又粗少妇毛片| 青春草亚洲视频在线观看| 免费看a级黄色片| 午夜福利在线观看免费完整高清在| 亚洲色图av天堂| 国产精品1区2区在线观看.| 国产 一区 欧美 日韩| 亚洲av成人av| 99久久精品热视频| 久久精品国产自在天天线| 国产男女超爽视频在线观看| 午夜免费观看性视频| 亚洲精品一二三| 国产成人精品一,二区| 国产精品熟女久久久久浪| 欧美激情在线99| 免费看a级黄色片| a级一级毛片免费在线观看| 日韩成人伦理影院| 国产高潮美女av| 精品一区二区三区人妻视频| 亚洲经典国产精华液单| 国产伦精品一区二区三区四那| 18禁动态无遮挡网站| 欧美成人午夜免费资源| 男人狂女人下面高潮的视频| 亚洲欧美中文字幕日韩二区| 久久草成人影院| 亚洲最大成人中文| 热99在线观看视频| 日本爱情动作片www.在线观看| 成人二区视频| 欧美激情国产日韩精品一区| 只有这里有精品99| 亚洲av一区综合| 午夜亚洲福利在线播放| 高清欧美精品videossex| 亚洲成人一二三区av| 国产欧美日韩精品一区二区| 尾随美女入室| 最近中文字幕2019免费版| 国产精品1区2区在线观看.| 精品国产一区二区三区久久久樱花 | 日本一本二区三区精品| 午夜免费男女啪啪视频观看| 中文字幕av成人在线电影| 男女啪啪激烈高潮av片| 视频中文字幕在线观看| 国产麻豆成人av免费视频| 久久久精品免费免费高清| 欧美精品一区二区大全| 日韩不卡一区二区三区视频在线| 肉色欧美久久久久久久蜜桃 | 男人爽女人下面视频在线观看| 日本免费a在线| 最近2019中文字幕mv第一页| 国产一区有黄有色的免费视频 | 久久久成人免费电影| 免费不卡的大黄色大毛片视频在线观看 | 久久人人爽人人片av| 丝袜喷水一区| 国产伦一二天堂av在线观看| 日韩欧美精品v在线| 国产成人91sexporn| or卡值多少钱| 国产精品伦人一区二区| 最近最新中文字幕大全电影3| 久久精品国产亚洲av天美| 91精品一卡2卡3卡4卡| 久久久久免费精品人妻一区二区| 国产成人精品久久久久久| 国产成人福利小说| 久久6这里有精品| 久99久视频精品免费| 国产成人a区在线观看| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 日本色播在线视频| 国产精品人妻久久久影院| 日本一二三区视频观看| 欧美极品一区二区三区四区| 欧美激情国产日韩精品一区| 亚洲熟女精品中文字幕| 综合色av麻豆| 中国国产av一级| 成人二区视频| 日韩一区二区视频免费看| 特级一级黄色大片| 我的老师免费观看完整版| 精品一区在线观看国产| 日韩亚洲欧美综合| 亚洲人与动物交配视频| 观看免费一级毛片| 少妇熟女aⅴ在线视频| 亚洲国产精品国产精品| 人妻少妇偷人精品九色| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| 成人漫画全彩无遮挡| 久久草成人影院| 亚洲精华国产精华液的使用体验| 1000部很黄的大片| 精品久久久久久久久av| 亚洲18禁久久av| 在线免费观看的www视频| 日本熟妇午夜| 熟妇人妻久久中文字幕3abv| 国产探花在线观看一区二区| 中文字幕人妻熟人妻熟丝袜美| 久久韩国三级中文字幕| 亚洲最大成人av| 日韩制服骚丝袜av| 免费av毛片视频| 亚洲精品乱久久久久久| 婷婷色综合大香蕉| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 久久这里只有精品中国| 色综合亚洲欧美另类图片| 禁无遮挡网站| 极品少妇高潮喷水抽搐| 亚洲成色77777| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 69av精品久久久久久| 久久久久久久国产电影| 欧美人与善性xxx| 国产熟女欧美一区二区| freevideosex欧美| 一夜夜www| 一区二区三区乱码不卡18| 别揉我奶头 嗯啊视频| 国产在视频线在精品| 亚洲电影在线观看av| 精品人妻偷拍中文字幕| 免费av毛片视频| 狂野欧美白嫩少妇大欣赏| 久久久久久久大尺度免费视频| 国产一级毛片在线| 国产高清三级在线| 人体艺术视频欧美日本| 国产成人91sexporn| 97精品久久久久久久久久精品| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 一级二级三级毛片免费看| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 亚洲最大成人av| 简卡轻食公司| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| a级毛色黄片| 色综合色国产| 久久久久久久久大av| 18禁裸乳无遮挡免费网站照片| 国产一区有黄有色的免费视频 | 国产男女超爽视频在线观看| 免费电影在线观看免费观看| 麻豆乱淫一区二区| 丝袜喷水一区| 亚洲熟女精品中文字幕| 女人十人毛片免费观看3o分钟| 直男gayav资源| 白带黄色成豆腐渣| 国产黄频视频在线观看| 午夜精品在线福利| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 床上黄色一级片| 成人av在线播放网站| 亚洲最大成人中文| 又大又黄又爽视频免费| 国产精品一区www在线观看| 亚洲图色成人| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 好男人视频免费观看在线| 免费看不卡的av| 2021天堂中文幕一二区在线观| 国模一区二区三区四区视频| 久久久久久久大尺度免费视频| 麻豆成人av视频| 3wmmmm亚洲av在线观看| 少妇人妻一区二区三区视频| 搞女人的毛片| 免费av不卡在线播放| 色网站视频免费| 久久久精品免费免费高清| 大香蕉久久网| 久久久久久久久久人人人人人人| 欧美精品一区二区大全| 床上黄色一级片| 卡戴珊不雅视频在线播放| 精品久久久久久久末码| 一本久久精品| 别揉我奶头 嗯啊视频| 亚洲av成人精品一区久久| 看黄色毛片网站| 岛国毛片在线播放| 少妇被粗大猛烈的视频| 三级国产精品欧美在线观看| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 国模一区二区三区四区视频| 在线 av 中文字幕| 免费黄频网站在线观看国产| 亚洲乱码一区二区免费版| 亚洲av电影在线观看一区二区三区 | 久久国产乱子免费精品| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 2021天堂中文幕一二区在线观| 日本一二三区视频观看| 午夜免费男女啪啪视频观看| 日韩欧美三级三区| 99热6这里只有精品| 国产午夜福利久久久久久| 国产亚洲91精品色在线| 六月丁香七月| 免费观看精品视频网站| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 亚洲国产欧美人成| 亚洲人成网站高清观看| 2022亚洲国产成人精品| 性色avwww在线观看| 精品一区二区三区视频在线| 中文字幕制服av| 国语对白做爰xxxⅹ性视频网站| 国产精品嫩草影院av在线观看| 色哟哟·www| 日韩一本色道免费dvd| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 国产精品国产三级国产专区5o| 国产精品国产三级国产专区5o| 日韩电影二区| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影小说 | 亚洲一级一片aⅴ在线观看| 亚洲国产欧美在线一区| 久久精品综合一区二区三区| 国产成年人精品一区二区| 久久午夜福利片| 国产精品美女特级片免费视频播放器| 少妇熟女欧美另类| 老师上课跳d突然被开到最大视频| 观看免费一级毛片| 三级经典国产精品| 亚洲第一区二区三区不卡| 欧美bdsm另类| 国产成人福利小说| 卡戴珊不雅视频在线播放| 国产 一区 欧美 日韩| 在线播放无遮挡| 九九在线视频观看精品| 国产爱豆传媒在线观看| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 五月伊人婷婷丁香| 国产精品久久久久久精品电影小说 | 亚洲国产最新在线播放| 亚洲一区高清亚洲精品| 黄色日韩在线| 亚洲av成人精品一二三区| 超碰97精品在线观看| 欧美区成人在线视频| 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片| av专区在线播放| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 国产黄色免费在线视频| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 色综合亚洲欧美另类图片| 国产91av在线免费观看| 午夜福利高清视频| 成人av在线播放网站| 精品酒店卫生间| 日韩成人av中文字幕在线观看| 国产综合懂色| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| h日本视频在线播放| 日日撸夜夜添| 97热精品久久久久久| 婷婷色av中文字幕| 麻豆久久精品国产亚洲av| 毛片女人毛片| 国内精品一区二区在线观看| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 2018国产大陆天天弄谢| 亚洲图色成人| 97超碰精品成人国产| 亚洲欧洲国产日韩| 亚洲成人久久爱视频| 十八禁网站网址无遮挡 | 视频中文字幕在线观看| 日韩电影二区| 九色成人免费人妻av| 成年av动漫网址| 国产av在哪里看| 插阴视频在线观看视频| 日本-黄色视频高清免费观看| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂 | 欧美性感艳星| 在线免费观看不下载黄p国产| 亚洲天堂国产精品一区在线| www.色视频.com| videossex国产| 国产成人freesex在线| 亚洲av免费在线观看| 亚洲国产成人一精品久久久| 人妻夜夜爽99麻豆av| 在线免费十八禁| 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| 欧美一级a爱片免费观看看| 搡女人真爽免费视频火全软件| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 天美传媒精品一区二区| 99久久精品一区二区三区| 91av网一区二区| 51国产日韩欧美| 国内精品一区二区在线观看| 91精品伊人久久大香线蕉| 亚洲不卡免费看| 久久精品国产亚洲网站| 亚洲最大成人中文| 我要看日韩黄色一级片| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 亚洲美女搞黄在线观看| 中文欧美无线码| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 简卡轻食公司| 国产伦在线观看视频一区| 最近视频中文字幕2019在线8| 日本三级黄在线观看| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 欧美3d第一页| 日韩一本色道免费dvd| 在现免费观看毛片| 免费看光身美女| 日韩成人av中文字幕在线观看| 欧美97在线视频| 又大又黄又爽视频免费| 麻豆av噜噜一区二区三区| 午夜福利高清视频| av在线播放精品| 少妇高潮的动态图| 黑人高潮一二区| 青春草视频在线免费观看| 欧美bdsm另类| 免费黄色在线免费观看| 国产黄片美女视频| 久久久午夜欧美精品| 亚洲成人av在线免费| 日韩欧美精品免费久久| 波多野结衣巨乳人妻| 两个人的视频大全免费| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 中国国产av一级| 精品一区二区三卡| 精品一区二区三区人妻视频| 老司机影院成人| 国产老妇女一区| 18禁在线无遮挡免费观看视频| 欧美变态另类bdsm刘玥| 一级二级三级毛片免费看| 十八禁国产超污无遮挡网站| 三级国产精品欧美在线观看| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 九草在线视频观看| 午夜激情久久久久久久| 99热6这里只有精品| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 美女黄网站色视频| 99久久人妻综合| 国产精品国产三级国产av玫瑰| 日本黄色片子视频| 精品熟女少妇av免费看| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 亚洲精品影视一区二区三区av| 成年av动漫网址| 久久热精品热| 欧美xxxx性猛交bbbb| 久久久久久久久久久免费av| 69人妻影院| 亚洲欧美日韩东京热| 午夜老司机福利剧场| 欧美xxⅹ黑人| 久久人人爽人人片av| 国产一区二区在线观看日韩| 熟妇人妻不卡中文字幕| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 欧美高清性xxxxhd video| 亚洲成人精品中文字幕电影| 麻豆成人午夜福利视频| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 成人亚洲欧美一区二区av| 亚洲精品久久午夜乱码| 国产老妇女一区| 欧美精品国产亚洲| 成人综合一区亚洲| 久久久久精品久久久久真实原创| 国产在视频线在精品| 2022亚洲国产成人精品| 直男gayav资源| 国产黄片美女视频| 国产精品熟女久久久久浪| 全区人妻精品视频| 麻豆乱淫一区二区| 91久久精品电影网| 亚洲高清免费不卡视频| 秋霞伦理黄片| 九九久久精品国产亚洲av麻豆| 街头女战士在线观看网站| 好男人视频免费观看在线| 亚洲精品乱码久久久v下载方式| 汤姆久久久久久久影院中文字幕 | 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 亚洲av国产av综合av卡| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 久久久久免费精品人妻一区二区| 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 精品久久久久久久久av| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 国产成人a区在线观看| 精品久久久久久电影网| 亚洲精品一区蜜桃| 七月丁香在线播放| 久久久a久久爽久久v久久| 黑人高潮一二区| 大又大粗又爽又黄少妇毛片口| 精品国产三级普通话版| 国产精品伦人一区二区| 男女边摸边吃奶| 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 午夜激情福利司机影院| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| 中文字幕av成人在线电影| 99久国产av精品国产电影| 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| av网站免费在线观看视频 | 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜爱| 免费av不卡在线播放| 偷拍熟女少妇极品色| 免费av观看视频| 国产亚洲午夜精品一区二区久久 | 精品少妇黑人巨大在线播放| 日本免费a在线| 久久久久久久久久久免费av| 成人无遮挡网站| 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 美女脱内裤让男人舔精品视频| 2021少妇久久久久久久久久久| 国内少妇人妻偷人精品xxx网站| 婷婷色综合www| 一区二区三区高清视频在线| 97精品久久久久久久久久精品| 2021天堂中文幕一二区在线观| 国产精品久久久久久久久免| 神马国产精品三级电影在线观看| 简卡轻食公司| 麻豆久久精品国产亚洲av| 亚洲人与动物交配视频| 91久久精品电影网| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 久久久欧美国产精品| 嫩草影院精品99| 特级一级黄色大片| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 校园人妻丝袜中文字幕| 内射极品少妇av片p| 中国国产av一级| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 国产亚洲最大av| 内射极品少妇av片p| 乱人视频在线观看| 亚洲在久久综合| 在线观看免费高清a一片| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 日韩欧美 国产精品| 国产精品一二三区在线看| eeuss影院久久| 能在线免费看毛片的网站| 欧美三级亚洲精品| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 欧美激情在线99| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 亚洲国产成人一精品久久久| 高清日韩中文字幕在线| 成年av动漫网址| 哪个播放器可以免费观看大片| 国内精品宾馆在线| av.在线天堂| 天堂√8在线中文| 欧美97在线视频| 又大又黄又爽视频免费| 日韩一区二区三区影片| 51国产日韩欧美| 成人毛片60女人毛片免费| 国产免费视频播放在线视频 |