• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST

    2022-06-29 08:55:40YuQiangTao陶余強(qiáng)GuoShengXu徐國(guó)盛LingYiMeng孟令義RuiRongLiang梁瑞榮LinYu余林XiangLiu劉祥NingYan顏寧QingQuanYang楊清泉XinLin林新andLiangWang王亮
    Chinese Physics B 2022年6期
    關(guān)鍵詞:顏寧王亮徐國(guó)

    Yu-Qiang Tao(陶余強(qiáng)) Guo-Sheng Xu(徐國(guó)盛) Ling-Yi Meng(孟令義) Rui-Rong Liang(梁瑞榮)Lin Yu(余林) Xiang Liu(劉祥) Ning Yan(顏寧) Qing-Quan Yang(楊清泉)Xin Lin(林新) and Liang Wang(王亮)

    1Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Institute of Energy,Hefei Comprehensive National Science Center,Hefei 230031,China

    Keywords: EAST tokamak,divertor plasma,sweeping strike point,decay length

    1. Introduction

    In tokamaks, heat and particles exhausted from the hot magnetically confined plasma, stream along open magnetic field lines and mainly localize over lengths much shorter than the size of divertor target plates. For future reactors, the unmitigated heat load on divertor target is more than one order larger than the engineering safety limit,~10 MW/m2,which is a severe challenge.[1]Several solutions are proposed to mitigate the high heat load: distribute heat fluxes through manipulating divertor poloidal magnetic configurations, such as snowflake divertor[2]and super-X divertor;[3]facilitate detachment through trapping neutrals and impurities in a highly closed divertor,such as SAS divertor on DIII-D[4]and the new‘corner slot’divertor on EAST.[1]There is another simple and robust method, sweeping strike point, to spread the heat load over a large surface area. Sweeping strike point experiments have been successfully conducted in JET experiments,and this method may be adopted in the future campaign with 40 MW of source auxiliary heating power.[5]Similar concept,the fish tail divertor(FTD),has been proposed and experimentally performed on EAST,[6,7]which needs an additional alternating magnetic field coil behind the divertor. Some studies have so far found that sweeping appears to be compatible with implementation and use on DEMO.[8]

    In this year,EAST superconducting tokamak has replaced the old lower graphite divertor with tungsten divertor to increase the power handling capacity to~10 MW/m2. The most attractive characteristic of this new divertor is the‘corner slot’,i.e.,a closed right-angle corner consisted by the horizontal target and vertical target. This special structure can bring the‘corner effect’,i.e.,when the outer strike point locates on the horizontal target plate near the corner,the horizontal target plate reflects impinging particles mostly towards the scrapeoff layer (SOL), where the particles are confined by the vertical target plate and trapped in the closed corner, thus high neutral pressure is achieved near the corner. The corner effect has been studied by SOLPS-ITER simulation.[1]

    In this paper, the divertor plasma behavior will be studied through sweeping strike point in the new lower divertor on EAST. Owning to the powerful control ability of poloidal field coils, the plasma control system (PCS) adjusts the location of primaryX-point flexibly and controls the lower outer strike point sweeping from the horizontal target to the vertical target. Surface temperature will be monitored by infrared(IR) thermography to demonstrate that sweeping strike point can mitigate the heat load on divertor target. Plasma behavior,such as divertor particle flux and heat flux, will be diagnosed by divertor Langmuir probe array. To avoid the effect of probe tip damage, a method based on sweeping strike point is applied to get the normalized distributions on the divertor target,similar to the technique in the work.[9]And the decay lengths of divertor particle flux and heat flux,λjs,λq,will be discussed and compared with previous work.[10–12]

    This paper is organized as follows: Section 2 describes the experimental setup and introduces the relevant diagnostics; Section 3 presents the experimental results and discussion. Summary is given in Section 4.

    2. Experimental setup and main diagnostics

    A series of sweeping strike point experiments have been conducted in EAST low confinement mode (L-mode) discharges with high RF heating power. The discharges are operated in lower single null(LSN)or double null(DN)divertor configuration. The central magnetic field isBt=2.4 T with the ionB×?Bdrift direction into upper divertor. Figure 1(a)shows the configuration of one typical LSN shot#98332,calculated from EFIT magnetic reconstruction. The PCS controls theX-point moving towards low field side fromRx~159 cm(3 s) toRx~166 cm (8 s), whereRxis the major radius of the lowerX-point. Consequently,the lower outer strike point sweeps from the horizontal target to the vertical target,as seen in Fig.1(c). The distance between strike point and the corner is nearly linear with time,when the strike point locates on the horizontal target or vertical target,as shown in Fig.1(b).

    Fig.1. In shot#98332,(a)the magnetic configurations at different times;(b)the distance(s)between lower outer strike point and the corner versus time(t)with linear fit on the horizontal target(s <0)and vertical target(s >0);(c)detail view in the lower outer divertor region with the distribution of divertor Langmuir probe array(Div-LP),the intersection angle θ (θ <90°)between the poloidal magnetic field and the target plate,and the pixel location N1,N2,N3 (red ellipses).

    During these discharges, the plasma current isIp=500 kA in Fig. 2(a). The source auxiliary heating power isPtotal=3.2 MW including 0.7 MW from 2.45G low hybrid wave (LHW), 2 MW from 4.6G LHW, and 0.5 MW from electron cyclotron resonance heating (ECRH), as shown in Fig. 2(b). The displacement of primaryX-point unavoidably brings the change of the main plasma shape. The main change is the lower triangularity, which varies up to~20%. However,the elongation only varies below 2%and the edge safety factor varies below 0.5%. It is worthy to mention that the magnetic geometry on the outer mid-plane differs slightly, as shown in Fig.1(a),where the auxiliary heating system locates.The main plasma keeps stable as the strike point sweeps. The central-line averaged electron density isnel~2×1019m-3,which has slight increase (≤10%) in Fig. 2(c). And the plasma stored energy is~110 kJ,as seen in Fig.2(d).Besides,two Ohmic discharges are also conducted in DN configuration with the similar parameters(shots#98895 and#98896).

    Main diagnostics used in this work include the infrared(IR)thermography[13]and the divertor Langmuir probe array.[14,15]Two integrated infrared and visible tangential wide-angle viewing systems have been mounted in EAST to provide real-time, simultaneously visible and infrared imaging of the vacuum vessel,including the lower divertor region.The principle of infrared thermography to monitor the surface temperature of objects is based on black-body radiation law with considering the impact of the radiometric factors on the measurement of the camera.[13]Though the heat flux code of

    the infrared thermography is under programming,the surface temperature roughly reveals the heat load on divertor target.EAST has installed two divertor Langmuir probe array[14,15]in port D and port P with the same poloidal distribution, as shown in Fig. 1(c). Each array has 16 channels: four localize on the horizontal target(#13–#16),and the others localize on the vertical target (#1–#12). The probe array is based on triple probe and used to measure the positive biased potentialVp, the ion saturation currentIsand the floating potentialVf.Based onTe=(Vp-Vf)/ln2 andJs=Is/Apr, electron temperatureTeand particle fluxΓion=Js/eare obtained, whereeis elementary charge andApris the effective area of a probe tip.The parallel heat fluxq‖and electron densityneare further obtained byq‖=γshΓionTe,ne=Is/[eApr(2Te/mi)1/2], whereγsh≈7 is the electron sheath heat transmission coefficient,miis the ion mass.

    3. Experimental results and discussion

    3.1. Surface temperature

    When the strike point sweeps, the heat flux also moves with strike point and the heat load on divertor target is mitigated through large surfaces. In the shot#98332 withPtotal=3.2 MW,the bright ring moves with strike point from the horizontal target to the vertical target,as shown in Fig.3. And the ring is brightest when the strike point is near the corner, and darkest when the strike point is on the vertical target.

    A pixel path is chosen,as shown in the Fig.3(b),to get the time trace of surface temperature,as seen in Fig.4. Limited to spatial resolution and mechanical vibration,it is hard to obtain the exact location of each pixel. Here we give numbers to the pixels,andNpixel<0 is on the horizontal target,Npixel>0 is on the vertical target, andNpixel=0 is around the corner. From 3 s–8 s, the peak surface temperature obviously moves with strike point. After the strike point moves away, the local surface temperature decreases,which demonstrate that sweeping strike point mitigates the heat load on divertor target.

    The peak surface temperature differs largely for different regions. The peak surface ofNpixel=-4 on the horizontal target(away from corner)is~240°C,~40%larger compared toNpixel=9 on the vertical target,as shown in Figs.4(b)and 4(d). This difference is mainly attributed to the intersection angleθ(θ <90°)between the poloidal magnetic field and the target plate,as shown in Fig.1(c). Without significant energy dissipation,the parallel heat fluxq‖should have slight change in the divertor region as the strike point sweeps. And the heat loadqton the target plate is expressed asqt≈q‖sinφsinθ,

    where the intersection angleφbetween the magnetic field and the toroidal direction is almost the same as the strike point sweeps. The intersection angleθis larger when the strike point locates on the horizontal target compared to the vertical target,as shown in Fig.1(c). Thus,the heat loadqton the horizontal target is larger than that on the vertical target.

    Another remarkable phenomenon is that as the strike point moves near the corner,the surface temperature becomes very high,as shown in Fig.4(a). The maximum surface temperature even exceeds 400°C,as seen in Fig.4(c). There are several possibilities for this phenomenon. (I)The distance between the surface and the water-cooling copper tubes near the corner is larger compared to other locations on the target plate,as seen in Fig. 6 of the article,[1]which leads to relatively weaker cooling capacity. (II) The reflection of light and energetic neutral particle by smooth tungsten surface becomes important as the strike point moves near the corner, which leads to heat accumulation. One evidence for (II) is that the reflective ring is observed in the Fig.4(a).

    3.2. The method to get normalized distributions of particle and heat flux on the divertor target

    As the strike point sweeps, the plasma behavior can be diagnosed by divertor Langmuir probe array. However, the measured absolute values of electron density,particle and heat flux are affected by the serious ablation of graphite probe tips, especially during long-pulse operation or unmitigated disruptions.[14]In this paper,a method to overcome this drawback is applied to get the normalized distributions of particle and heat flux on the divertor target and study the decay lengthsλjs,λq, similar to the technique in the work.[9]As shown in Fig. 1(b), the movement of strike point on the horizontal target or vertical target is almost under the constant velocity,thus the time signal can be transferred to relative location information. The moment of peakTeis transferred as the separatrix location.

    With the assumption that the distribution on the divertor target changes slowly as the strike point sweeps, each probe can obtain the whole normalized distribution information of particle flux and heat flux.This assumption is checked through comparing the distributions provided by different probes. As shown in Fig.5(a),probes#15,#14,and#13 on the horizontal target get the similar distributions of particle flux on the target,which verifies the assumption. The distributions on the vertical target also support the statement,as shown in Fig.5(b).

    3.3. Divertor plasma behavior with high RF heating power

    In the discharges with high RF heating power,the plasma behaviors differ largely when the strike point locates on the horizontal target or vertical target. The plasma distributions on the divertor target in shot #98332 withPtotal= 3.2 MW are shown in Fig. 6. To studyλjs,λq, a widespread fitting function[16,17]is used

    where erfc is the Gauss error function,x0andyBGare the separatrix location and background flux,Sis introduced for the radial diffusion. The decay lengthλis mapped to the outer midplane (OMP) to avoid the influence of connection length difference.As shown in Fig.6(a),λjs=5.6 mm on the horizontal target is about twice as that on the vertical target(~2.7 mm).This difference may be due to the corner effect. When the strike point locates on the horizontal target, the target plate reflects impinging particles mostly towards the SOL.As a result, high neutral pressure is achieved near the corner, which significantly reduces localTein Fig. 6(b) and promotenein Fig. 6(d).λqon the horizontal target is also larger compared to the vertical target,as seen in Fig.6(c).

    We calculateλjs,λqin several similar discharges withPtotal=3.2 MW,including shots#98313,#98332 in LSN configuration and shot#98338 in DN configuration. It is worthy to mention that the results of probes #12 and #11 are not included due to the following reason: both probes are close to

    corner on the vertical target as seen in Fig.1(c),as a result,the obtained distributions have the mixed information in which the SOL side are partly with strike point on the horizontal target,while the rest are with strike point on the vertical target. As shown in Fig.7(a),λjson the horizontal target is nearly twice as that on the vertical target.λqon the horizontal target is also larger compared to the vertical target,as seen in Fig.7(b). The weak corner effect on heat flux is probably due to low electron density or lack of energy dissipation, which still needs more research.

    It is worthy to mention that the DN configuration does not narrow the decay length compared to LSN configuration,as seen in Fig. 7, consistent with previous work.[10]Besides,for the vertical target,λjs/λq≈1.3, which shows that the divertor heat flux is mainly dominated by the divertor particle flux.[10,11]However,the ratio is much larger for the horizontal target,i.e.~2,which may be due to the corner effect.

    3.4. Divertor plasma behavior in the Ohmic discharges

    The Ohmic discharges are also conducted with strike point sweeping,i.e., shots #98895 and #98896. In the two shots,nel≈2×1019m-3andIp=500 kA, which are similar with the shots mentioned above. Typical divertor plasma distributions are shown in Fig. 8. WithTe,peak~12 eV, the heat flux distribution on the target is mainly dominated by the particle flux.λjs=11.4 mm andλq=10.3 mm are obtained,which are significantly larger compared to the discharges with high RF heating power.

    In these Ohmic discharges, the corner effect becomes weak.λjson the horizontal and vertical target is obtained, as shown in Fig.9. And there is no clear difference between the horizontal target and vertical target,which implies that the corner effect is weak. TheTemeasurement is poor in these two shots,and only few probes can provide the heat flux distributions,which are almost the same as Fig.8(c).

    3.5. Discussion on the decay length

    4. Summary

    In this paper,divertor plasma behavior through sweeping strike point recently conducted on EAST,which has upgraded the lower divertor with closed corner structure. As the strike point sweeps from the horizontal target and vertical target,the peak surface temperature of the divertor target measured by IR camera moves with strike point. And the local surface temperature successfully cools down as the strike point moves away,which indicate that the heat load is mitigated by sweeping strike point.

    To study the behavior of particle flux and heat flux on the divertor target,a method based on sweeping strike point is used to avoid the effect of probe tip damage.λjson the horizontal target is almost twice as that on the vertical target,andTeis also lower for the horizontal target. These differences may be due to the corner effect, which is one of the design thoughts of the new divertor with closed corner. In the Ohmic discharges,the corner effect seems weak andλjs,λqare much larger than the discharges with high RF heating power. The underlying mechanism may be that higher edgeTecan narrow theλjs,λq,consistent with the simulation results.[12]

    Acknowledgments

    The authors would like to acknowledge collaboration of the EAST team. Project supported by the National Key Research and Development Program of China(Grant No. 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 12005257, 12005004,11905143, and 11922513), the Fund from the Institute of Energy, Hefei Comprehensive National Science Center(Grant No. GXXT-2020-004), the CASHIPS Director’s Fund(Grant Nos. BJPY2019A01 and YZJJ2020QN13), the Special Research Assistant Funding of CAS and China Postdoctoral Science Foundation (Grant No. 2020M671913),and Anhui Provincial Natural Science Foundation (Grant No.2008085QA38).

    猜你喜歡
    顏寧王亮徐國(guó)
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    “清華學(xué)術(shù)女神”在線打假
    東西南北(2019年19期)2019-12-12 06:10:24
    請(qǐng)你吃飯
    故事會(huì)(2019年6期)2019-03-27 05:12:18
    陽關(guān)故人
    飛魔幻A(2019年11期)2019-02-06 03:58:09
    王亮:用音樂致敬家鄉(xiāng)
    商周刊(2018年16期)2018-08-14 01:51:52
    追本溯源提升素養(yǎng)
    一段苦澀又奇特的成長(zhǎng)經(jīng)歷
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    一级片'在线观看视频| 91狼人影院| 国产伦在线观看视频一区| 最新中文字幕久久久久| 日本熟妇午夜| 啦啦啦啦在线视频资源| 舔av片在线| 97人妻精品一区二区三区麻豆| 麻豆成人av视频| 99热全是精品| 我要看日韩黄色一级片| 美女主播在线视频| 日韩av在线免费看完整版不卡| 久久热精品热| 国产精品综合久久久久久久免费| 日本与韩国留学比较| 国产精品av视频在线免费观看| 国产 亚洲一区二区三区 | 汤姆久久久久久久影院中文字幕 | 久久99蜜桃精品久久| av播播在线观看一区| 中文字幕av在线有码专区| 五月玫瑰六月丁香| 国产乱人视频| 十八禁网站网址无遮挡 | 婷婷色综合大香蕉| 久久久久久久久久久免费av| 亚洲天堂国产精品一区在线| 精品欧美国产一区二区三| 亚洲精品国产成人久久av| 久久99蜜桃精品久久| 亚洲人与动物交配视频| 淫秽高清视频在线观看| 国产亚洲5aaaaa淫片| 伦精品一区二区三区| 亚洲国产成人一精品久久久| 欧美xxxx性猛交bbbb| 搡老妇女老女人老熟妇| 亚洲综合色惰| av在线蜜桃| 国产一区二区三区综合在线观看 | 我的女老师完整版在线观看| 麻豆成人av视频| 一级黄片播放器| 偷拍熟女少妇极品色| 精品久久国产蜜桃| 男人舔奶头视频| 精品国产露脸久久av麻豆 | 伊人久久精品亚洲午夜| 日韩欧美国产在线观看| 免费黄色在线免费观看| 国产成人a∨麻豆精品| 欧美精品国产亚洲| 蜜臀久久99精品久久宅男| 成年女人看的毛片在线观看| 成人欧美大片| 成年免费大片在线观看| 久久韩国三级中文字幕| 成人漫画全彩无遮挡| eeuss影院久久| av网站免费在线观看视频 | 欧美日韩在线观看h| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲av涩爱| 一级爰片在线观看| 国产69精品久久久久777片| 日日摸夜夜添夜夜爱| 国产国拍精品亚洲av在线观看| 亚洲自拍偷在线| 亚洲精品aⅴ在线观看| 日韩一区二区视频免费看| 如何舔出高潮| 午夜老司机福利剧场| 国产一区二区亚洲精品在线观看| 精品人妻视频免费看| 美女脱内裤让男人舔精品视频| 精品久久久噜噜| 日本黄色片子视频| 午夜老司机福利剧场| 成人漫画全彩无遮挡| 在线免费观看的www视频| 国内精品美女久久久久久| 国产探花极品一区二区| 精品久久久噜噜| 丝袜喷水一区| 一级av片app| 能在线免费观看的黄片| 国模一区二区三区四区视频| 日日干狠狠操夜夜爽| 亚洲内射少妇av| 精品国产三级普通话版| 啦啦啦中文免费视频观看日本| 亚洲精品亚洲一区二区| 亚洲经典国产精华液单| 国产又色又爽无遮挡免| 国产色婷婷99| 熟妇人妻不卡中文字幕| 午夜爱爱视频在线播放| 一区二区三区乱码不卡18| 日本爱情动作片www.在线观看| 色哟哟·www| 一级毛片 在线播放| 91av网一区二区| 男女边摸边吃奶| 欧美精品一区二区大全| 黑人高潮一二区| 亚洲怡红院男人天堂| 亚洲av成人精品一二三区| 日日啪夜夜撸| 亚洲精品aⅴ在线观看| 美女脱内裤让男人舔精品视频| 国产白丝娇喘喷水9色精品| 国产伦一二天堂av在线观看| 国产黄片美女视频| 国产永久视频网站| 激情五月婷婷亚洲| 激情五月婷婷亚洲| 乱系列少妇在线播放| 老女人水多毛片| 九九在线视频观看精品| 久久久久久久久大av| 色播亚洲综合网| 国产一级毛片在线| 十八禁网站网址无遮挡 | 日韩伦理黄色片| 久久99热这里只频精品6学生| 麻豆av噜噜一区二区三区| 精品人妻一区二区三区麻豆| 精品酒店卫生间| 自拍偷自拍亚洲精品老妇| 久久久久久久久大av| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 亚洲精品国产av蜜桃| 久热久热在线精品观看| 免费av观看视频| 看十八女毛片水多多多| 亚洲一区高清亚洲精品| 大香蕉97超碰在线| 好男人在线观看高清免费视频| 欧美日韩国产mv在线观看视频 | 成人二区视频| 人妻系列 视频| 亚洲欧美一区二区三区国产| 51国产日韩欧美| 亚洲国产色片| 在线免费观看不下载黄p国产| 国产精品久久久久久精品电影小说 | 国产男人的电影天堂91| 中文精品一卡2卡3卡4更新| xxx大片免费视频| 国产一区亚洲一区在线观看| 日日撸夜夜添| 免费电影在线观看免费观看| 国产伦精品一区二区三区视频9| 哪个播放器可以免费观看大片| 少妇人妻一区二区三区视频| 亚洲成人精品中文字幕电影| av免费观看日本| 深夜a级毛片| 精华霜和精华液先用哪个| 亚洲国产精品sss在线观看| 中文欧美无线码| 婷婷色综合大香蕉| 免费看a级黄色片| 国产极品天堂在线| 亚洲精品久久久久久婷婷小说| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| 亚洲欧洲国产日韩| 亚洲怡红院男人天堂| 国产成人免费观看mmmm| 久久久久久久久大av| 久久久久久国产a免费观看| 有码 亚洲区| av一本久久久久| 听说在线观看完整版免费高清| 国产综合精华液| 毛片一级片免费看久久久久| 六月丁香七月| 丰满少妇做爰视频| 欧美成人一区二区免费高清观看| 丰满少妇做爰视频| 亚洲最大成人手机在线| 久久久久九九精品影院| 精品午夜福利在线看| 国产男人的电影天堂91| 丰满乱子伦码专区| 综合色av麻豆| 在线观看美女被高潮喷水网站| 91在线精品国自产拍蜜月| av卡一久久| 最后的刺客免费高清国语| 国内精品宾馆在线| 精品一区二区三区视频在线| 简卡轻食公司| 欧美3d第一页| 欧美日韩亚洲高清精品| 欧美3d第一页| 内地一区二区视频在线| 免费黄频网站在线观看国产| 18+在线观看网站| 97超碰精品成人国产| 欧美人与善性xxx| 女人久久www免费人成看片| 美女脱内裤让男人舔精品视频| 亚洲精品视频女| 国产黄频视频在线观看| 久久国产乱子免费精品| 精品国产三级普通话版| 我的女老师完整版在线观看| 午夜激情久久久久久久| 亚洲内射少妇av| av在线天堂中文字幕| 91在线精品国自产拍蜜月| 插阴视频在线观看视频| 人妻少妇偷人精品九色| 成人鲁丝片一二三区免费| 九九爱精品视频在线观看| 国产成人a区在线观看| 韩国高清视频一区二区三区| 久久人人爽人人片av| 色播亚洲综合网| 99久久精品国产国产毛片| 韩国av在线不卡| 午夜福利成人在线免费观看| 免费观看精品视频网站| 亚洲无线观看免费| 黄色一级大片看看| 成年女人看的毛片在线观看| 国产黄色免费在线视频| 免费不卡的大黄色大毛片视频在线观看 | 日韩人妻高清精品专区| 黄色日韩在线| 国产女主播在线喷水免费视频网站 | 亚洲精品成人久久久久久| 亚洲自偷自拍三级| 欧美性感艳星| 性色avwww在线观看| 秋霞在线观看毛片| 亚洲精品乱码久久久v下载方式| 成人欧美大片| 国产高潮美女av| 日本色播在线视频| 美女国产视频在线观看| 国产一区二区亚洲精品在线观看| 成人午夜高清在线视频| 亚洲综合精品二区| 午夜激情欧美在线| 欧美高清性xxxxhd video| 免费少妇av软件| 久久久久久久久久成人| 大话2 男鬼变身卡| 深夜a级毛片| 综合色av麻豆| 国产亚洲av嫩草精品影院| 国产中年淑女户外野战色| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 欧美激情国产日韩精品一区| 午夜福利在线观看免费完整高清在| 亚洲乱码一区二区免费版| 爱豆传媒免费全集在线观看| 午夜亚洲福利在线播放| 2021少妇久久久久久久久久久| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 麻豆成人av视频| 国产精品一区二区性色av| 婷婷色综合大香蕉| 床上黄色一级片| 97热精品久久久久久| 免费在线观看成人毛片| 中文字幕人妻熟人妻熟丝袜美| 欧美变态另类bdsm刘玥| 女人久久www免费人成看片| 中文字幕av成人在线电影| 亚洲av福利一区| 听说在线观看完整版免费高清| 亚洲精品影视一区二区三区av| 亚洲国产精品成人久久小说| 99久久人妻综合| 国产成人午夜福利电影在线观看| 国产老妇女一区| 26uuu在线亚洲综合色| 综合色av麻豆| 午夜免费激情av| 国产精品一二三区在线看| 十八禁国产超污无遮挡网站| 欧美+日韩+精品| 麻豆久久精品国产亚洲av| 精品久久久久久久久亚洲| 伊人久久精品亚洲午夜| 日韩国内少妇激情av| 中文天堂在线官网| 国产精品人妻久久久影院| 欧美zozozo另类| 51国产日韩欧美| 国产成人精品一,二区| 岛国毛片在线播放| 亚洲真实伦在线观看| 九色成人免费人妻av| 久久99热这里只频精品6学生| 国产精品一区www在线观看| 久久精品国产鲁丝片午夜精品| 一个人看视频在线观看www免费| 两个人的视频大全免费| 在线观看一区二区三区| 亚洲精品国产成人久久av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品456在线播放app| 秋霞伦理黄片| 夫妻性生交免费视频一级片| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 床上黄色一级片| 能在线免费看毛片的网站| 直男gayav资源| 欧美激情久久久久久爽电影| 中文字幕av成人在线电影| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久末码| 国产69精品久久久久777片| 秋霞伦理黄片| 国产免费福利视频在线观看| 日日撸夜夜添| 久久午夜福利片| 亚洲不卡免费看| 亚洲最大成人中文| 亚洲精品久久久久久婷婷小说| 有码 亚洲区| 三级毛片av免费| 欧美一级a爱片免费观看看| 大陆偷拍与自拍| 26uuu在线亚洲综合色| 啦啦啦中文免费视频观看日本| 在线免费观看不下载黄p国产| 免费人成在线观看视频色| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 亚洲在线自拍视频| 欧美日韩综合久久久久久| 亚洲美女视频黄频| videossex国产| 老师上课跳d突然被开到最大视频| 伦理电影大哥的女人| 五月伊人婷婷丁香| 一区二区三区免费毛片| 成人欧美大片| 三级国产精品欧美在线观看| 一级毛片 在线播放| 97热精品久久久久久| 久久久久久久久久久丰满| av福利片在线观看| 七月丁香在线播放| 高清欧美精品videossex| 乱码一卡2卡4卡精品| 三级经典国产精品| 亚洲精品日韩av片在线观看| 一夜夜www| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 欧美日韩精品成人综合77777| 69人妻影院| 免费黄网站久久成人精品| 白带黄色成豆腐渣| 亚洲av成人精品一二三区| 亚洲av一区综合| 国产精品伦人一区二区| 免费无遮挡裸体视频| 亚洲美女视频黄频| 男女视频在线观看网站免费| 蜜桃久久精品国产亚洲av| 日韩成人伦理影院| 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 99热全是精品| 国产伦精品一区二区三区四那| 在线天堂最新版资源| 日韩不卡一区二区三区视频在线| 亚洲aⅴ乱码一区二区在线播放| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| a级毛色黄片| 国产亚洲精品av在线| 免费看a级黄色片| 69人妻影院| 亚洲av电影不卡..在线观看| 国产成人一区二区在线| 亚洲乱码一区二区免费版| 日日干狠狠操夜夜爽| 亚洲av电影不卡..在线观看| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 69人妻影院| 99热这里只有精品一区| 欧美不卡视频在线免费观看| 亚洲av.av天堂| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| av网站免费在线观看视频 | 啦啦啦中文免费视频观看日本| 亚洲一区高清亚洲精品| 国产淫语在线视频| 精品一区二区三区人妻视频| av一本久久久久| 国产精品伦人一区二区| 免费无遮挡裸体视频| 久久久国产一区二区| 久久99热6这里只有精品| 三级经典国产精品| 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 黄色配什么色好看| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| 亚洲精品一区蜜桃| 肉色欧美久久久久久久蜜桃 | 国产一级毛片在线| 国内精品一区二区在线观看| 亚洲av成人精品一二三区| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 美女黄网站色视频| 精品一区二区三区视频在线| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 淫秽高清视频在线观看| 在线观看人妻少妇| 看非洲黑人一级黄片| 国产精品美女特级片免费视频播放器| 亚洲成人av在线免费| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 性色avwww在线观看| 国产一区有黄有色的免费视频 | 国产av不卡久久| 久久精品久久久久久久性| 日本-黄色视频高清免费观看| 日韩av免费高清视频| 三级国产精品片| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 女人被狂操c到高潮| 国产永久视频网站| 精品久久久久久久末码| 看免费成人av毛片| 淫秽高清视频在线观看| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| 观看免费一级毛片| 在线观看av片永久免费下载| 青青草视频在线视频观看| a级毛色黄片| www.av在线官网国产| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频 | a级毛色黄片| 夫妻性生交免费视频一级片| 乱人视频在线观看| 国产 一区 欧美 日韩| 精品久久久噜噜| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 精品午夜福利在线看| 亚洲av电影不卡..在线观看| 成年女人看的毛片在线观看| 天美传媒精品一区二区| 免费人成在线观看视频色| 肉色欧美久久久久久久蜜桃 | 身体一侧抽搐| 丝袜美腿在线中文| 尾随美女入室| 色综合站精品国产| 国产成人精品一,二区| 91av网一区二区| 久久精品夜色国产| 人体艺术视频欧美日本| 少妇裸体淫交视频免费看高清| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网 | 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 亚洲精品久久午夜乱码| 免费人成在线观看视频色| 亚洲精品成人久久久久久| 国产精品国产三级国产专区5o| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 亚洲在久久综合| 淫秽高清视频在线观看| 欧美潮喷喷水| 国产男人的电影天堂91| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 婷婷色综合www| 欧美高清成人免费视频www| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| 久久久亚洲精品成人影院| 日本爱情动作片www.在线观看| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 亚洲一区高清亚洲精品| 插逼视频在线观看| 97热精品久久久久久| 看黄色毛片网站| 亚洲国产av新网站| 午夜精品国产一区二区电影 | 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 亚洲人成网站在线播| 欧美日韩在线观看h| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆 | 成人鲁丝片一二三区免费| 午夜福利在线在线| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 国语对白做爰xxxⅹ性视频网站| 白带黄色成豆腐渣| 一夜夜www| 熟妇人妻久久中文字幕3abv| 国产视频首页在线观看| 午夜免费观看性视频| 国产成人精品婷婷| 在线观看人妻少妇| 国产成人精品婷婷| 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| 久久这里有精品视频免费| 九色成人免费人妻av| 青春草视频在线免费观看| 精品午夜福利在线看| 免费黄网站久久成人精品| 男女下面进入的视频免费午夜| 99久久人妻综合| 国产成人免费观看mmmm| 国产高清三级在线| 天堂√8在线中文| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 青春草视频在线免费观看| 天堂√8在线中文| 午夜免费男女啪啪视频观看| 搡老乐熟女国产| 国产精品人妻久久久久久| 亚洲av福利一区| 九九爱精品视频在线观看| 国产精品无大码| a级毛色黄片| 国产黄频视频在线观看| 一级黄片播放器| 午夜日本视频在线| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 久99久视频精品免费| 国产高潮美女av| 国产人妻一区二区三区在| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 日本免费在线观看一区| 亚洲va在线va天堂va国产| 国产免费福利视频在线观看| 在线 av 中文字幕| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 中文欧美无线码| av线在线观看网站| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 亚洲图色成人| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 五月伊人婷婷丁香| 亚洲精品乱码久久久v下载方式| 免费播放大片免费观看视频在线观看| 欧美极品一区二区三区四区| 26uuu在线亚洲综合色| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| av线在线观看网站| 国产成人免费观看mmmm| 在线观看人妻少妇| 久久久久久久久久黄片| 免费少妇av软件| 国产av不卡久久| 国产伦精品一区二区三区四那| 国产一区二区亚洲精品在线观看| 久久这里有精品视频免费|