• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure,phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering

    2022-06-29 08:57:30MinHuang黃敏YanSongLiu劉艷松ZhiBingHe何智兵andYongYi易勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:黃敏

    Min Huang(黃敏) Yan-Song Liu(劉艷松) Zhi-Bing He(何智兵) and Yong Yi(易勇)

    1Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    2School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: hybrid sputtering,tantalum thin film,structure,hardness

    1. Introduction

    Tantalum (Ta) films are of interest for technological applications in microelectronics industry due to excellent physical and chemical properties.[1,2]Since non-equilibrium thermodynamic growth is inherent to film deposition, magnetron sputtered Ta films can exhibit the stable BCCα-phase and metastable tetragonalβ-phase, or a mixture of two phases.Theα-Ta film with high hardness (8 GPa–12 GPa), high melting point (Tm≈3000°C), low resistivity (15 μΩ·cm–80 μΩ·cm),and high temperature wear resistance,is the candidate material in many applications such as tool coating,barrel protective coating and Cu/Si diffusion barrier. Theβ-Ta film with higher hardness(18 GPa–20 GPa),higher resistivity(150 μΩ·cm–200 μΩ·cm) but more brittleness can be used as resistors and heaters. Unfortunately,β-Ta phases are prone to phase transition toα-Ta at high temperature,which affects the performance of the Ta film. The coexistence ofαandβphases in films also limited their usability.[3–5]Therefore,deposition pureα-Ta films is critical for the studies of associated films properties. Due to the lower hardness of pureαphase deposited under different preparation methods and deposition conditions, it is necessary to focus on seeking suitable deposition conditions to obtain fine grain and higher hardness ofα-Ta films.

    Direct current magnetron sputtering (DCMS) and highpower impulse magnetron sputtering (HiPIMS) are relatively mature magnetron sputtering technologies for preparing Ta thin films. In DCMS, the main feature is to provide good load performance and stable discharge at higher deposition rate. However, only leading toβ-Ta film with inhomogeneous deposition,low density and porous columnar structures,DCMS has a drawback that includes the low degree of ionization (1%–3%).[2]High-power impulse magnetron sputtering(HiPIMS),an IPVD technique combining magnetron sputtering and pulsed plasma discharges,is characterized by high peak power density, plasma density and target ionization (up to 90%)at a low duty cycle(below 10%)and a low frequency(less than 2 kHz),which makes a high degree of ionization and formation of dense, smooth and hard films, even deposition on complex geometries.[2,6,8,9]Unfortunately,in HiPIMS,the deposition rate is only 20%–40% of DCMS and the internal stress and defects in the films can be caused by the unstable arc discharge phenomenon (ARC) under low pressure.[10–12]More recently, the hybrid HiPIMS/DCMS co-sputtering have begun to be used to surmount the defect of the pure HiPIMS technique. For one thing, the mechanism of the “charge exchange” increases the plasma density effectively, as a result,increasing the deposition rate of HiPIMS and improving more efficient and accurate control of the bombardment conditions providing. For another thing,the secondary plasmas produced by DC discharging can effectively prevent the transition from glow to arc in the ignition process of HiPIMS under low pressure. Moreover, the co-sputtering technology is of great significance in improving the quality of the films, refining the grains and improving the compactness.[12,13]Mattiaset al.[14]and Zoitaet al.[15]found that the deposition rate increased as the proportion of DCMS by using DCMS and HiPIMS cosputtering, also the roughness, resistivity and electrochemical oxidation of the Cr films and titanium carbide films were all improved. Guiet al.[12]researching the TiAlCrN ceramic coatings by increasing the Ti target power found that higher Ti target power resulted in stronger ion bombardment, which emerges a denser structure and ultra-smooth surface. To our knowledge,there were most of the co-sputtering to prepare the films like TiN,[16]TiAlN,[12,13,17]and DLC-W[18]by combining DCMS with HiPIMS together. Nevertheless, there were few reports about DCMS/HiPIMS co-sputtering technology for the preparation of Ta thin films in mechanical and electrical properties,especially.

    In this paper,Ta films were deposited by DCMS/HiPIMS co-sputtering. The influence of DC powers fraction on the phase structure, morphology, mechanical and electrical properties of Ta films was studied. In the end, this work demonstrated that on the premise of realizing the structure of pureα-Ta,it not only improved the deposition rate of the film,but also surmounted some of drawbacks in HiPIMS to obtain high density and hardness coatings, which is of great significance to the protective coating and diffusion barrier layer.

    2. Experiment

    All depositions were completed in a JGP560 ultra-high vacuum coating chamber equipped with two pure Ta targets(99.95%purity,76 mm diameter)setting 15 cm away from the magnetron at room temperature in Fig.1. Simultaneously,one single Ta target(A)was driven by a high-power pulsed power supply with the pulsed DC voltage of 650 V, the current of 1000 mA, the power of 150 W, and the repetition frequency of 100 Hz, respectively. Another Ta target(B)was driven by a DC power supply. In this study, for the sake of defending the DCMS power supply from the influence of HiPIMS instability, and ensuring the stability of the deposition process,our experiment was carried out according to the parameters shown in Table 1. Firstly, the deposition rates of DCMS at 100 W and HiPIMS at 150 W power calibrated before experiment was 0.021 nm·s-1and 0.05 nm·s-1, respectively. And then,in Table 1,at those deposition rates,the contribution parameters of DCMS to the Ta film thickness were set as 0%,25%, 50%, 75%, and 100%. Ultimately, the DC powers corresponding to those proportions of 25%,50%,and 75%were calculated as 10 W, 30 W, and 89 W, respectively. The deposition rates of the Ta films under different DC powers were tested by the step meter in Fig. 2(a), and the deposition time calculated for the thickness of 800 nm–1000 nm at the rates were 15000 s,11250 s,7500 s,3750 s,4440 s,respectively.

    DC power ratio(%) DC power(W) HiPIMS power(W) Time(s) Deposition rate(nm·s-1)0 0 150 15000 0.0504 25 10 150 11250 0.0762 50 30 150 7500 0.1516 75 89 150 3750 0.2441 100 100 0 4440 0.2093

    The deposition rate was increased with the increase of DCMS power under other conditions indicating that the loss of HiPIMS deposition rate could be ameliorated by using additional DC power supply,[19,20]while it decreased at DC-100 W because the only DC target was used without attaching HiPIMS and the sputtering power density was lower than that with HIPIMS. The base pressure and working pressure were 5×10-6Pa and 0.5 Pa(Ar, 99.999%), respectively. Ta films were deposited to Si wafers(10 mm×10 mm×0.5 mm)with N (111) preferred orientation. All the substrates were ultrasonically cleaned with acetone and alcohol for 10 min, dried with compressed air,and mounted on a substrate holder which was supplied a rotation speed of 10 r/min and a negative DC bias of 60 V for dominating the direction and energy of the deposit to the substrate and improving film uniformity.[2,21,22]

    The crystal structures of Ta films were investigated by xray diffraction (XRD) by using Rigaku SmartLab 9 kW with CuKαradiation in grazing incidence (GIXRD, 0.5°). The surface and cross-section of Ta films were detected by a field emission scanning electron microscope (FE-SEM) by using ZEISS sigma 500 (Zeiss, Germany) with BRUKER XFlash 6130. The thicknesses of the films were determined from the cross-sectional SEM observation. Atomic force microscope(AFM)was utilized to establish the three-dimensional topography of the Ta films by using a Bruker Dimension Icon equipment(Billerica,Massachusetts,MA,USA).The hardness and Young’s modulus of the films were measured by nanoindentation tester(U9820A Nano Indenter G200)by using the continuous stiffness measurement(CSM).The resistivities of the Ta films were measured by the Rts-8 four-point probe method.

    Fig. 2. The deposition rate (a) and XRD diffraction pattern (b) of films at different DC powers.

    3. Results and discussion

    3.1. Phase evolution of Ta films

    Figure 2(b) shows the diffraction patterns (20°–90°) of the Ta films with different DC powers. For DC-100 W, the diffraction pattern showed preferred orientation (202) reflections at 38.78°, and weak (002), (410), and (413) reflections at 34.14°, 36.50°, and 65.15°(JCPDS #00-025-1280), corresponding to pureβ-Ta. In addition, due to tensile stress,the reflections moved to the higher diffraction angles.[23]For the HiPIMS/DCMS co-sputtering at a negative DC bias of 60 V,the(110),(211),and(220)reflections located at 38.47°,69.30°,and 82.53°(JCPDS#00-04-0788),respectively,corresponding to pureα-Ta,which is corresponding to the discussion from Linet al.[19]that tantalum film prepared by HiPIMS wasαstructure when the negative bias voltage was 50 V or greater. For DC-89 W,the film exhibits strong(110)and weak(220)reflections,which shows a phase transformation fromβ-Ta toα-Ta. Theα-Ta(110)peak moved to higher diffraction angles(to smaller lattice spacing)as compared to the diffraction pattern standard indicating that most probably the development of tensile stresses was caused in the Ta films for high deposition rate and sputtering ion energy at higher DC sputtering power such as 89 W.For DC-30 W,the intensity ofα-Ta(110) reflections decreased, while the weak (211) and (220)reflections appeared. No obvious preferred orientation reflections were found. For DC-10 W and DC-0 W,the intensity ofα-Ta (110) reflections decrease further, while stronger (211)reflections were found at 69.51°.

    This tend agrees with the previous results that the number of target ions arriving on the substrate/growing film was critical for the formationα-Ta.[14]The results indicated that the phase transformation fromβ-Ta toα-Ta just needs less than 25%Ta ions in co-sputtering. With decreasing DCMS powers in co-sputtering, more Ta ions only led the preferred orientation changes fromα-Ta (110) toα-Ta (211). This suggested that the influence of ionized deposition flux on the observed Ta film phase saturates when the ionic content exceed a certain value.[24]For DC-30 W,α-Ta appeared without preferred orientation during the preferred orientation change,which means the grains sizes were refined and the grains sizes were refined due to the high density of nucleation sites.[24,25]

    3.2. Microstructure and morphology of Ta films

    To further investigate the morphology changes, both the surface and cross-section were examined by using FESEM in Fig.3. The thicknesses were about 760 nm,820 nm,840 nm,890 nm,and 990 nm,respectively. For DC-100 W,large irregular spherical particles and a columnar morphology with some crack-like features were found in Fig.3(e),which corresponds to the typical brittle fractures of theβ-Ta.[7,8]For DC-89 W,the surface morphology was similar to Fig.3(e), while it had orderly arranged crystal grain structures with refined grains in Fig.3(d).[2,14,23]Combined with the above XRD analysis,the structure of tantalum film was changed fromβtoα, and the surface morphology was also changed from block to needle by the addition of HiPIMS.The reason for this transition was that the flux and energy of tantalum ions in the plasma were increased by the addition of HiPIMS,and the grown tantalum film would be bombarded by tantalum ions strongly and energetically,which leads toβtowardsαphase and change the morphology.For DC-30 W,extremely fine,dense and uniform crystal grains were obtained in Fig. 3(c), which is consistent with XRD results. For DC-0 W or DCMS-10 W, dense and uniform fine needle-like structures with smaller grains were observed in Figs. 3(a) and 3(b), because of high indexα-Ta(211) preferred orientation reflections,[26]which is shown in Fig.2(b). The change of morphology and microstructure corresponds to the increase in kinetic energy of sputtered metal ions provided by the high sputtering metal ionization rate of HiPIMS as decreased DC powers.Theα-phase film deposited at DC-30 W had extremely fine and dense granular structure,which was the typical characteristic of fine-grained structure.

    AFM measurement was utilized to establish the threedimensional topography of the films in Fig. 4. The RMS values (Fig. 4(a)) decreased from 4.14 nm to 1.78 nm as DC power decreased from 100 W to 0 W.The surface ofβ-Ta films deposited by DCMS present large irregular spherical particles,which causes rougher surface.[23]As the DC power decreased,the surface roughness decreased relatively due to the increased ion bombardment. The RMS of the Ta film was 3.22 nm at DC-30 W,relatively higher than that of DC-0 W(1.78 nm).

    3.3. Electrical and mechanical properties of Ta films

    The electrical resistivity of Ta films was presented in Fig. 5(a). It was found that the resistivity of theβ-Ta film prepared by DC-100 W was the highest. Additionally,the resistivity of theα-Ta film prepared by DC-0 W was the lowest. The resistivity decreased with decreasing DC powers,but only a minor improvement was observed as DC power lower than 30 W.This result was consistent with previous reports that the electrical resistivity was primarily influenced by the phase structures.[27]Besides,the carrier mobility was also inversely proportional to the film’s surface roughness, and the increase in surface roughness also caused an increase in resistivity.

    Figure 5(b) plotted the hardness and Young’s modulus of films deposited at different DC powers. For DC-100 W and 0 W, the hardness was 13.60 GPa and 11.41 GPa separately, which is consistent with the hardness characteristics ofβ-Ta andα-Ta films respectively. In particular, the hardness of tantalum film at DC-100 W was significantly lower than that reported in the literature because of its great sputtering atoms ability on the film surface,[19,24,26]which attributes to the grain growth of beta and the large surface roughness.[28–30]However, an abnormal hardness of Ta films with a value of 17.64 GPa was found at DC-30 W. Combining XRD (Fig. 2(b)) and SEM (Fig. 3) results, it can be seen that the Ta film had extremely fine grains at DC-30 W.In the recently published studies,the generous researches which considered on nanoindentation experiments by the molecular dynamics simulation, had shown that the mechanism of metals plastic deformation was closely related to the high nucleation and propagation ability of dislocations.[31–33]The main reasons affecting the hardness and modulus of nanoindentation were the nucleation and proliferation of dislocations in the nanoindentation test probes for pure metal materials.[26,34]According to the Hall-patch relationship,the diffusion and slip of dislocations in the process of plastic deformation could be hindered by the grain boundaries to form a large stress dislocation field so that the ability of resisting plastic deformation was improved.[2,12,23]Notably, the strength and hardness of solid films at DC-30 W were closely related to fine grain strengthening effect. The finer grains and the more grain boundaries behaved so greater, the resistance to the movement of dislocations and other defects that there was the higher of the film hardness.[35–37]

    4. Conclusion

    In this work, the pureα-Ta films with different microstructures and properties were successfully deposited by DCMS/HiPIMS co-sputtering under different DC powers.The results revealed that the number of Ta ions arriving on the substrate/growing film played an important role in structure and phase evolution of Ta films. By adjusting DCMS powers,hybrid co-sputtering behaved controlling Ta ion to Ta neutral ratios of the deposition flux, which has an important effect on crystalline phase and microstructure of Ta films. Pureα-Ta phase films with extremely fine, dense and uniform crystal grains were obtained, which shows abnormal high hardness(17.64 GPa). Compared with other past researches, three advantages of this DCMS/HiPIMS co-sputtering strategy were found for Ta deposition: (i) phase control and grain refinement, (ii) higher deposition rate, and (iii) suppress the ARC phenomenon of HiPIMS under low working pressure. It will open up for interesting research for specific applications with regard to ion content and deposition rate.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.51401194).

    猜你喜歡
    黃敏
    近20年中醫(yī)流派研究知識圖譜分析
    設(shè)計中國第一臺手扶拖拉機(jī)
    中外文摘(2020年17期)2020-10-02 04:14:18
    沉迷戀愛App,誤殺閨密
    沉迷戀愛APP誤殺閨密,
    莫愁(2018年31期)2018-11-14 01:39:21
    論人
    視野(2018年16期)2018-08-23 05:00:32
    茶人黃敏:用最笨的辦法,把茶喝懂為止
    南都周刊(2015年14期)2015-09-10 07:22:44
    上海黃敏用最笨的辦法,把茶喝懂為止
    南都周刊(2015年14期)2015-09-10 07:22:44
    采訪嘉賓黃敏 高安群英花都SPA會所創(chuàng)始人
    親弟弟掄起鐵棒,千萬富姐的“財富保險箱”為誰加密
    緋聞傳播鏈與謀殺案
    中外文摘(2006年4期)2006-05-10 11:56:26
    久久99精品国语久久久| 伊人亚洲综合成人网| 51午夜福利影视在线观看| 亚洲第一青青草原| 婷婷色av中文字幕| 亚洲国产欧美网| 男女高潮啪啪啪动态图| 在线观看免费午夜福利视频| 国产高清不卡午夜福利| 巨乳人妻的诱惑在线观看| 精品福利观看| 午夜免费鲁丝| 女人精品久久久久毛片| 免费高清在线观看视频在线观看| 亚洲精品美女久久久久99蜜臀 | 无遮挡黄片免费观看| 99国产精品一区二区三区| 搡老乐熟女国产| 一区二区av电影网| 欧美精品人与动牲交sv欧美| 精品人妻熟女毛片av久久网站| 免费黄频网站在线观看国产| 国产日韩欧美视频二区| 91精品国产国语对白视频| 久久久久久亚洲精品国产蜜桃av| 天天操日日干夜夜撸| 在线天堂中文资源库| 亚洲国产毛片av蜜桃av| 建设人人有责人人尽责人人享有的| 超碰成人久久| 黄片播放在线免费| 各种免费的搞黄视频| 免费人妻精品一区二区三区视频| www.av在线官网国产| 亚洲精品久久成人aⅴ小说| 飞空精品影院首页| 成年人午夜在线观看视频| 我的亚洲天堂| 首页视频小说图片口味搜索 | 欧美国产精品va在线观看不卡| 啦啦啦中文免费视频观看日本| 午夜久久久在线观看| 国产成人av教育| 久久免费观看电影| 国产亚洲欧美在线一区二区| 久热这里只有精品99| 好男人电影高清在线观看| 一边摸一边做爽爽视频免费| 2021少妇久久久久久久久久久| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 久久青草综合色| 99九九在线精品视频| 不卡av一区二区三区| 亚洲欧美日韩另类电影网站| 另类精品久久| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品成人久久小说| 午夜日韩欧美国产| 久久国产精品人妻蜜桃| 成人影院久久| 桃花免费在线播放| 欧美日韩综合久久久久久| 成人午夜精彩视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产日韩欧美视频二区| 老司机影院成人| 国产成人a∨麻豆精品| www.熟女人妻精品国产| 欧美黄色淫秽网站| 人人妻人人澡人人看| 亚洲人成电影观看| 国产免费福利视频在线观看| 成人亚洲精品一区在线观看| 熟女av电影| 青春草视频在线免费观看| videos熟女内射| 悠悠久久av| 侵犯人妻中文字幕一二三四区| 精品卡一卡二卡四卡免费| 一级,二级,三级黄色视频| 久久av网站| 国产又色又爽无遮挡免| 国产精品久久久av美女十八| 少妇粗大呻吟视频| 亚洲五月色婷婷综合| 欧美精品啪啪一区二区三区 | 国产极品粉嫩免费观看在线| 一区二区三区精品91| 日韩av不卡免费在线播放| 成年美女黄网站色视频大全免费| 欧美日韩综合久久久久久| av有码第一页| 深夜精品福利| 18禁国产床啪视频网站| 欧美精品高潮呻吟av久久| 国产在线一区二区三区精| 超碰97精品在线观看| 天堂俺去俺来也www色官网| 国产片特级美女逼逼视频| 人妻人人澡人人爽人人| 啦啦啦中文免费视频观看日本| 亚洲国产精品一区三区| 激情五月婷婷亚洲| 亚洲国产欧美在线一区| 久久久精品国产亚洲av高清涩受| 亚洲美女黄色视频免费看| 亚洲av国产av综合av卡| 18在线观看网站| 亚洲黑人精品在线| 精品免费久久久久久久清纯 | 国产成人精品久久二区二区91| 中文欧美无线码| 国产成人欧美在线观看 | 色婷婷久久久亚洲欧美| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 午夜日韩欧美国产| 一区二区三区乱码不卡18| 美国免费a级毛片| av不卡在线播放| 水蜜桃什么品种好| 亚洲自偷自拍图片 自拍| 丰满少妇做爰视频| 午夜福利影视在线免费观看| 亚洲精品国产av成人精品| 又黄又粗又硬又大视频| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 欧美人与性动交α欧美软件| 免费日韩欧美在线观看| 亚洲欧美中文字幕日韩二区| 久热爱精品视频在线9| 国产精品免费视频内射| 久久久久国产精品人妻一区二区| 丰满饥渴人妻一区二区三| 欧美日韩黄片免| 久久久精品区二区三区| 日韩中文字幕欧美一区二区 | 男女之事视频高清在线观看 | 国产精品秋霞免费鲁丝片| 亚洲av成人精品一二三区| 一区二区av电影网| 久久久久久亚洲精品国产蜜桃av| 各种免费的搞黄视频| 别揉我奶头~嗯~啊~动态视频 | 欧美成狂野欧美在线观看| 日韩av在线免费看完整版不卡| 成年人黄色毛片网站| 国产欧美日韩综合在线一区二区| 亚洲国产av新网站| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 中文字幕人妻熟女乱码| 免费不卡黄色视频| 日韩av免费高清视频| 男女高潮啪啪啪动态图| 免费在线观看日本一区| 大片免费播放器 马上看| 中文字幕精品免费在线观看视频| 精品福利观看| 韩国高清视频一区二区三区| 久久久久久久大尺度免费视频| 精品亚洲乱码少妇综合久久| 亚洲第一av免费看| 另类精品久久| 亚洲中文字幕日韩| www.自偷自拍.com| 老熟女久久久| 午夜影院在线不卡| tube8黄色片| 免费av中文字幕在线| 亚洲中文日韩欧美视频| 国产精品免费视频内射| 丝瓜视频免费看黄片| 亚洲国产精品999| 国产免费现黄频在线看| 亚洲欧美精品自产自拍| 国产黄频视频在线观看| 国产一区二区在线观看av| 国产亚洲欧美精品永久| 精品一区二区三区av网在线观看 | 波多野结衣av一区二区av| 一区福利在线观看| 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 亚洲黑人精品在线| 99精品久久久久人妻精品| 一级毛片 在线播放| 久久久久精品国产欧美久久久 | 大话2 男鬼变身卡| 丝袜人妻中文字幕| 亚洲熟女精品中文字幕| 免费不卡黄色视频| 国产精品 欧美亚洲| 欧美久久黑人一区二区| 国产1区2区3区精品| 丁香六月欧美| 亚洲欧美一区二区三区久久| 中文字幕精品免费在线观看视频| 欧美日韩精品网址| 国产一级毛片在线| 涩涩av久久男人的天堂| 国产精品香港三级国产av潘金莲 | 大码成人一级视频| 久久热在线av| 中文字幕高清在线视频| 夜夜骑夜夜射夜夜干| 狂野欧美激情性bbbbbb| 欧美精品高潮呻吟av久久| 欧美日韩亚洲综合一区二区三区_| 亚洲激情五月婷婷啪啪| 亚洲人成电影免费在线| 国产男女内射视频| 校园人妻丝袜中文字幕| 免费日韩欧美在线观看| 久久久国产欧美日韩av| 色94色欧美一区二区| 日本av免费视频播放| 久久久久精品国产欧美久久久 | av网站在线播放免费| 国语对白做爰xxxⅹ性视频网站| 一边摸一边抽搐一进一出视频| 蜜桃国产av成人99| 亚洲国产精品国产精品| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 午夜福利在线免费观看网站| 亚洲欧美精品自产自拍| 亚洲人成电影观看| 少妇的丰满在线观看| 久久久久久久久免费视频了| 欧美乱码精品一区二区三区| 一级黄色大片毛片| 嫩草影视91久久| 另类亚洲欧美激情| 波野结衣二区三区在线| 麻豆av在线久日| 色婷婷av一区二区三区视频| 男女国产视频网站| 亚洲av片天天在线观看| 一级黄色大片毛片| 韩国精品一区二区三区| 久久久欧美国产精品| 99精国产麻豆久久婷婷| 汤姆久久久久久久影院中文字幕| 亚洲伊人久久精品综合| www.熟女人妻精品国产| 91九色精品人成在线观看| 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 国产91精品成人一区二区三区 | 亚洲伊人久久精品综合| 成人18禁高潮啪啪吃奶动态图| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 久久狼人影院| 色网站视频免费| 如日韩欧美国产精品一区二区三区| 国产精品亚洲av一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 久久精品亚洲熟妇少妇任你| 999久久久国产精品视频| 1024香蕉在线观看| 精品免费久久久久久久清纯 | 美女主播在线视频| 久久久精品94久久精品| 免费在线观看视频国产中文字幕亚洲 | 日韩大码丰满熟妇| 91麻豆av在线| 91精品国产国语对白视频| 日韩一区二区三区影片| 国产真人三级小视频在线观看| 天堂俺去俺来也www色官网| 欧美在线黄色| 欧美在线一区亚洲| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美| 欧美变态另类bdsm刘玥| 亚洲国产精品一区二区三区在线| 亚洲欧美成人综合另类久久久| 久久久久久久久免费视频了| 欧美日韩精品网址| 国产成人系列免费观看| 黄色一级大片看看| 中文欧美无线码| 久久久精品94久久精品| 欧美精品啪啪一区二区三区 | 亚洲精品日本国产第一区| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 国产免费一区二区三区四区乱码| 丝袜喷水一区| 日韩人妻精品一区2区三区| 人人妻人人添人人爽欧美一区卜| 人人妻,人人澡人人爽秒播 | 中国国产av一级| 男人舔女人的私密视频| 亚洲av日韩在线播放| 久久久久精品国产欧美久久久 | 国产1区2区3区精品| 亚洲av在线观看美女高潮| 狠狠婷婷综合久久久久久88av| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 91麻豆av在线| 王馨瑶露胸无遮挡在线观看| 成年av动漫网址| 99re6热这里在线精品视频| 十八禁人妻一区二区| svipshipincom国产片| 手机成人av网站| 美女午夜性视频免费| 久久人妻熟女aⅴ| 久久久久久亚洲精品国产蜜桃av| 国产成人精品久久二区二区免费| 每晚都被弄得嗷嗷叫到高潮| 久久久欧美国产精品| 免费看十八禁软件| 国产视频首页在线观看| 国产精品一区二区精品视频观看| 国产精品香港三级国产av潘金莲 | 国产成人精品久久二区二区免费| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 国产精品一国产av| 精品少妇久久久久久888优播| 婷婷色av中文字幕| 在线精品无人区一区二区三| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 九色亚洲精品在线播放| 日韩欧美一区视频在线观看| 美女大奶头黄色视频| 午夜久久久在线观看| 免费日韩欧美在线观看| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 久久久国产欧美日韩av| 男女之事视频高清在线观看 | 精品少妇内射三级| 久久精品国产a三级三级三级| 色94色欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美网| 97在线人人人人妻| 亚洲av电影在线进入| 七月丁香在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美色中文字幕在线| 欧美xxⅹ黑人| 最新在线观看一区二区三区 | 亚洲精品国产av蜜桃| 久久久国产精品麻豆| 免费在线观看黄色视频的| 精品少妇内射三级| 精品亚洲成国产av| 亚洲av日韩精品久久久久久密 | 欧美久久黑人一区二区| 国产一级毛片在线| 亚洲av日韩精品久久久久久密 | 啦啦啦在线免费观看视频4| 亚洲 国产 在线| 国产成人精品在线电影| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 一级毛片黄色毛片免费观看视频| 黄片播放在线免费| 自线自在国产av| 99国产综合亚洲精品| 国产97色在线日韩免费| 亚洲欧美精品综合一区二区三区| 另类亚洲欧美激情| 亚洲五月婷婷丁香| 精品少妇久久久久久888优播| 悠悠久久av| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 一本综合久久免费| 天天影视国产精品| 电影成人av| 久久国产精品人妻蜜桃| 黄色 视频免费看| 看十八女毛片水多多多| 免费不卡黄色视频| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 中国美女看黄片| 9色porny在线观看| 精品国产超薄肉色丝袜足j| 一本一本久久a久久精品综合妖精| 制服诱惑二区| 热re99久久国产66热| 精品亚洲成国产av| 99国产精品一区二区蜜桃av | 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 国产高清videossex| 国产精品一二三区在线看| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| a级毛片黄视频| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 男人舔女人的私密视频| 亚洲精品日韩在线中文字幕| 一级毛片女人18水好多 | 日本午夜av视频| 欧美日韩国产mv在线观看视频| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 手机成人av网站| 国产成人一区二区在线| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 国产伦理片在线播放av一区| 99久久精品国产亚洲精品| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密 | 国产亚洲av高清不卡| 纵有疾风起免费观看全集完整版| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 激情视频va一区二区三区| 纵有疾风起免费观看全集完整版| 咕卡用的链子| 久久精品人人爽人人爽视色| 黄色 视频免费看| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 精品人妻在线不人妻| 午夜激情久久久久久久| 老熟女久久久| 亚洲人成电影免费在线| 免费看av在线观看网站| 超色免费av| 久久人人爽人人片av| 久久免费观看电影| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| 中文字幕高清在线视频| av有码第一页| 啦啦啦中文免费视频观看日本| 国产亚洲欧美精品永久| 亚洲国产最新在线播放| 国产91精品成人一区二区三区 | h视频一区二区三区| 一区在线观看完整版| 国产亚洲av高清不卡| 18在线观看网站| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o | 国产成人影院久久av| 少妇 在线观看| 亚洲av国产av综合av卡| 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 精品卡一卡二卡四卡免费| 成在线人永久免费视频| 真人做人爱边吃奶动态| 大香蕉久久网| 午夜久久久在线观看| 丝袜喷水一区| 一区二区av电影网| 国产成人欧美| 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 国产91精品成人一区二区三区 | 女性被躁到高潮视频| 久久av网站| 久久久久视频综合| a 毛片基地| 久久久国产精品麻豆| 国产精品人妻久久久影院| 婷婷成人精品国产| 精品免费久久久久久久清纯 | 欧美日韩福利视频一区二区| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| 麻豆国产av国片精品| 手机成人av网站| videos熟女内射| 久久久亚洲精品成人影院| 免费一级毛片在线播放高清视频 | 国产男女内射视频| 男人舔女人的私密视频| 国产黄色免费在线视频| 婷婷色综合www| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| 电影成人av| 一级毛片我不卡| 亚洲精品美女久久久久99蜜臀 | 亚洲人成电影免费在线| 九色亚洲精品在线播放| 久久国产精品大桥未久av| 9色porny在线观看| 日韩视频在线欧美| 一区二区av电影网| 久久精品久久久久久久性| 久久ye,这里只有精品| 丁香六月天网| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 男女午夜视频在线观看| 成人国语在线视频| 亚洲欧美色中文字幕在线| 日本wwww免费看| 久久久久久免费高清国产稀缺| 亚洲av国产av综合av卡| 丰满饥渴人妻一区二区三| 亚洲天堂av无毛| 搡老乐熟女国产| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 国产伦理片在线播放av一区| 一级毛片女人18水好多 | 婷婷丁香在线五月| 丝袜喷水一区| 大片电影免费在线观看免费| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 婷婷成人精品国产| 少妇人妻 视频| 日本91视频免费播放| 高清av免费在线| 蜜桃在线观看..| 脱女人内裤的视频| 老司机影院毛片| 亚洲精品日本国产第一区| 黄频高清免费视频| 五月天丁香电影| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 国产精品一国产av| 欧美成人午夜精品| 后天国语完整版免费观看| 晚上一个人看的免费电影| 性少妇av在线| 精品视频人人做人人爽| 国产人伦9x9x在线观看| 91精品三级在线观看| 精品高清国产在线一区| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 国产高清视频在线播放一区 | 午夜av观看不卡| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看 | 欧美日韩视频精品一区| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码 | 欧美日韩亚洲综合一区二区三区_| 一本综合久久免费| 亚洲一码二码三码区别大吗| 狂野欧美激情性bbbbbb| 久久九九热精品免费| 晚上一个人看的免费电影| 精品久久久久久电影网| 男女无遮挡免费网站观看| 国产高清国产精品国产三级| 19禁男女啪啪无遮挡网站| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 另类精品久久| 桃花免费在线播放| 久久久欧美国产精品| 国产成人a∨麻豆精品| 天天操日日干夜夜撸| 国产精品久久久久久精品古装| e午夜精品久久久久久久| 巨乳人妻的诱惑在线观看| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠久久av| 黄色 视频免费看| 久久久久视频综合| 日韩电影二区| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 日韩 欧美 亚洲 中文字幕| 日本av手机在线免费观看| 黄频高清免费视频| 久久精品久久久久久久性| 十分钟在线观看高清视频www| 国产不卡av网站在线观看| 99国产精品99久久久久| 大话2 男鬼变身卡| 欧美亚洲日本最大视频资源| 亚洲成国产人片在线观看| 尾随美女入室| 一本综合久久免费| 大香蕉久久成人网| videos熟女内射| 国产日韩一区二区三区精品不卡| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品成人久久小说|