• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    由單圈圖生成的凱萊圖的廣義3 連通度

    2022-07-01 23:37:24王燕娜周波
    數(shù)學理論與應用 2022年2期
    關鍵詞:凱萊單圈教學部

    王燕娜 周波

    (1. 廣東交通職業(yè)技術學院基礎教學部,廣州,510650?2. 華南師范大學數(shù)學科學學院,廣州,510631)

    1 Introduction

    As usual,we denote byV(G)andE(G)the vertex set and edge set of a graphG. For a connected graphGand an integerkwith 2≤k ≤|V(G)|,the generalizedkconnectivity of a graphGis defined as[2,3,8]

    whereκG(S)is the maximum number?of edge disjoint treesT1,··· ,T?inGsuch thatV(Ti)∩V(Tj)=Sfor every pair of distinct integersi,jwith 1≤i,j ≤?. In the following,we call such?trees as?internally disjoint trees connectingSinG.

    Ifk=2,thenκk(G)is the smallest value of the maximum number of pairwise vertex disjoint paths between any vertex pair ofG,which is the ordinary(vertex)connectivity ofG[1]. Ifk=|V(G)|,thenκk(G)is the maximum number of pairwise edge disjoint trees ofG[9,10]. The generalizedkconnectivity may be used to measure the reliability and security of a network in whichknodes are users and other nodes are switchers.

    LetXbe a group with identitye, and lete/∈S ?X, whereSis closed under inversion. The Cayley graph Cay(X,S) is a graph with vertexXsuch thatgandhforg,h ∈Xare adjacent if and only ifh=gsfor somes ∈S. We say Cay(X,S) is a Cayley graph onXgenerated byS. Denote Sym(n)the group of all permutations on[n] ={1,··· ,n}. By(p1,··· ,pn),we denote the permutationσsuch thatσ(i) =pifori ∈[n], and by [i,j] with 1≤i

    which swaps the objects at positionsiandj.

    LetTbe a set of transpositions from[n]. The(transposition)graph ofT, denoted byG(T), is the graph with vertex set [n] such that, fori,j ∈[n], verticesiandjare adjacent if and only if [i,j]∈T.It is known that the Cayley graph Cay(Sym(n),T) is connected if and only ifG(T) is connected. IfG(T) is the star, then Cay(Sym(n),T) is called a star graph, denoted bySn. IfG(T) is the path, then Cay(Sym(n),T)is called a bubble sort graph,denoted byBn. IfG(T)~=Cn(thenvertex cycle),then Cay(Sym(n),T)is called a modified bubble sort graph,denoted byMBn. IfG(T)is a general tree,then we denote by Tnthe graph Cay(Sym(n),T). IfG(T)is a general unicyclic graph,then we denote by Unthe graph Cay(Sym(n),T). In this case,we also say that Unis generated byG(T).

    The generalized 3 connectivities of various Cayley graphs,for example,the star graph,the bubble sort graph,the modified bubble sort graph and even Tnfor any general treeG(T)have been determined,see,e.g.,[7,6,11,12],to mention just a few.

    In this article, we show that the generalized 3 connectivity of Unfor any general unicyclic graphG(T)isn ?1 forn ≥3. We use the techniques developed in the above papers,especially in[6].

    2 Preliminaries

    Forv ∈V(G), denote byNG(v) the set of neighbors ofvinG, and letδG(v) =|NG(v)| andNG[v]=NG(v)∪{v}. For a subsetS ?V(G),denote byG[S]the subgraph ofGinduced byS.

    Forx,y ∈V(G),a path fromxtoyinGis called an(x,y) path. Forx ∈V(G)andY ?V(G),an(x,Y) path is an(x,y) path inGfor somey ∈Y,and any other vertex of the path(if exists any)are not in{x}∪Y.

    Lemma 2.1([1]) LetGbe akconnected graph, and letx ∈V(G) andY ?V(G){x}with|Y|≥k. Then there arekinternally vertex disjoint(x,Y) paths whose terminal vertices are distinct inY.

    Lemma 2.2([4])LetGbe a connected graph with minimum degreeδ. Thenκk(G)≤δfor 3≤k ≤|V(G)|. Furthermore,if there exist two adjacent vertices of degreeδinG,thenκk(G)≤δ ?1.

    Lemma 2.3([4])LetGbe a connected graph withnvertices. Ifκ(G) = 4k+r, wherekandrare two integers withk ≥0 andr ∈{0,1,2,3},thenκ3(G)≥3k+. Moreover,the lower bound is sharp.

    Lemma 2.4([7]) Forn ≥3,κ(Tn)=n ?1.

    Lemma 2.5([6]) Forn ≥3,κ(MBn)=nandκ3(MBn)=n ?1.

    Suppose thatn ≥3. Recall that Un= Cay(Sym(n),T) whenG(T) is unicyclic. Obviously, Unis ann! vertex regular graph of degreen. Suppose thatG(T) ?Cn. ThenG(T)has a leaf(a vertex of degree one),and we assume thatnis a leaf ofG(T)withn ?1 being its unique neighbor. Fori ∈[n],let Symi(n)denote the set of all permutations of[n]{i}. Let

    Similarly, ifG(T) is a tree, then we assume thatnis a leaf ofG(T) withn ?1 being its unique neighbor,andV(Tn)can also be partitioned intoV1,··· ,Vnand~= Tn?1,where= Tn[Vi]fori ∈[n].

    IfQ=v1···vris apathinagraphG, thenQ?denotes thepathvr···v1. Foredge disjoint treesT1,···,Ts,if thegraph with vertexsetV(Ti)andedgesetE(Ti)isatree,thenwe denote this tree byT1+···+Ts.

    Lemma 2.6LetGbe a graph obtained from two vertex disjointkconnected graphsG1andG2by addingtedges betweenG1andG2such that any two edges are not adjacent. Ift ≥k ≥1,thenκ(G)≥k.

    ProofLetv1andv2be any two vertices ofG. It suffices to show that there arekinternally vertex disjoint paths betweenv1andv2. Ifv1,v2∈V(G1) orv1,v2∈V(G2), this is obvious asGiiskconnected fori=1,2.

    Assume thatv1∈V(G1)andv2∈V(G2). Denote thetedges betweenG1andG2byxiyifori=1,··· ,t. Note thatt ≥k. LetS={x1,··· ,xk}andS?={y1,··· ,yk}. Obviously,|S|=|S?|=k. AsG1iskconnected,we have by Lemma 2.1 that ifv1?∈S,there arekinternally vertex disjoint(v1,S) pathsL1,··· ,Lksuch thatxi ∈Lifori= 1,··· ,k. Ifv1∈S,sayv1=x1,then there exists a(v1,S) path of length zero. So, there arekinternally vertex disjoint (v1,S) pathsL1,··· ,Lksuch thatxi ∈Lifori= 1,··· ,k. Similarly, there arekinternally vertex disjoint (v2,S?) pathsQ1,··· ,Qksuch thatyi ∈Qifori=1,··· ,k. Now we can obtainkinternally vertex disjoint(v1,v2) paths:Li+xiyi+fori=1,··· ,k.

    Remark 2.1Suppose that{i,j} ?[n]withn ≥3. Note that Tn[Vi ∪Vj]may be obtained fromandby adding (n ?2)! edges betweenand, in which any two edges are not adjacent. By Lemma 2.4,κ() =κ() =κ(Tn?1) =n ?2. As (n ?2)!≥n ?2, we haveκ(Tn[Vi ∪Vj])≥n ?2 by Lemma 2.6. On the other hand,the minimum degree of Tn[Vi ∪Vj]isn ?2,soκ(Tn[Vi ∪Vj])≤n ?2. Thus,κ(Tn[Vi ∪Vj])=n ?2,see[7].

    3 Main result

    We need some lemmas that are used in the proof.

    Lemma 3.1κ(U4)=4.

    ProofIf U4~=MB4,then by Lemma 2.5,we haveκ(U4) = 4. Suppose that U4?MB4. As the minimum degree of U4is 4,κ(U4)≤4. In the following,we show thatκ(U4)≥4.

    Letxandybe any two vertices of U4. It suffices to show that there are 4 internally vertex disjoint paths betweenxandy.

    Case 1xandylie in the same main part of U4.

    Assume thatx,yare in. Note that~=MB3. By Lemma 2.5,κ(MB3) = 3. Thus there are 3 internally vertex disjoint (x,y) paths, sayL1,L2,L3, in. As U4[V(U4)V1] is connected, there is an(x′,y′) pathQin U4[V(U4)V1]. It thus follows thatL1,L2,L3,xx′+Q+y′yare 4 internally vertex disjoint(x,y) paths.

    Case 2xandylie in different main parts of U4.

    Assume thatxlies inandylies in U23.

    Case 2.1x′∈V2andy′∈V1.

    Note thatx= (3,4,2,1)or(4,3,2,1), andy= (3,4,1,2)or(4,3,1,2). Suppose without loss of generality thatx=(3,4,2,1). Ify=(3,4,1,2),thenQ1=xy,Q2=x(4,3,2,1)(4,3,1,2)y,

    and

    are 4 internally vertex disjoint(x,y) paths. Ify=(4,3,1,2),thenQ1=xx′y,Q2=xy′y,

    and

    are 4 internally vertex disjoint(x,y) paths.

    Case 2.2x′∈V2andy′/∈V1,orx′/∈V2andy′∈V1.

    Assume thatx′∈V2andy′/∈V1. Assume thaty′∈V3. Thenx= (3,4,2,1)or(4,3,2,1), andy= (1,4,3,2)or(4,1,3,2). Suppose without loss of generality thatx= (3,4,2,1). Ify= (1,4,3,2),then

    are 4 internally vertex disjoint(x,y) paths. Ify=(4,1,3,2),then

    are 4 internally vertex disjoint(x,y) paths.

    Case 2.3x′,y′∈V3orx′,y′∈V4.

    Assume thatx′,y′∈V3. Thenx= (2,4,3,1) or (4,2,3,1), andy= (1,4,3,2) or (4,1,3,2).Suppose without loss of generality thatx=(2,4,3,1). Ify=(1,4,3,2),then

    are 4 internally vertex disjoint(x,y) paths. Ify=(4,1,3,2),then

    are 4 internally vertex disjoint(x,y) paths.

    Case 2.4x′∈V3andy′∈V4,orx′∈V4andy′∈V3.

    Assume thatx′∈V3andy′∈V4. Thenx= (2,4,3,1) or (4,2,3,1), andy= (1,3,4,2) or(3,1,4,2). Suppose without loss of generality thatx=(2,4,3,1). Ify=(1,3,4,2),then

    are 4 internally vertex disjoint(x,y) paths. Ify=(3,1,4,2),then

    are 4 internally vertex disjoint(x,y) paths.

    Thus there are 4 internally vertex disjoint paths betweenxandyin all cases. The result follows.

    Lemma 3.2Forn ≥3,κ(Un)=n.

    ProofBy Lemma 2.5,it is true forn=3. Suppose thatn ≥4. We prove the result by induction onn.

    By Lemma 3.1,it is true forn=4. Suppose thatn ≥5 and it is true for Un?1.

    If Un~=MBn, then by Lemma 2.5, we haveκ(Un) =n. Suppose that Un?MBn. As Unisnregular, we haveκ(Un)≤n. So it suffices to show thatκ(Un)≥n, or equivalently, for any two verticesxandyof Un,there areninternally vertex disjoint paths betweenxandy.

    Case 1xandylie in the same main part of Un.

    Assume thatx,ylie in. Note that~= Un?1. By the induction hypothesis,κ() =n?1,so there aren?1 internally vertex disjoint(x,y) paths in,sayL1,··· ,Ln?1. As Un[V(Un)V1] is connected, there is an (x′,y′) pathQin Un[V(Un)V1]. It thus follows thatL1,··· ,Ln?1andxx′+Q+y′yareninternally vertex disjoint(x,y) paths in Un.

    Case 2xandylie in different main parts of Un.

    Assume thatxlies inandylies in. Note that(n ?2)!≥n ?1 forn ≥5.

    Case 2.1x′/∈V2andy′/∈V1.

    We may choosen ?1 vertices,sayz1,··· ,zn?1,ofV1such that∈V2fori=1,··· ,n ?1. LetS={z1,··· ,zn?1}andS?={,··· ,}. Clearly,|S|=|S?|=n?1. By the induction hypothesis,κ()=n ?1,so by Lemma 2.1,there aren ?1 internally vertex disjoint(x,S) pathsL1,··· ,Ln?1insuch thatzi ∈Lifori= 1,··· ,n ?1. Similarly, there aren ?1 internally vertex disjoint(y,S?) pathsQ1,··· ,Qn?1in,such that∈Qifori=1,··· ,n ?1. As Un[V(Un)(V1∪V2)]is connected,there is an(x′,y′) pathQin Un[V(Un)(V1∪V2)]. ThenLi+zi+fori=1,··· ,n?1,andxx′+Q+y′yareninternally vertex disjoint(x,y) paths in Un.

    Case 2.2x′∈V2andy′∈V1.

    We may choosen ?2 vertices different fromy′, sayz1,··· ,zn?2, ofV1such that∈V2fori=1,··· ,n?2. LetS={z1,··· ,zn?2,y′}andS?={,··· ,,x′}. Clearly,|S|=|S?|=n?1.By the induction hypothesis,κ()=n?1,so by Lemma 2.1,there aren?1 internally vertex disjoint(x,S) pathsL1,··· ,Ln?1insuch thatzi ∈Lifori= 1,··· ,n ?2,andy′∈Ln?1. Similarly,there aren ?1 internally vertex disjoint (y,S?) pathsQ1,··· ,Qn?1in, such that∈Qifori=1,··· ,n?2,andx′∈Qn?1. ThenLi+zi+fori=1,··· ,n?2,xx′+andLn?1+y′yformninternally vertex disjoint(x,y) paths in Un.

    Case 2.3x′∈V2andy′∈/V1,orx′∈/V2andy′∈V1.

    Assume thatx′∈/V2andy′∈V1. We may choosen ?2 vertices,sayz1,··· ,zn?2,ofV1different fromy′such that∈V2fori=1,··· ,n ?2,and choose a vertex,sayw,ofV2such thatw′∈/V1. LetS={z1,···,zn?2,y′}andS?={··· ,,w}.Clearly,|S| =|S?|=n?1. By the induction hypothesis,κ()=n?1,sobyLemma2.1,therearen ?1internallyvertex disjoint(x,S) pathsL1,··· ,Ln?1insuch thatzi ∈Lifori=1,··· ,n ?2,andy′∈Ln?1. Similarly,there aren ?1 internally vertex disjoint(y,S?) pathsQ1,··· ,Qn?1insuch that∈Qifori=1,··· ,n?2,andw ∈Qn?1. As Un[V(Un)(V1∪V2)]is connected,there is an(x′,w′) pathQin Un[V(Un)(V1∪V2)].ThenLi++fori= 1,··· ,n ?2,Ln?1+y′yandxx′+Q+w′w+areninternally vertex disjoint(x,y) paths in Un.

    The result follows by combining the above cases.

    Now,we are ready to prove the main result.

    Theorem 3.1Forn ≥3,κ3(Un)=n ?1.

    ProofIt is true forn=3 by Lemma 2.5. Suppose thatn ≥4. We prove this statement by induction onn.

    By Lemma 3.1,κ(U4) = 4. So, by Lemma 2.3,κ3(U4)≥3. Asκ(U4) is 4 regular, we haveκ3(U4)≤3 by Lemma 2.2. Thusκ3(U4)=3. That is,the statement is true ifn=4.

    Suppose thatn ≥5 and the statement is true for Un?1. If Un~=MBn,then by Lemma 2.5,we haveκ3(Un)=n?1. Suppose that Un?MBn. As Unisnregular,we haveκ3(Un)≤n?1 by Lemma 2.2.So it suffices to show thatκ3(Un)≥n ?1. LetSbe an arbitrary vertex subset of Unwith|S| = 3,sayS={x,y,z}. Then it suffices to show that there aren ?1 internally disjoint trees connectingSin Un.

    Case 1x,yandzlie in some common main part of Un.

    Assume thatx,y,zlie in. By the induction hypothesis,κ3()=n ?2,so there aren ?2 internally disjoint trees connectingS,sayT1,··· ,Tn?2,in. As Un[V(Un)V1]is connected,there is a spanning treeTin Un[V(Un)V1]. ThusT1,··· ,Tn?2andT+x′x+y′y+z′zaren ?1 internally disjoint trees connectingSin Un.

    Case 2x,yandzlie in two different main parts of Un.

    Assume thatx,ylie in U1n?1andzlies in U2n?1. Recall thatκ() =n ?1. So there aren ?1 internally vertex disjoint(x,y) paths,sayL1,··· ,Ln?1,in. Choosen ?1 distinct verticesx1,··· ,xn?1fromL1,··· ,Ln?1such thatxi ∈V(Li)fori= 1,··· ,n ?1. Note that at most one of these paths has length one. If there is indeed such a path of length one,sayL1,then in this case,we choosex1=x. LetZ={,··· ,}. Obviously,|Z|=n ?1. Asκ(Un[V(Un)V1])≥n ?1,we have by Lemma 2.1 that there aren ?1 internally vertex disjoint(z,Z) pathsQ1,··· ,Qn?1in Un[V(Un)V1]such that∈Qifori= 1,··· ,n ?1. NowTi=Li++Q?

    ifori= 1,··· ,n ?1 aren ?1 internally disjoint trees connectingSin Un.

    Case 3x,yandzlie in three different main parts of Un.

    Assume thatxlies in,ylies inandzlies in. Evidently,we have eitherx′/∈V2orx′/∈V3. Assume thatx′/∈V2. Recall thatκ(Un[V1∪V2])≥n ?1. So there aren ?1 internally vertex disjoint (x,y) paths, sayL1,··· ,Ln?1, in Un[V1∪V2]. Asx′/∈ V2, all neighbors ofxinL1,··· ,Ln?1are in neighbors,which are denoted byx1,··· ,xn?1. LetZ1={,··· ,}. Assume that 2 appears in thejth position ofx. Clearly,j ?=n ?1. Ifx[j,n ?1] is a neighbor ofx, then(x[j,n ?1])′∈V2, and thus|Z1∩V2| = 1. Ifx[j,n ?1] is not a neighbor ofx, then/∈V2fori=1,··· ,n ?1,and thus|Z1∩V2|=0. It thus follows that|Z1∩V2|≤1.

    Assume that{··· ,}/∈V2. LetZ2={x′,,··· ,}. Clearly,|Z2| =n ?1. Asκ(Un[V(Un)(V1∪V2)])≥n ?1,by Lemma 2.1,there aren ?1 internally vertex disjoint(z,Z) pathsQ1,··· ,Qn?1in Un[V(Un)(V1∪V2)]such that∈Qifori=1,··· ,n ?2,andx′∈Qn?1. NowTi=Li++fori=1,··· ,n ?2,andQn?1+x′x+Ln?1formn ?1 internally disjoint trees connectingSin Un.

    The result follows by combining the above cases.

    Remark 3.1This note shows that the generalized 3 connectivity of the Cayley graph Unon symmetric group of ordern ≥3 isn ?1 if the transposition graph is any unicyclic graph,that is,there aren ?1 internally disjoint trees connecting any three vertices in Un. So the upper bound forκ3(G)in Lemma 2.2 when there exist two adjacent vertices of minimum degree inGis attained.

    猜你喜歡
    凱萊單圈教學部
    雙凱萊圖的完全完備碼
    一類單圈圖的最大獨立集的交
    百歲“體操女皇”從不照鏡子
    新傳奇(2021年30期)2021-08-23 05:55:17
    單圈圖關聯(lián)矩陣的特征值
    最年長奧運冠軍迎來百歲生日
    公共教學部
    Factors Affecting Memory Efficiency in EFL
    凱萊英:發(fā)展賽道寬廣 具備小巨人潛力
    On the Importance of English Vocabulary
    On Memory Theory in English Vocabulary Learning
    午夜福利视频精品| 丝袜喷水一区| 丝袜美腿诱惑在线| 黄色 视频免费看| 大码成人一级视频| 国产成人精品在线电影| 老司机在亚洲福利影院| 操美女的视频在线观看| av有码第一页| 性色av一级| 国产一区二区 视频在线| 国产黄色免费在线视频| 精品人妻一区二区三区麻豆| 国产成人a∨麻豆精品| 久久精品亚洲av国产电影网| 精品人妻在线不人妻| 韩国高清视频一区二区三区| 我的亚洲天堂| 国产黄色免费在线视频| 又紧又爽又黄一区二区| 视频区图区小说| 国产欧美日韩一区二区三区在线| 中国国产av一级| 只有这里有精品99| 深夜精品福利| 在线亚洲精品国产二区图片欧美| 黄色怎么调成土黄色| 男女边摸边吃奶| 1024视频免费在线观看| 久久人人爽人人片av| www.精华液| 男女免费视频国产| 亚洲图色成人| 午夜福利视频精品| 国产精品欧美亚洲77777| 欧美日韩综合久久久久久| 99久久人妻综合| av网站在线播放免费| 最近最新中文字幕大全免费视频 | 欧美精品啪啪一区二区三区 | 久久久精品区二区三区| 中文字幕最新亚洲高清| 又大又爽又粗| 亚洲第一青青草原| 国产精品久久久久久精品古装| 黑人欧美特级aaaaaa片| 久久性视频一级片| 国产欧美日韩精品亚洲av| 欧美亚洲日本最大视频资源| 国产1区2区3区精品| e午夜精品久久久久久久| 免费观看人在逋| 午夜影院在线不卡| 亚洲午夜精品一区,二区,三区| svipshipincom国产片| 男女边摸边吃奶| 国产伦理片在线播放av一区| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 视频区图区小说| 国产三级黄色录像| 巨乳人妻的诱惑在线观看| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 精品人妻熟女毛片av久久网站| 国产高清视频在线播放一区 | 亚洲七黄色美女视频| 欧美黑人欧美精品刺激| 亚洲精品在线美女| 国产成人免费无遮挡视频| 少妇人妻 视频| 在线天堂中文资源库| 欧美 日韩 精品 国产| 久久99热这里只频精品6学生| 精品熟女少妇八av免费久了| 国产成人精品久久久久久| 久久天堂一区二区三区四区| 伊人久久大香线蕉亚洲五| 黑人欧美特级aaaaaa片| 黄色片一级片一级黄色片| 免费观看av网站的网址| 久久狼人影院| 亚洲三区欧美一区| av国产精品久久久久影院| 国产精品秋霞免费鲁丝片| 99精国产麻豆久久婷婷| 一区二区日韩欧美中文字幕| 丰满饥渴人妻一区二区三| 校园人妻丝袜中文字幕| 久久这里只有精品19| 亚洲欧美一区二区三区黑人| 国产av一区二区精品久久| 精品国产超薄肉色丝袜足j| 国产1区2区3区精品| 亚洲精品乱久久久久久| 色精品久久人妻99蜜桃| 亚洲久久久国产精品| 亚洲av在线观看美女高潮| 欧美国产精品va在线观看不卡| 黑人猛操日本美女一级片| 婷婷色综合大香蕉| 男女边摸边吃奶| 宅男免费午夜| 国产高清视频在线播放一区 | 9热在线视频观看99| 一本色道久久久久久精品综合| 两性夫妻黄色片| 亚洲成av片中文字幕在线观看| 午夜影院在线不卡| 国产精品久久久久久精品古装| 高清不卡的av网站| 青春草亚洲视频在线观看| 国产国语露脸激情在线看| 波野结衣二区三区在线| 精品国产一区二区三区四区第35| 建设人人有责人人尽责人人享有的| 黄色怎么调成土黄色| 少妇的丰满在线观看| 欧美精品一区二区免费开放| 你懂的网址亚洲精品在线观看| 亚洲国产精品999| 亚洲国产看品久久| 中文乱码字字幕精品一区二区三区| 婷婷丁香在线五月| 亚洲精品自拍成人| 精品人妻在线不人妻| 咕卡用的链子| 国产精品一国产av| 日韩熟女老妇一区二区性免费视频| 黄色视频不卡| 中文字幕制服av| 老司机深夜福利视频在线观看 | 午夜福利在线免费观看网站| 久久亚洲国产成人精品v| 久热这里只有精品99| 国产成人欧美| 精品少妇一区二区三区视频日本电影| 国产视频首页在线观看| 日本wwww免费看| 在线看a的网站| 午夜福利视频在线观看免费| 晚上一个人看的免费电影| 欧美日韩精品网址| 高清欧美精品videossex| 亚洲成人手机| 最近最新中文字幕大全免费视频 | 日韩av不卡免费在线播放| 欧美激情极品国产一区二区三区| 国产日韩欧美在线精品| 国产成人欧美| 精品福利观看| 啦啦啦在线免费观看视频4| 少妇人妻 视频| 久久天躁狠狠躁夜夜2o2o | 首页视频小说图片口味搜索 | 高清不卡的av网站| 别揉我奶头~嗯~啊~动态视频 | a级片在线免费高清观看视频| 国产日韩欧美视频二区| 日日夜夜操网爽| 夫妻午夜视频| 18禁裸乳无遮挡动漫免费视频| 国产黄色免费在线视频| 1024视频免费在线观看| 大型av网站在线播放| 成人亚洲欧美一区二区av| 久久久欧美国产精品| 伊人久久大香线蕉亚洲五| 日韩一区二区三区影片| 久久国产亚洲av麻豆专区| 成人三级做爰电影| 成人国产av品久久久| 成年人免费黄色播放视频| 热99久久久久精品小说推荐| 亚洲精品在线美女| 国产精品99久久99久久久不卡| 精品少妇内射三级| 国产人伦9x9x在线观看| 午夜激情久久久久久久| 人人妻人人澡人人看| 免费人妻精品一区二区三区视频| 国产一区二区三区综合在线观看| 午夜免费观看性视频| 97在线人人人人妻| 亚洲精品国产区一区二| 日韩 亚洲 欧美在线| 性色av乱码一区二区三区2| 欧美黑人精品巨大| 欧美+亚洲+日韩+国产| 久久精品久久久久久久性| 91精品国产国语对白视频| 欧美日韩亚洲国产一区二区在线观看 | 9热在线视频观看99| 免费一级毛片在线播放高清视频 | 亚洲视频免费观看视频| 涩涩av久久男人的天堂| av在线老鸭窝| 日本五十路高清| 超碰97精品在线观看| 一级黄色大片毛片| 亚洲欧美清纯卡通| 日韩免费高清中文字幕av| 又黄又粗又硬又大视频| 午夜激情久久久久久久| 亚洲人成电影免费在线| 男人操女人黄网站| 中国美女看黄片| 性色av乱码一区二区三区2| 成人免费观看视频高清| 另类亚洲欧美激情| 亚洲成人免费av在线播放| 亚洲国产精品国产精品| 午夜视频精品福利| 性色av一级| 久久久精品区二区三区| 国产精品99久久99久久久不卡| 成年人午夜在线观看视频| 2021少妇久久久久久久久久久| 考比视频在线观看| 久久精品熟女亚洲av麻豆精品| 91成人精品电影| av天堂在线播放| 老熟女久久久| 老熟女久久久| 久久久久久久大尺度免费视频| 精品高清国产在线一区| 黑人欧美特级aaaaaa片| 中文字幕最新亚洲高清| 国产精品欧美亚洲77777| 国产男女内射视频| 日本av免费视频播放| 人成视频在线观看免费观看| 纵有疾风起免费观看全集完整版| 欧美激情高清一区二区三区| 亚洲五月婷婷丁香| 99国产精品一区二区蜜桃av | 99九九在线精品视频| 99久久99久久久精品蜜桃| av不卡在线播放| 9热在线视频观看99| 国产黄色视频一区二区在线观看| 97人妻天天添夜夜摸| 日本欧美国产在线视频| 久久精品亚洲熟妇少妇任你| 中文乱码字字幕精品一区二区三区| 不卡av一区二区三区| 老司机影院成人| 国产免费视频播放在线视频| 热re99久久国产66热| 咕卡用的链子| 免费日韩欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人综合另类久久久| 精品国产乱码久久久久久小说| 午夜av观看不卡| 亚洲激情五月婷婷啪啪| 叶爱在线成人免费视频播放| 男女午夜视频在线观看| 欧美+亚洲+日韩+国产| 精品国产超薄肉色丝袜足j| 精品福利观看| 亚洲专区国产一区二区| 久热爱精品视频在线9| 国产精品免费视频内射| 国产精品熟女久久久久浪| 亚洲国产精品成人久久小说| 九色亚洲精品在线播放| 水蜜桃什么品种好| 成年人午夜在线观看视频| 老司机影院成人| 精品福利观看| 韩国高清视频一区二区三区| 精品国产超薄肉色丝袜足j| 黄色 视频免费看| 波多野结衣av一区二区av| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 日韩中文字幕欧美一区二区 | 久久人人97超碰香蕉20202| 亚洲av电影在线观看一区二区三区| 日韩av免费高清视频| 午夜久久久在线观看| 国产精品一区二区免费欧美 | 久久久久久人人人人人| 欧美性长视频在线观看| 国产精品一区二区精品视频观看| 黄色 视频免费看| 久久久久久久大尺度免费视频| 美女中出高潮动态图| 中文字幕人妻丝袜一区二区| 亚洲成人免费电影在线观看 | e午夜精品久久久久久久| 又大又黄又爽视频免费| 18在线观看网站| 成年动漫av网址| 日本91视频免费播放| 日本欧美国产在线视频| 中文字幕av电影在线播放| netflix在线观看网站| 王馨瑶露胸无遮挡在线观看| 熟女少妇亚洲综合色aaa.| 美女扒开内裤让男人捅视频| 又大又黄又爽视频免费| 日韩中文字幕视频在线看片| 亚洲欧美成人综合另类久久久| 观看av在线不卡| 精品久久久久久电影网| 少妇人妻久久综合中文| 一本—道久久a久久精品蜜桃钙片| 女警被强在线播放| 少妇人妻久久综合中文| 2018国产大陆天天弄谢| 午夜福利视频精品| 水蜜桃什么品种好| 久久精品久久久久久久性| 午夜免费成人在线视频| 亚洲第一青青草原| 99精国产麻豆久久婷婷| 欧美在线一区亚洲| 69精品国产乱码久久久| 国产麻豆69| 久久久精品94久久精品| 午夜日韩欧美国产| 高潮久久久久久久久久久不卡| 欧美性长视频在线观看| 中文字幕亚洲精品专区| 久久精品熟女亚洲av麻豆精品| 五月开心婷婷网| 天天躁夜夜躁狠狠久久av| 麻豆国产av国片精品| av一本久久久久| 国产免费一区二区三区四区乱码| 日本欧美国产在线视频| 国产精品国产三级国产专区5o| 亚洲伊人色综图| 午夜视频精品福利| 亚洲精品中文字幕在线视频| 国产免费又黄又爽又色| 人人妻人人爽人人添夜夜欢视频| 久久人妻熟女aⅴ| 永久免费av网站大全| 国产精品成人在线| 日韩伦理黄色片| 色综合欧美亚洲国产小说| 欧美精品av麻豆av| 亚洲欧美一区二区三区久久| 亚洲专区国产一区二区| 久久久久久久国产电影| 十八禁高潮呻吟视频| 考比视频在线观看| 亚洲av电影在线进入| 伊人亚洲综合成人网| 黄色片一级片一级黄色片| 男女边吃奶边做爰视频| 少妇猛男粗大的猛烈进出视频| 午夜激情av网站| 成人黄色视频免费在线看| 电影成人av| 欧美日韩一级在线毛片| 免费看十八禁软件| 国产精品欧美亚洲77777| 久久久久网色| 国产高清视频在线播放一区 | 一级毛片女人18水好多 | 一区二区日韩欧美中文字幕| 精品国产一区二区三区久久久樱花| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 女性被躁到高潮视频| 久久狼人影院| 视频在线观看一区二区三区| 成人三级做爰电影| 亚洲中文字幕日韩| 在线精品无人区一区二区三| 欧美精品一区二区免费开放| 男的添女的下面高潮视频| 在线观看免费午夜福利视频| 国产成人精品久久二区二区免费| 亚洲欧美日韩另类电影网站| 考比视频在线观看| 电影成人av| 亚洲国产中文字幕在线视频| 色播在线永久视频| 久久精品久久久久久久性| 精品国产一区二区三区四区第35| 久久久国产精品麻豆| a级毛片在线看网站| 日韩中文字幕视频在线看片| 91精品伊人久久大香线蕉| 亚洲精品成人av观看孕妇| 欧美在线黄色| 精品国产乱码久久久久久男人| 制服诱惑二区| 久久国产精品人妻蜜桃| 免费在线观看视频国产中文字幕亚洲 | 欧美在线黄色| 99精国产麻豆久久婷婷| 观看av在线不卡| 黄片播放在线免费| 久久久久国产精品人妻一区二区| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 日韩大码丰满熟妇| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 自线自在国产av| 在线精品无人区一区二区三| 91国产中文字幕| 青春草亚洲视频在线观看| 亚洲一区中文字幕在线| 人人妻,人人澡人人爽秒播 | 亚洲,欧美精品.| 波野结衣二区三区在线| 中文欧美无线码| 欧美精品av麻豆av| 欧美日韩av久久| 亚洲欧美色中文字幕在线| videosex国产| 成人黄色视频免费在线看| 欧美大码av| 国产精品一区二区精品视频观看| 日本91视频免费播放| 人人妻人人澡人人爽人人夜夜| 久9热在线精品视频| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 日本91视频免费播放| 亚洲成色77777| 国产欧美日韩综合在线一区二区| 99国产精品一区二区三区| 国产午夜精品一二区理论片| 亚洲熟女精品中文字幕| 久久久久久久久免费视频了| 97精品久久久久久久久久精品| 免费观看av网站的网址| 一区二区日韩欧美中文字幕| av网站免费在线观看视频| 欧美日韩福利视频一区二区| 久久久久久亚洲精品国产蜜桃av| 丁香六月欧美| 91字幕亚洲| 色网站视频免费| 亚洲av成人精品一二三区| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 久久久久精品人妻al黑| 97在线人人人人妻| 亚洲七黄色美女视频| 精品少妇久久久久久888优播| 天天躁狠狠躁夜夜躁狠狠躁| 天堂中文最新版在线下载| 啦啦啦在线观看免费高清www| 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| 欧美黑人精品巨大| 一级,二级,三级黄色视频| 脱女人内裤的视频| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区二区三区在线| 在线av久久热| 欧美性长视频在线观看| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 亚洲av男天堂| av电影中文网址| 亚洲人成网站在线观看播放| 久久精品亚洲av国产电影网| 9色porny在线观看| 悠悠久久av| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 精品少妇一区二区三区视频日本电影| 精品亚洲成a人片在线观看| 免费观看av网站的网址| 成人国产av品久久久| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 纯流量卡能插随身wifi吗| 老司机影院毛片| av网站免费在线观看视频| 成人影院久久| 丝袜在线中文字幕| 老司机影院毛片| 国产黄色免费在线视频| 久久 成人 亚洲| 亚洲成人免费av在线播放| 满18在线观看网站| 91麻豆av在线| 亚洲三区欧美一区| 五月开心婷婷网| 亚洲国产av影院在线观看| 人妻人人澡人人爽人人| 欧美黑人精品巨大| 亚洲一区中文字幕在线| 欧美成人精品欧美一级黄| 亚洲欧美激情在线| 考比视频在线观看| 亚洲欧美精品自产自拍| 欧美黄色淫秽网站| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 国产欧美日韩精品亚洲av| 欧美精品一区二区免费开放| 成人影院久久| 精品少妇一区二区三区视频日本电影| 亚洲精品久久成人aⅴ小说| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| 中文字幕精品免费在线观看视频| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 中文字幕制服av| av有码第一页| 一区二区av电影网| 大片免费播放器 马上看| 老司机靠b影院| 满18在线观看网站| 91九色精品人成在线观看| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 精品亚洲成国产av| 国产成人一区二区三区免费视频网站 | av又黄又爽大尺度在线免费看| 亚洲国产欧美日韩在线播放| 国产精品久久久久久人妻精品电影 | 午夜激情av网站| 性色av乱码一区二区三区2| 国产1区2区3区精品| 深夜精品福利| 中文字幕最新亚洲高清| 青春草视频在线免费观看| av片东京热男人的天堂| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 女性被躁到高潮视频| 美女大奶头黄色视频| 成年人午夜在线观看视频| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| 夫妻午夜视频| 久久亚洲精品不卡| 2018国产大陆天天弄谢| av在线老鸭窝| 菩萨蛮人人尽说江南好唐韦庄| 丝袜在线中文字幕| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 激情视频va一区二区三区| 欧美精品人与动牲交sv欧美| 老司机深夜福利视频在线观看 | 精品少妇黑人巨大在线播放| 搡老乐熟女国产| 两个人免费观看高清视频| 亚洲国产欧美在线一区| 韩国精品一区二区三区| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 国产女主播在线喷水免费视频网站| 欧美日韩国产mv在线观看视频| 啦啦啦 在线观看视频| 丰满迷人的少妇在线观看| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 亚洲少妇的诱惑av| 视频区图区小说| 老汉色∧v一级毛片| 国产精品成人在线| 国产亚洲av高清不卡| 日韩人妻精品一区2区三区| 老司机影院成人| 久久人妻熟女aⅴ| 女人爽到高潮嗷嗷叫在线视频| 看十八女毛片水多多多| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频| 久久人人97超碰香蕉20202| 欧美日韩成人在线一区二区| 国产精品免费视频内射| 精品福利永久在线观看| 在线 av 中文字幕| 男女下面插进去视频免费观看| 手机成人av网站| 日韩人妻精品一区2区三区| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 欧美人与性动交α欧美软件| 你懂的网址亚洲精品在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线进入| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 欧美人与性动交α欧美软件| 少妇裸体淫交视频免费看高清 | 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 国产成人91sexporn| 亚洲少妇的诱惑av| 两人在一起打扑克的视频| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 国产又爽黄色视频| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 国产精品国产av在线观看| 欧美大码av| 亚洲精品美女久久久久99蜜臀 | av欧美777|