• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure,phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering

    2022-06-29 08:57:30MinHuang黃敏YanSongLiu劉艷松ZhiBingHe何智兵andYongYi易勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:黃敏

    Min Huang(黃敏) Yan-Song Liu(劉艷松) Zhi-Bing He(何智兵) and Yong Yi(易勇)

    1Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    2School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: hybrid sputtering,tantalum thin film,structure,hardness

    1. Introduction

    Tantalum (Ta) films are of interest for technological applications in microelectronics industry due to excellent physical and chemical properties.[1,2]Since non-equilibrium thermodynamic growth is inherent to film deposition, magnetron sputtered Ta films can exhibit the stable BCCα-phase and metastable tetragonalβ-phase, or a mixture of two phases.Theα-Ta film with high hardness (8 GPa–12 GPa), high melting point (Tm≈3000°C), low resistivity (15 μΩ·cm–80 μΩ·cm),and high temperature wear resistance,is the candidate material in many applications such as tool coating,barrel protective coating and Cu/Si diffusion barrier. Theβ-Ta film with higher hardness(18 GPa–20 GPa),higher resistivity(150 μΩ·cm–200 μΩ·cm) but more brittleness can be used as resistors and heaters. Unfortunately,β-Ta phases are prone to phase transition toα-Ta at high temperature,which affects the performance of the Ta film. The coexistence ofαandβphases in films also limited their usability.[3–5]Therefore,deposition pureα-Ta films is critical for the studies of associated films properties. Due to the lower hardness of pureαphase deposited under different preparation methods and deposition conditions, it is necessary to focus on seeking suitable deposition conditions to obtain fine grain and higher hardness ofα-Ta films.

    Direct current magnetron sputtering (DCMS) and highpower impulse magnetron sputtering (HiPIMS) are relatively mature magnetron sputtering technologies for preparing Ta thin films. In DCMS, the main feature is to provide good load performance and stable discharge at higher deposition rate. However, only leading toβ-Ta film with inhomogeneous deposition,low density and porous columnar structures,DCMS has a drawback that includes the low degree of ionization (1%–3%).[2]High-power impulse magnetron sputtering(HiPIMS),an IPVD technique combining magnetron sputtering and pulsed plasma discharges,is characterized by high peak power density, plasma density and target ionization (up to 90%)at a low duty cycle(below 10%)and a low frequency(less than 2 kHz),which makes a high degree of ionization and formation of dense, smooth and hard films, even deposition on complex geometries.[2,6,8,9]Unfortunately,in HiPIMS,the deposition rate is only 20%–40% of DCMS and the internal stress and defects in the films can be caused by the unstable arc discharge phenomenon (ARC) under low pressure.[10–12]More recently, the hybrid HiPIMS/DCMS co-sputtering have begun to be used to surmount the defect of the pure HiPIMS technique. For one thing, the mechanism of the “charge exchange” increases the plasma density effectively, as a result,increasing the deposition rate of HiPIMS and improving more efficient and accurate control of the bombardment conditions providing. For another thing,the secondary plasmas produced by DC discharging can effectively prevent the transition from glow to arc in the ignition process of HiPIMS under low pressure. Moreover, the co-sputtering technology is of great significance in improving the quality of the films, refining the grains and improving the compactness.[12,13]Mattiaset al.[14]and Zoitaet al.[15]found that the deposition rate increased as the proportion of DCMS by using DCMS and HiPIMS cosputtering, also the roughness, resistivity and electrochemical oxidation of the Cr films and titanium carbide films were all improved. Guiet al.[12]researching the TiAlCrN ceramic coatings by increasing the Ti target power found that higher Ti target power resulted in stronger ion bombardment, which emerges a denser structure and ultra-smooth surface. To our knowledge,there were most of the co-sputtering to prepare the films like TiN,[16]TiAlN,[12,13,17]and DLC-W[18]by combining DCMS with HiPIMS together. Nevertheless, there were few reports about DCMS/HiPIMS co-sputtering technology for the preparation of Ta thin films in mechanical and electrical properties,especially.

    In this paper,Ta films were deposited by DCMS/HiPIMS co-sputtering. The influence of DC powers fraction on the phase structure, morphology, mechanical and electrical properties of Ta films was studied. In the end, this work demonstrated that on the premise of realizing the structure of pureα-Ta,it not only improved the deposition rate of the film,but also surmounted some of drawbacks in HiPIMS to obtain high density and hardness coatings, which is of great significance to the protective coating and diffusion barrier layer.

    2. Experiment

    All depositions were completed in a JGP560 ultra-high vacuum coating chamber equipped with two pure Ta targets(99.95%purity,76 mm diameter)setting 15 cm away from the magnetron at room temperature in Fig.1. Simultaneously,one single Ta target(A)was driven by a high-power pulsed power supply with the pulsed DC voltage of 650 V, the current of 1000 mA, the power of 150 W, and the repetition frequency of 100 Hz, respectively. Another Ta target(B)was driven by a DC power supply. In this study, for the sake of defending the DCMS power supply from the influence of HiPIMS instability, and ensuring the stability of the deposition process,our experiment was carried out according to the parameters shown in Table 1. Firstly, the deposition rates of DCMS at 100 W and HiPIMS at 150 W power calibrated before experiment was 0.021 nm·s-1and 0.05 nm·s-1, respectively. And then,in Table 1,at those deposition rates,the contribution parameters of DCMS to the Ta film thickness were set as 0%,25%, 50%, 75%, and 100%. Ultimately, the DC powers corresponding to those proportions of 25%,50%,and 75%were calculated as 10 W, 30 W, and 89 W, respectively. The deposition rates of the Ta films under different DC powers were tested by the step meter in Fig. 2(a), and the deposition time calculated for the thickness of 800 nm–1000 nm at the rates were 15000 s,11250 s,7500 s,3750 s,4440 s,respectively.

    DC power ratio(%) DC power(W) HiPIMS power(W) Time(s) Deposition rate(nm·s-1)0 0 150 15000 0.0504 25 10 150 11250 0.0762 50 30 150 7500 0.1516 75 89 150 3750 0.2441 100 100 0 4440 0.2093

    The deposition rate was increased with the increase of DCMS power under other conditions indicating that the loss of HiPIMS deposition rate could be ameliorated by using additional DC power supply,[19,20]while it decreased at DC-100 W because the only DC target was used without attaching HiPIMS and the sputtering power density was lower than that with HIPIMS. The base pressure and working pressure were 5×10-6Pa and 0.5 Pa(Ar, 99.999%), respectively. Ta films were deposited to Si wafers(10 mm×10 mm×0.5 mm)with N (111) preferred orientation. All the substrates were ultrasonically cleaned with acetone and alcohol for 10 min, dried with compressed air,and mounted on a substrate holder which was supplied a rotation speed of 10 r/min and a negative DC bias of 60 V for dominating the direction and energy of the deposit to the substrate and improving film uniformity.[2,21,22]

    The crystal structures of Ta films were investigated by xray diffraction (XRD) by using Rigaku SmartLab 9 kW with CuKαradiation in grazing incidence (GIXRD, 0.5°). The surface and cross-section of Ta films were detected by a field emission scanning electron microscope (FE-SEM) by using ZEISS sigma 500 (Zeiss, Germany) with BRUKER XFlash 6130. The thicknesses of the films were determined from the cross-sectional SEM observation. Atomic force microscope(AFM)was utilized to establish the three-dimensional topography of the Ta films by using a Bruker Dimension Icon equipment(Billerica,Massachusetts,MA,USA).The hardness and Young’s modulus of the films were measured by nanoindentation tester(U9820A Nano Indenter G200)by using the continuous stiffness measurement(CSM).The resistivities of the Ta films were measured by the Rts-8 four-point probe method.

    Fig. 2. The deposition rate (a) and XRD diffraction pattern (b) of films at different DC powers.

    3. Results and discussion

    3.1. Phase evolution of Ta films

    Figure 2(b) shows the diffraction patterns (20°–90°) of the Ta films with different DC powers. For DC-100 W, the diffraction pattern showed preferred orientation (202) reflections at 38.78°, and weak (002), (410), and (413) reflections at 34.14°, 36.50°, and 65.15°(JCPDS #00-025-1280), corresponding to pureβ-Ta. In addition, due to tensile stress,the reflections moved to the higher diffraction angles.[23]For the HiPIMS/DCMS co-sputtering at a negative DC bias of 60 V,the(110),(211),and(220)reflections located at 38.47°,69.30°,and 82.53°(JCPDS#00-04-0788),respectively,corresponding to pureα-Ta,which is corresponding to the discussion from Linet al.[19]that tantalum film prepared by HiPIMS wasαstructure when the negative bias voltage was 50 V or greater. For DC-89 W,the film exhibits strong(110)and weak(220)reflections,which shows a phase transformation fromβ-Ta toα-Ta. Theα-Ta(110)peak moved to higher diffraction angles(to smaller lattice spacing)as compared to the diffraction pattern standard indicating that most probably the development of tensile stresses was caused in the Ta films for high deposition rate and sputtering ion energy at higher DC sputtering power such as 89 W.For DC-30 W,the intensity ofα-Ta(110) reflections decreased, while the weak (211) and (220)reflections appeared. No obvious preferred orientation reflections were found. For DC-10 W and DC-0 W,the intensity ofα-Ta (110) reflections decrease further, while stronger (211)reflections were found at 69.51°.

    This tend agrees with the previous results that the number of target ions arriving on the substrate/growing film was critical for the formationα-Ta.[14]The results indicated that the phase transformation fromβ-Ta toα-Ta just needs less than 25%Ta ions in co-sputtering. With decreasing DCMS powers in co-sputtering, more Ta ions only led the preferred orientation changes fromα-Ta (110) toα-Ta (211). This suggested that the influence of ionized deposition flux on the observed Ta film phase saturates when the ionic content exceed a certain value.[24]For DC-30 W,α-Ta appeared without preferred orientation during the preferred orientation change,which means the grains sizes were refined and the grains sizes were refined due to the high density of nucleation sites.[24,25]

    3.2. Microstructure and morphology of Ta films

    To further investigate the morphology changes, both the surface and cross-section were examined by using FESEM in Fig.3. The thicknesses were about 760 nm,820 nm,840 nm,890 nm,and 990 nm,respectively. For DC-100 W,large irregular spherical particles and a columnar morphology with some crack-like features were found in Fig.3(e),which corresponds to the typical brittle fractures of theβ-Ta.[7,8]For DC-89 W,the surface morphology was similar to Fig.3(e), while it had orderly arranged crystal grain structures with refined grains in Fig.3(d).[2,14,23]Combined with the above XRD analysis,the structure of tantalum film was changed fromβtoα, and the surface morphology was also changed from block to needle by the addition of HiPIMS.The reason for this transition was that the flux and energy of tantalum ions in the plasma were increased by the addition of HiPIMS,and the grown tantalum film would be bombarded by tantalum ions strongly and energetically,which leads toβtowardsαphase and change the morphology.For DC-30 W,extremely fine,dense and uniform crystal grains were obtained in Fig. 3(c), which is consistent with XRD results. For DC-0 W or DCMS-10 W, dense and uniform fine needle-like structures with smaller grains were observed in Figs. 3(a) and 3(b), because of high indexα-Ta(211) preferred orientation reflections,[26]which is shown in Fig.2(b). The change of morphology and microstructure corresponds to the increase in kinetic energy of sputtered metal ions provided by the high sputtering metal ionization rate of HiPIMS as decreased DC powers.Theα-phase film deposited at DC-30 W had extremely fine and dense granular structure,which was the typical characteristic of fine-grained structure.

    AFM measurement was utilized to establish the threedimensional topography of the films in Fig. 4. The RMS values (Fig. 4(a)) decreased from 4.14 nm to 1.78 nm as DC power decreased from 100 W to 0 W.The surface ofβ-Ta films deposited by DCMS present large irregular spherical particles,which causes rougher surface.[23]As the DC power decreased,the surface roughness decreased relatively due to the increased ion bombardment. The RMS of the Ta film was 3.22 nm at DC-30 W,relatively higher than that of DC-0 W(1.78 nm).

    3.3. Electrical and mechanical properties of Ta films

    The electrical resistivity of Ta films was presented in Fig. 5(a). It was found that the resistivity of theβ-Ta film prepared by DC-100 W was the highest. Additionally,the resistivity of theα-Ta film prepared by DC-0 W was the lowest. The resistivity decreased with decreasing DC powers,but only a minor improvement was observed as DC power lower than 30 W.This result was consistent with previous reports that the electrical resistivity was primarily influenced by the phase structures.[27]Besides,the carrier mobility was also inversely proportional to the film’s surface roughness, and the increase in surface roughness also caused an increase in resistivity.

    Figure 5(b) plotted the hardness and Young’s modulus of films deposited at different DC powers. For DC-100 W and 0 W, the hardness was 13.60 GPa and 11.41 GPa separately, which is consistent with the hardness characteristics ofβ-Ta andα-Ta films respectively. In particular, the hardness of tantalum film at DC-100 W was significantly lower than that reported in the literature because of its great sputtering atoms ability on the film surface,[19,24,26]which attributes to the grain growth of beta and the large surface roughness.[28–30]However, an abnormal hardness of Ta films with a value of 17.64 GPa was found at DC-30 W. Combining XRD (Fig. 2(b)) and SEM (Fig. 3) results, it can be seen that the Ta film had extremely fine grains at DC-30 W.In the recently published studies,the generous researches which considered on nanoindentation experiments by the molecular dynamics simulation, had shown that the mechanism of metals plastic deformation was closely related to the high nucleation and propagation ability of dislocations.[31–33]The main reasons affecting the hardness and modulus of nanoindentation were the nucleation and proliferation of dislocations in the nanoindentation test probes for pure metal materials.[26,34]According to the Hall-patch relationship,the diffusion and slip of dislocations in the process of plastic deformation could be hindered by the grain boundaries to form a large stress dislocation field so that the ability of resisting plastic deformation was improved.[2,12,23]Notably, the strength and hardness of solid films at DC-30 W were closely related to fine grain strengthening effect. The finer grains and the more grain boundaries behaved so greater, the resistance to the movement of dislocations and other defects that there was the higher of the film hardness.[35–37]

    4. Conclusion

    In this work, the pureα-Ta films with different microstructures and properties were successfully deposited by DCMS/HiPIMS co-sputtering under different DC powers.The results revealed that the number of Ta ions arriving on the substrate/growing film played an important role in structure and phase evolution of Ta films. By adjusting DCMS powers,hybrid co-sputtering behaved controlling Ta ion to Ta neutral ratios of the deposition flux, which has an important effect on crystalline phase and microstructure of Ta films. Pureα-Ta phase films with extremely fine, dense and uniform crystal grains were obtained, which shows abnormal high hardness(17.64 GPa). Compared with other past researches, three advantages of this DCMS/HiPIMS co-sputtering strategy were found for Ta deposition: (i) phase control and grain refinement, (ii) higher deposition rate, and (iii) suppress the ARC phenomenon of HiPIMS under low working pressure. It will open up for interesting research for specific applications with regard to ion content and deposition rate.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.51401194).

    猜你喜歡
    黃敏
    近20年中醫(yī)流派研究知識圖譜分析
    設(shè)計中國第一臺手扶拖拉機(jī)
    中外文摘(2020年17期)2020-10-02 04:14:18
    沉迷戀愛App,誤殺閨密
    沉迷戀愛APP誤殺閨密,
    莫愁(2018年31期)2018-11-14 01:39:21
    論人
    視野(2018年16期)2018-08-23 05:00:32
    茶人黃敏:用最笨的辦法,把茶喝懂為止
    南都周刊(2015年14期)2015-09-10 07:22:44
    上海黃敏用最笨的辦法,把茶喝懂為止
    南都周刊(2015年14期)2015-09-10 07:22:44
    采訪嘉賓黃敏 高安群英花都SPA會所創(chuàng)始人
    親弟弟掄起鐵棒,千萬富姐的“財富保險箱”為誰加密
    緋聞傳播鏈與謀殺案
    中外文摘(2006年4期)2006-05-10 11:56:26
    90打野战视频偷拍视频| 亚洲国产精品成人综合色| 精品久久久久久久末码| 91麻豆av在线| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 午夜日韩欧美国产| 又粗又爽又猛毛片免费看| 99精品欧美一区二区三区四区| 日本a在线网址| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 国产午夜福利久久久久久| 亚洲国产看品久久| 99久久无色码亚洲精品果冻| 色av中文字幕| 在线观看66精品国产| 一a级毛片在线观看| 精品国产乱码久久久久久男人| bbb黄色大片| 一级毛片女人18水好多| 18禁观看日本| 亚洲精品粉嫩美女一区| 亚洲成人久久爱视频| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 黄片小视频在线播放| 男女视频在线观看网站免费| 天堂影院成人在线观看| 久久香蕉精品热| 一进一出好大好爽视频| 青草久久国产| 91老司机精品| 一进一出抽搐gif免费好疼| 精品乱码久久久久久99久播| 性色avwww在线观看| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 一本久久中文字幕| 99久久成人亚洲精品观看| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 免费看日本二区| 精品久久久久久久久久久久久| 国产成人啪精品午夜网站| 欧美另类亚洲清纯唯美| 国产精品亚洲av一区麻豆| 女人被狂操c到高潮| www.精华液| 成人三级做爰电影| 美女高潮的动态| 久久久色成人| 久99久视频精品免费| 香蕉国产在线看| 中亚洲国语对白在线视频| 久9热在线精品视频| 亚洲人与动物交配视频| 亚洲精品久久国产高清桃花| 精品免费久久久久久久清纯| 亚洲精品美女久久av网站| 国产一区在线观看成人免费| 久久精品国产亚洲av香蕉五月| 国产三级黄色录像| 国产精品久久久久久人妻精品电影| 狠狠狠狠99中文字幕| 午夜亚洲福利在线播放| 国产精品精品国产色婷婷| 俄罗斯特黄特色一大片| 91久久精品国产一区二区成人 | 国内少妇人妻偷人精品xxx网站 | 美女 人体艺术 gogo| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 91av网站免费观看| 91麻豆av在线| 国产精品久久久久久久电影 | 久久久久九九精品影院| 午夜精品一区二区三区免费看| 动漫黄色视频在线观看| 视频区欧美日本亚洲| 无人区码免费观看不卡| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 欧美性猛交╳xxx乱大交人| 国产精品亚洲av一区麻豆| 天天一区二区日本电影三级| 精品国产美女av久久久久小说| 免费看十八禁软件| 99热这里只有是精品50| 男人舔奶头视频| 中文字幕熟女人妻在线| 99久国产av精品| 亚洲va日本ⅴa欧美va伊人久久| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 91在线观看av| 亚洲美女视频黄频| 久久久国产成人免费| 国产1区2区3区精品| 嫩草影视91久久| 婷婷精品国产亚洲av在线| 亚洲,欧美精品.| 麻豆国产av国片精品| 精品国产乱子伦一区二区三区| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出| 99久久精品国产亚洲精品| 欧美日韩国产亚洲二区| 男女做爰动态图高潮gif福利片| 亚洲五月天丁香| 欧美大码av| 999精品在线视频| 国产午夜精品久久久久久| av女优亚洲男人天堂 | 亚洲专区中文字幕在线| 日本五十路高清| 免费高清视频大片| 欧美zozozo另类| 美女cb高潮喷水在线观看 | 成人国产综合亚洲| 可以在线观看毛片的网站| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 麻豆久久精品国产亚洲av| 99re在线观看精品视频| 听说在线观看完整版免费高清| av女优亚洲男人天堂 | 99国产精品一区二区蜜桃av| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 免费高清视频大片| 少妇的丰满在线观看| 成年版毛片免费区| 国产精品九九99| 无人区码免费观看不卡| 变态另类成人亚洲欧美熟女| 亚洲无线在线观看| 99久国产av精品| 久久香蕉精品热| 亚洲国产欧美人成| 一卡2卡三卡四卡精品乱码亚洲| 又紧又爽又黄一区二区| 露出奶头的视频| 99久国产av精品| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 欧美成人免费av一区二区三区| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 此物有八面人人有两片| www.www免费av| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 欧美绝顶高潮抽搐喷水| 精品国产美女av久久久久小说| 成人av在线播放网站| 中文资源天堂在线| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 熟女电影av网| 观看美女的网站| 高清在线国产一区| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 99久久精品一区二区三区| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频| 一级毛片高清免费大全| 久久这里只有精品中国| 亚洲欧美激情综合另类| 99视频精品全部免费 在线 | 亚洲电影在线观看av| 视频区欧美日本亚洲| 校园春色视频在线观看| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区成人 | 亚洲一区二区三区不卡视频| 五月玫瑰六月丁香| 亚洲男人的天堂狠狠| 日本黄大片高清| 久久中文字幕人妻熟女| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av在线| 午夜福利在线观看吧| 日日夜夜操网爽| 精品人妻1区二区| 亚洲国产精品成人综合色| 亚洲国产精品久久男人天堂| 国产亚洲精品av在线| 在线观看66精品国产| 日韩欧美国产一区二区入口| 免费av毛片视频| 90打野战视频偷拍视频| 亚洲国产色片| 欧美3d第一页| 啦啦啦韩国在线观看视频| 国产伦一二天堂av在线观看| 亚洲一区二区三区色噜噜| 精品久久久久久,| 变态另类丝袜制服| 久久午夜亚洲精品久久| 两人在一起打扑克的视频| 亚洲 欧美一区二区三区| 日韩欧美在线乱码| 国产精品久久久久久久电影 | 2021天堂中文幕一二区在线观| 久久中文字幕人妻熟女| 少妇的丰满在线观看| 亚洲午夜精品一区,二区,三区| 国产高清激情床上av| 亚洲性夜色夜夜综合| 久9热在线精品视频| 高潮久久久久久久久久久不卡| 麻豆久久精品国产亚洲av| 波多野结衣高清作品| 麻豆成人午夜福利视频| 亚洲男人的天堂狠狠| 久久久久久久久中文| 黄色成人免费大全| 最好的美女福利视频网| 国产精品一区二区三区四区久久| 国产亚洲欧美在线一区二区| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 一个人看视频在线观看www免费 | 视频区欧美日本亚洲| 国产精品 国内视频| 最新在线观看一区二区三区| 国产精品电影一区二区三区| 一区二区三区激情视频| 国产野战对白在线观看| 亚洲精品国产精品久久久不卡| 精品久久久久久久末码| 欧美3d第一页| 中文资源天堂在线| 国产一区二区三区视频了| 久久精品国产清高在天天线| 欧美激情在线99| 亚洲一区高清亚洲精品| 在线观看舔阴道视频| 91字幕亚洲| 国产一区二区三区在线臀色熟女| 国产麻豆成人av免费视频| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 婷婷精品国产亚洲av在线| 青草久久国产| 国产精品99久久99久久久不卡| 综合色av麻豆| 国产欧美日韩精品一区二区| 国产高清视频在线观看网站| 中文字幕最新亚洲高清| 亚洲美女视频黄频| 熟女少妇亚洲综合色aaa.| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 在线十欧美十亚洲十日本专区| 成人特级av手机在线观看| 一本精品99久久精品77| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 色综合亚洲欧美另类图片| 18禁裸乳无遮挡免费网站照片| 久久伊人香网站| 日本黄色视频三级网站网址| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 亚洲午夜精品一区,二区,三区| 最好的美女福利视频网| 99在线人妻在线中文字幕| 午夜免费激情av| 99久国产av精品| 国产精品乱码一区二三区的特点| 国产精品影院久久| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 久久久久九九精品影院| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩 | 天天一区二区日本电影三级| 亚洲专区中文字幕在线| 国产精品一区二区三区四区久久| 免费观看的影片在线观看| 91老司机精品| 男人舔奶头视频| 麻豆国产97在线/欧美| 欧美色欧美亚洲另类二区| 日韩大尺度精品在线看网址| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 精品日产1卡2卡| 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 国产熟女xx| 久久中文看片网| 欧美3d第一页| 男人舔奶头视频| 黄片大片在线免费观看| 欧美激情久久久久久爽电影| 免费大片18禁| 脱女人内裤的视频| 国产精品一及| 亚洲第一电影网av| 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 国产成人影院久久av| 欧美日韩精品网址| 成人午夜高清在线视频| 国产精品国产高清国产av| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 噜噜噜噜噜久久久久久91| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 脱女人内裤的视频| 国产一区二区激情短视频| 亚洲av成人精品一区久久| 色吧在线观看| 精品久久久久久久久久免费视频| 日韩欧美三级三区| 国产高清三级在线| 亚洲18禁久久av| 亚洲天堂国产精品一区在线| 在线免费观看的www视频| 午夜久久久久精精品| 在线永久观看黄色视频| 国产高清videossex| 男女下面进入的视频免费午夜| 精品久久蜜臀av无| 美女午夜性视频免费| 欧美一级毛片孕妇| 在线观看一区二区三区| 日本在线视频免费播放| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| avwww免费| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 午夜成年电影在线免费观看| 久久99热这里只有精品18| 国产久久久一区二区三区| 热99在线观看视频| 久久午夜综合久久蜜桃| 天堂动漫精品| 怎么达到女性高潮| 国产成人系列免费观看| 97超级碰碰碰精品色视频在线观看| 人人妻,人人澡人人爽秒播| 国产美女午夜福利| 国产男靠女视频免费网站| 97超级碰碰碰精品色视频在线观看| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 丁香欧美五月| 校园春色视频在线观看| 精品国产三级普通话版| 中文字幕最新亚洲高清| 亚洲精品美女久久久久99蜜臀| 啦啦啦观看免费观看视频高清| 国产高清视频在线观看网站| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 在线观看舔阴道视频| 偷拍熟女少妇极品色| 俺也久久电影网| 国产精品99久久99久久久不卡| 亚洲五月天丁香| 在线观看66精品国产| 欧美xxxx黑人xx丫x性爽| av福利片在线观看| 禁无遮挡网站| 精品电影一区二区在线| 色视频www国产| 午夜福利18| 国内精品久久久久久久电影| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 亚洲国产看品久久| 中文字幕最新亚洲高清| АⅤ资源中文在线天堂| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 不卡av一区二区三区| av视频在线观看入口| 免费无遮挡裸体视频| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 久久精品91无色码中文字幕| 日本黄大片高清| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 欧美乱妇无乱码| 在线观看66精品国产| 欧美在线一区亚洲| 亚洲av片天天在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色视频www国产| 精品电影一区二区在线| 国产欧美日韩一区二区精品| av福利片在线观看| 久久久国产精品麻豆| 一本精品99久久精品77| 一级a爱片免费观看的视频| 男人和女人高潮做爰伦理| 亚洲中文日韩欧美视频| 日韩 欧美 亚洲 中文字幕| 久久久久性生活片| 日韩免费av在线播放| 午夜福利视频1000在线观看| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| 精品久久久久久久人妻蜜臀av| 亚洲18禁久久av| 国产综合懂色| 精品国产美女av久久久久小说| 欧美极品一区二区三区四区| 欧美日韩黄片免| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| 成年免费大片在线观看| 午夜免费成人在线视频| 在线观看免费午夜福利视频| 日本熟妇午夜| 天堂动漫精品| 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 久久久久国内视频| 亚洲最大成人中文| 国产av不卡久久| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 日韩高清综合在线| 国产午夜精品论理片| 久久久成人免费电影| 久久精品国产99精品国产亚洲性色| 日本免费一区二区三区高清不卡| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频| av国产免费在线观看| 真人一进一出gif抽搐免费| h日本视频在线播放| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频| 丰满的人妻完整版| 少妇的丰满在线观看| 国产野战对白在线观看| 99精品久久久久人妻精品| 欧美日韩综合久久久久久 | 欧美黑人欧美精品刺激| 亚洲天堂国产精品一区在线| 在线永久观看黄色视频| 日本三级黄在线观看| 国产不卡一卡二| 久99久视频精品免费| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 日韩精品中文字幕看吧| 色播亚洲综合网| 亚洲色图av天堂| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久久免费视频了| 国产精品一及| 午夜久久久久精精品| 在线永久观看黄色视频| 日韩欧美在线二视频| 一区福利在线观看| 日韩欧美在线二视频| 哪里可以看免费的av片| 国产精品乱码一区二三区的特点| 国产亚洲av嫩草精品影院| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 国产黄a三级三级三级人| 欧美日韩国产亚洲二区| 俺也久久电影网| 亚洲av成人不卡在线观看播放网| www.精华液| 久久久水蜜桃国产精品网| 免费在线观看视频国产中文字幕亚洲| 男人的好看免费观看在线视频| 波多野结衣高清无吗| 日韩欧美在线二视频| 变态另类丝袜制服| 又黄又爽又免费观看的视频| 麻豆国产av国片精品| 亚洲国产精品sss在线观看| 久久久久精品国产欧美久久久| 色综合站精品国产| h日本视频在线播放| 久99久视频精品免费| 国产一区二区在线观看日韩 | 日韩欧美在线乱码| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 国产成人啪精品午夜网站| 床上黄色一级片| 无限看片的www在线观看| 嫁个100分男人电影在线观看| 精品人妻1区二区| 黄色丝袜av网址大全| 90打野战视频偷拍视频| av天堂中文字幕网| 久久久久性生活片| 国产私拍福利视频在线观看| 欧美乱码精品一区二区三区| 成人无遮挡网站| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 午夜福利免费观看在线| 日本成人三级电影网站| 亚洲成a人片在线一区二区| 国产91精品成人一区二区三区| 99国产精品99久久久久| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 欧美国产日韩亚洲一区| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站在线播放欧美日韩| 日本黄色片子视频| 深夜精品福利| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩高清专用| 美女免费视频网站| 日日夜夜操网爽| 啪啪无遮挡十八禁网站| 亚洲 国产 在线| 在线播放国产精品三级| 欧美性猛交╳xxx乱大交人| 午夜两性在线视频| 欧美色欧美亚洲另类二区| 色吧在线观看| 欧美绝顶高潮抽搐喷水| 亚洲国产色片| 亚洲美女视频黄频| 国产亚洲精品综合一区在线观看| 国产成人影院久久av| 色在线成人网| 怎么达到女性高潮| 亚洲黑人精品在线| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 国产精品av久久久久免费| 亚洲国产高清在线一区二区三| xxxwww97欧美| 97超视频在线观看视频| 国产精品99久久久久久久久| 国产淫片久久久久久久久 | 亚洲av片天天在线观看| 搡老妇女老女人老熟妇| 亚洲欧美精品综合一区二区三区| 亚洲人与动物交配视频| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久v下载方式 | 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 久久香蕉国产精品| 精品久久久久久久人妻蜜臀av| 亚洲中文av在线| 日日摸夜夜添夜夜添小说| 亚洲中文av在线| 亚洲无线观看免费| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 国产亚洲精品久久久com| 91字幕亚洲| 中出人妻视频一区二区| 精品国产美女av久久久久小说| 怎么达到女性高潮| 国产精品av久久久久免费| 欧美日韩精品网址| 1024手机看黄色片| 日韩欧美国产一区二区入口| 国产高清videossex| 51午夜福利影视在线观看| 伊人久久大香线蕉亚洲五| 国产高清三级在线| 国产精品久久久久久人妻精品电影| 久久久久亚洲av毛片大全| 久久久精品大字幕| 国产精品 国内视频| 亚洲成人精品中文字幕电影| 国产精品野战在线观看| 午夜免费激情av| 午夜a级毛片|