• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy

    2022-06-29 09:18:26YuetingZhou周月婷GangZhao趙剛JianxinLiu劉建鑫XiaojuanYan閆曉娟ZhixinLi李志新WeiguangMa馬維光andSuotangJia賈鎖堂
    Chinese Physics B 2022年6期
    關(guān)鍵詞:趙剛

    Yueting Zhou(周月婷) Gang Zhao(趙剛) Jianxin Liu(劉建鑫) Xiaojuan Yan(閆曉娟)Zhixin Li(李志新) Weiguang Ma(馬維光) and Suotang Jia(賈鎖堂)

    1State Key Laboratory of Quantum Optics&Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China

    2Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Keywords: optical frequency stabilization,spectral measurement,direct absorption spectroscopy

    1. Introduction

    High precision spectroscopy plays a prime role in a number of research fields, such as test of fundamental laws of physics, high sensitive trace gas detection, and astronomical observation.[1–4]One of prerequisites of the technique is the precise manipulation of optical frequency,which provides an accurate horizontal axis. The advent of optical frequency combs (OFCs) has revolutionized the frequency and time metrology by linking optical frequency to radio frequency.By linking the carrier–envelope offset frequency and the repetition frequency of OFCs to a radio frequency reference,

    where the latter is routinely realized through stabilization of the internal cavity length of comb, hundreds of thousands of comb teeth with certain optical frequency is attained. It facilitates high precision spectroscopy by dramatically enhancing its accuracy,resolution and spectral coverage.[5]However,the bulky dimension,complicated operation and high cost restrain its applicability. Moreover, the superior OFCs, like modelocked femtosecond laser in near infrared, are not available in all optical frequency region. Therefore, some other strategies to determine optical frequency are required. Etalon is often utilized as frequency marker, by virtue of its wavelengthdependent transfer function.[6]However,it can only determine a relative frequency variation and the accuracy and resolution are limited.

    Fabry–P′erot cavity is an alterative choice. Compared with etalon, it possesses much higher finesse and thus narrower resonant modes.As a result,it is more accurate by using its discrete transmission modes as frequency ruler.[7]Fabry–P′erot cavity with ultra-stable design has been widely used to establish ultra-stable optical frequency reference. Frequency uncertainty of sub-10 mHz at 1.5 μm with observation time of 170 s has been demonstrated.[8]However,in this manner,the frequency resolution, equal to the frequency interval of cavity modes, namely free spectral range (FSR), is limited. The cavity FSR is inversely proportional to the cavity length, and varies usually from hundreds MHz to GHz. In order to refine the resolution, a piezoelectric transducer (PZT) is used,attached to the cavity mirror to detune the cavity length as well as the cavity mode frequency. Nevertheless, due to the drift of the cavity length dominantly caused by the cavity PZT,the fractional frequency instability of the cavity mode is often limited to 10-9,even though the cavity is temperature-controlled and vibration-isolated.[9]To conquer this, some efforts to actively stabilize the cavity length have been made. For example, by locking two cw-lasers to their corresponding external cavity modes, their beat frequency, equal to multiple of the cavity FSR,as well as the cavity length could be stabilized to a RF reference by feeding the error signal back to the cavity length.[10,11]In consequence, thenth cavity mode frequencyfncould be determined with the expression

    where Δforiginates from the dispersive phase shift of the cavity mirror,[11]andffsris the cavity FSR.Thus the optical and radio frequencies are linked by a chain offered by the optical cavity. Another method with similar principle was proposed by Devoe and Brewer.[12,13]A cw laser passes through an optical phase modulator, driving by a RF signal atfm, to generate a pair of sidebands. By simultaneously locking the cw laser frequencyflaserto the cavity mode with Pound–Drever–Hall (PDH) technique and the multiple of the cavity FSR to thefmwith named Devoe–Brewer(DVB)technique,theflaseris stabilized. Its effectiveness has been demonstrated at visible and near infrared region.[12,14]Compared to the former,this method is simpler and more compact since it avoids the employ of two lasers. Additionally,due to the accelerated development of optical technology, this method is applicable to broad spectral range from visible to terahertz. Nevertheless,in the previous work, the stability was inaccurately predicted and comprehensive analysis of the performance has not been executed.[12,14]Moreover, its generalization is limited by the usage of a massy dye ring laser.And its capacity to application has not been evaluated.

    In this paper,we build a system to obtain a stable and tunable optical frequency with an external optical cavity by using the combination of PDH and DVB locking techniques. It is based on a fiber laser,which is more compact and economical compared to its first implementation. Several means to minimize interference effect,so as to improve the long-term stabilization, are implemented. With the help of frequency comb,the cavity mirror dispersion and the locking performance are analyzed.Finally,the application of the stabilized laser to high precision spectroscopy and trace gas detection has been tested.

    2. Experimental setup

    The experimental setup is shown in Fig. 1. An Erbium doped fiber laser (EDFL, NKT K84-151-14), emitted at 1530 nm with output power of 36 mW, is utilized as light source. It addresses thePe(10) transition of C2H2at 6531.7803 cm-1with linestrength of 4.0×10-21cm-1/(molecule·cm-2). The output laser passing through a fiber-coupled acousto-optic modulator(f-AOM,AA opto-Electronic, MT110-IR25-3FIO), accompanied with the laser internal PZT,is used to actuate the laser frequency. After a fiber splitter (f-s), part of the laser is sent into a fibercoupled electro-optic modulator(f-EOM KY-PM-15-10g-PPFA)with a proton exchange waveguide to avoid residual amplitude modulation (RAM). Two frequencies, i.e.,fPDHat 25 MHz andfDVBat 380.682 MHz, are simultaneously sent to a combiner and then drive the f-EOM to generate two pairs of sidebands for PDH and DVB locking, respectively. The two RF frequencies are disciplined to a 10 MHz rubidium oscillator. By an fiber collimator(f-C),the light is coupled into free space, and then passes through a matching lens (MML),a half-wave plate(λ/2),a polarization beam splitter(PBS),a quarter-wave plate(λ/4)and finally impinges into the FP cavity. The reflected light from the cavity front mirror is deflected by the PBS to a high bandwidth photodetector(PD1,New Focus, 1611). An off-axis parabolic mirror (OAP), rather than a focus lens, is preferred to focus the light on the detector to less the unwanted interference. In order to further reduce interference effect,the optical components are tilted and located at etalon immune distance.[15]

    The Fabry–P′erot (FP) cavity comprises a pair of highreflective mirrors, among which the input mirror is plane–plane and the output mirror is plane–concave with a radius of curvature of 1 m. The reflectivity of cavity mirror is 99.997%,resulting in a cavity finesse of 9.6×104. Both mirrors are mounted on a piezoelectric transducer(PZT)and separated by a Zerodur spacer with a length of 39.4 cm, corresponding to the cavity FSR of 380.6 MHz.

    The signal detected by PD1 is demodulated atfPDHto get the error signal for PDH locking, which is, then, sent to the homemade servo(PID1). The resulted correction signal is fed to the laser PZT and the driving frequency of the f-AOM to lock the laser to the cavity mode with the bandwidth of 200 kHz. Another part of the PD1 output is demodulated at the difference frequency offDVBandfPDHfor DVB locking.The error signal is sent to PID2 (Stanford Research System,SIM960) and then fed to the cavity PZT. Consequently, the cavity length as well as theflaseris locked to the radio frequency reference according to Eq.(1). After that,theflasercan be consecutively and finely detuned by varying thefDVB.

    To further analyze the locking performance, a portion of the laser beam is separated by the f-s. It is, then, combined with a frequency comb centered at 1.5 μm by a fiber coupler, shown in part A of Fig. 1. After hitting on a reflective diffraction grating,the light is extended in one dimension according to wavelength and then detected by the PD2(New Focus,1611)). The absolute laser frequency can be then deduced from the beat frequency,measured by a spectrum analyzer,between the cw-laser and the frequency comb teeth.

    To apply this stabilized laser to spectroscopic measurements, the separated light could be also coupled into a direct absorption spectrometer with balance detection scheme,shown in part B of Fig. 1. In order to reduce the relative intensity noise,balanced detection is implemented and the light passes through a polarizer followed by a 1:1 splitter. Part of the light transmits through a gas cell filled with pure C2H2at 50 Torr and is collected by a photo-receiver of the homemade balance photodetector(BPD),while the other is directed to another photo-receiver of the BPD as a reference.

    Fig.1. Experimental setup. f-AOM,fiber-coupled acoustic optic modulator;f-s,fiber splitter;f-EOM,fiber-coupled electro-optic modulator;f-C, fiber-coupled collimator; MML, mode matching lens; λ/2, half-wave plate; PBS, polarization beam splitter; λ/4, quarter-wave plate;PZT, piezoelectric actuator; PD1,2, photodetectors; PID1,2, proportion-integration-differentiation; φ, phase shifter; BP, band pass filter; LP,low pass filter;DBM,doubled balance mixer;pol,polarizer;BS,beam splitter;BPD,balance photodetectors.

    3. Experimental results

    3.1. In-loop and out-loop noise

    The evaluation of locking performance,in term of in-loop noise and out-loop noise, were carried out: the former offers the knowledge of the limitation of the locking, while the latter,resulting from the beat note with the frequency comb,implies the capability of absolute frequency stabilization. The in-loop noise were assessed by recording the error signals of the two lockings with the sampling rate of 200 kHz over 10 s,shown in the upper panels of Fig. 2. They-axis, in terms of relative frequency variation, is calibrated by the cavity mode width(4 kHz in our case). The frequency noise spectral density are plotted in the low panels. Both curves show a value lower than 10-2Hz2/Hz at low frequency region, which indicates the gains of the PID servos in this region are large enough to compensate most of the excess noise and the longterm drift. The spectral density for the PDH locking, i.e.,the curve in the left panel,does not exceed 1 Hz2/Hz in the whole range except some discrete point. While the spectral density for the DVB locking has a relatively low and flat value around 10-3Hz2/Hz, which will be multiplied by the cavity mode numbernand then transferred to the laser frequency thus dominate the performance of the frequency reference.For our case,nis larger than 5×105,yielding a laser frequency deviation of around 1.5 kHz.

    With the aid of the frequency comb,the drift of the laser frequency,i.e.,the out-loop noise,was monitored with acquisition rate of 10 Hz and shown in Fig.3.The curve in Fig.3(b)represents the free-running laser frequency over 0.3 hour. It drifts, at a range larger than 25 MHz, predominantly because of the stretch of the laser PZT induced by the temperature variation.While with locking,the laser frequency is stabilized and keeps approximately constant over 5 hours, shown as a relatively flat line in the panel(a). Meanwhile, the Δfin Eq.(1)was determined to be 9.9 MHz,which can be considered constant in the laser frequency range of dozens of GHz. The solid lines in Fig. 3(c) are the corresponding Allan plots. The statistical confidence is also shown in the plot as error bars. The curve for the free-running laser, i.e., the line in blue, directly goes up, indicating its noise at low frequency is enormous.While the line in black verifies that, with locking, the drift is suppressed to a large extent.And it reaches to the lowest value of 50 kHz at integration time of 0.4 s,corresponding to a relative frequency uncertainty of 2.6×10-10,and does not exceed 110 kHz even at the integration time longer than 2.5 h. While,the residual drift of the locked laser is suspected to be caused mainly by the drift of the electronic set point of the DVB servo and could be ameliorated by use of a high-class voltage reference.

    Fig.2. The frequency deviation of(a)PDH and(b)DVB locking and the frequency spectral density of(c)PDH and(d)DVB locking deviation.

    Fig. 3. The measured frequency drift of the beat frequencies between the laser and the comb teeth with(a)and without(b)locking. (c)The Allan deviation of the beat frequencies with(line in black)and without(line in blue)lock. The statistical confidence is also shown in the plot as error bars.

    3.2. Application to laser spectroscopy

    To test its ability for laser spectroscopy, the laser frequency is detuned by stepping thefDVBwith the step of 10 Hz and thePe(10)transition of C2H2is investigated.[16]The black dot in Fig.4 is the measured direct absorption signal with balanced detection and the red line is the Voigt fitting result.Each data point is averaged over 150 times with the total recording time of 142 s. The lower panel is the fitting residual and the signal to residual ratio of 600 has been obtained. With the knowledge of pressure induced shift,[17]the transition central frequency is deduced to be 195817848.40 MHz with statistical uncertainty of±0.10 MHz,which is only 0.03 MHz away from the value provided by Ref.[18].

    Fig.4. The measured(line in black)direct absorption spectrum of the C2H2 at P=50 Torr,T =300 K and the Voigt fitting result(line in red).The lower panel is the fitting residual.

    Then,to further test its applicability,we keep the laser frequency at the center of the C2H2transition and measured the cell transmission signal consecutively. This scheme is often employed to get the target gas concentration in the fields like atmospheric lidar and industrial process control. The black and blue lines in Fig.5(a)show the transmission signals with and without locking, respectively, measured more than 1.5 h.When the laser frequency is free running,the transmission signal drifts monotonically, which owes to the drift of the laser frequency leading to a divergence from the transition center.While, with locking, the laser frequency stays at the transition center and consequently the signal is stable. The curves in Fig. 5(b) are the corresponding Allan plots and its vertical axis represents detectable optical density. It is clear to see,without locking, the blue curve is dominated by the drifts in all integration time range. For the locked laser, the improvement of long-term stability by 2-orders-of-magnitude has been demonstrated through the comparison of the Allan deviations at 100 s. A minimal detectable optical density of 9.4×10-6at 21 s is resulted, which is 40 times better than that without locking at the same observation time.

    4. Conclusion and perspectives

    The optical frequency of a fiber laser is stabilized and controlled by use of one external high finesse cavity based on the PDH and DVB locking. The locking performance has been comprehensively investigated. The analysis of the outloop noise by referring to a frequency comb shows that the instability can be restricted to 50 kHz,corresponding to a relative frequency uncertainty of 2.6×10-10, and does not exceed 110 kHz within 2.5 hours. The limitation of the current system is speculated from the electronic part,i.e., the drift of the locking offset. Although the generation mechanism of frequency of this method is similar to that of OFCs,both originating from the link between cavity FSR and RF frequencies,the frequency uncertainty is still much worse than that of OFCs,assumedly limited by the broadening cavity mode width and stability of the voltage reference for theffsrlocking. Finally,an absorption spectrum is measured based on this stabilized laser with balance detection scheme and the detection sensitivity can be down to 9.4×10-6at integration time of 21 s,which is much better than the conventional direct absorption spectrometer.This opens up for the construction of a compact,stable and robust laser source for precision spectroscopy.

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61875107,61905136, 61905134, 62175139), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0062), Opening Foundation of Key Laboratory of Laser & Infrared System (Shandong University).

    猜你喜歡
    趙剛
    院前急救標(biāo)準(zhǔn)化管理在急性心肌梗死患者中的應(yīng)用
    An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils
    分不走的財(cái)產(chǎn)
    不關(guān)機(jī)的愛
    疲憊
    趙剛作品
    疲憊
    疲憊
    短篇小說(2018年5期)2018-07-13 01:04:20
    心底最大的隱痛
    疲憊
    乱码一卡2卡4卡精品| 另类精品久久| 国产色爽女视频免费观看| 国产午夜精品一二区理论片| 波野结衣二区三区在线| 欧美亚洲 丝袜 人妻 在线| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频| 91精品国产九色| 97超碰精品成人国产| 国产av精品麻豆| 国产欧美日韩综合在线一区二区 | 亚洲va在线va天堂va国产| 国产精品蜜桃在线观看| 欧美+日韩+精品| 日日啪夜夜撸| 亚洲av福利一区| 日韩免费高清中文字幕av| 内地一区二区视频在线| 少妇高潮的动态图| 草草在线视频免费看| 校园人妻丝袜中文字幕| 午夜精品国产一区二区电影| 五月开心婷婷网| 黄片无遮挡物在线观看| 免费观看性生交大片5| 国产中年淑女户外野战色| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 欧美精品高潮呻吟av久久| 99久久精品一区二区三区| 不卡视频在线观看欧美| 欧美三级亚洲精品| 少妇丰满av| 亚洲欧洲日产国产| 最后的刺客免费高清国语| 秋霞在线观看毛片| 精品亚洲成国产av| 日韩欧美一区视频在线观看 | 精华霜和精华液先用哪个| 黑人高潮一二区| 九色成人免费人妻av| 久久国产亚洲av麻豆专区| av女优亚洲男人天堂| 精品99又大又爽又粗少妇毛片| 国产成人精品一,二区| 一个人看视频在线观看www免费| 熟女电影av网| 亚洲美女黄色视频免费看| 亚洲精品日韩av片在线观看| 日本色播在线视频| 美女国产视频在线观看| 免费av中文字幕在线| 少妇裸体淫交视频免费看高清| 最后的刺客免费高清国语| 欧美精品亚洲一区二区| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 人妻 亚洲 视频| 国产欧美亚洲国产| 一级毛片黄色毛片免费观看视频| 亚洲精品视频女| 久久精品久久久久久噜噜老黄| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 久久精品国产a三级三级三级| 免费看av在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜激情福利司机影院| 亚洲不卡免费看| 国产精品麻豆人妻色哟哟久久| 日本黄色片子视频| 热re99久久精品国产66热6| 一级av片app| 亚洲图色成人| 精品一品国产午夜福利视频| 不卡视频在线观看欧美| 国产成人精品久久久久久| 免费高清在线观看视频在线观看| 久久精品久久久久久噜噜老黄| 中文精品一卡2卡3卡4更新| 免费大片18禁| 亚洲高清免费不卡视频| 少妇人妻精品综合一区二区| 亚洲国产欧美日韩在线播放 | 国产片特级美女逼逼视频| 99热6这里只有精品| 狂野欧美激情性bbbbbb| 中文字幕免费在线视频6| 久久久久久人妻| 国产淫语在线视频| 欧美高清成人免费视频www| 国产精品.久久久| h视频一区二区三区| 大又大粗又爽又黄少妇毛片口| a级一级毛片免费在线观看| 成人免费观看视频高清| 91久久精品电影网| 亚洲欧美精品专区久久| 九九久久精品国产亚洲av麻豆| 久久午夜综合久久蜜桃| 久久6这里有精品| 国产精品久久久久久精品电影小说| 久热久热在线精品观看| 美女中出高潮动态图| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看 | 一级黄片播放器| 少妇精品久久久久久久| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 另类精品久久| av.在线天堂| 国产欧美另类精品又又久久亚洲欧美| 日韩一区二区三区影片| 久久国产精品大桥未久av | 91精品一卡2卡3卡4卡| 如日韩欧美国产精品一区二区三区 | 91精品一卡2卡3卡4卡| 成人黄色视频免费在线看| 黄色毛片三级朝国网站 | 国产视频首页在线观看| 久久久久久人妻| 熟女电影av网| 一级二级三级毛片免费看| 美女视频免费永久观看网站| 国产成人精品久久久久久| 久久久精品94久久精品| 99热这里只有精品一区| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 老女人水多毛片| 男女免费视频国产| 中国国产av一级| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 十分钟在线观看高清视频www | 女人久久www免费人成看片| 日产精品乱码卡一卡2卡三| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 男人和女人高潮做爰伦理| 丝袜在线中文字幕| 亚洲国产精品999| 女人久久www免费人成看片| 午夜福利在线观看免费完整高清在| 国产成人一区二区在线| 在线天堂最新版资源| 久久99精品国语久久久| 欧美日韩在线观看h| 亚洲欧美成人综合另类久久久| 一区二区av电影网| 精品午夜福利在线看| 国产黄片视频在线免费观看| 国产美女午夜福利| 观看免费一级毛片| 大陆偷拍与自拍| 午夜av观看不卡| 久久国产亚洲av麻豆专区| 国产高清三级在线| 美女主播在线视频| 欧美日韩av久久| 尾随美女入室| 国产一区亚洲一区在线观看| 91精品国产九色| 美女脱内裤让男人舔精品视频| 日韩av免费高清视频| 国产乱来视频区| 岛国毛片在线播放| 一级毛片电影观看| 十八禁高潮呻吟视频 | a级毛色黄片| 女人久久www免费人成看片| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频 | 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 亚洲精品,欧美精品| 亚洲成人手机| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 91久久精品电影网| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看 | 亚洲精品成人av观看孕妇| 国产成人freesex在线| 一区二区av电影网| 韩国高清视频一区二区三区| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 亚洲国产精品国产精品| 亚洲精品,欧美精品| 午夜91福利影院| 少妇的逼水好多| 人人妻人人澡人人看| 女性被躁到高潮视频| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| av国产精品久久久久影院| 日韩亚洲欧美综合| 亚洲精品国产av蜜桃| 久久久精品免费免费高清| 亚洲精华国产精华液的使用体验| 你懂的网址亚洲精品在线观看| 少妇人妻一区二区三区视频| 色哟哟·www| 性色avwww在线观看| 中文字幕免费在线视频6| 伊人久久精品亚洲午夜| 国产精品偷伦视频观看了| av一本久久久久| 最近2019中文字幕mv第一页| 美女中出高潮动态图| 久久99一区二区三区| 亚洲国产欧美在线一区| 婷婷色综合www| 国产成人精品一,二区| 免费观看av网站的网址| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 日韩三级伦理在线观看| 男人和女人高潮做爰伦理| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 夫妻午夜视频| 久久精品国产亚洲网站| 街头女战士在线观看网站| 天堂8中文在线网| 中文字幕亚洲精品专区| 两个人免费观看高清视频 | 美女xxoo啪啪120秒动态图| 国产综合精华液| 国产亚洲91精品色在线| 亚洲成人一二三区av| 国产成人精品福利久久| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| a 毛片基地| 人人妻人人看人人澡| 国产极品天堂在线| 亚洲av电影在线观看一区二区三区| 人妻系列 视频| 久久精品国产亚洲av涩爱| 极品人妻少妇av视频| 18禁在线无遮挡免费观看视频| 亚洲av在线观看美女高潮| 三级国产精品欧美在线观看| 一级片'在线观看视频| 水蜜桃什么品种好| 午夜免费观看性视频| 国内少妇人妻偷人精品xxx网站| 一级毛片 在线播放| 亚洲婷婷狠狠爱综合网| 一个人免费看片子| 成人毛片60女人毛片免费| 久久久国产一区二区| 国产精品久久久久久精品电影小说| av专区在线播放| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 国产精品蜜桃在线观看| 色94色欧美一区二区| 桃花免费在线播放| 高清欧美精品videossex| 中文字幕久久专区| 男女啪啪激烈高潮av片| 国产高清国产精品国产三级| 婷婷色av中文字幕| 亚洲激情五月婷婷啪啪| 插阴视频在线观看视频| 国产白丝娇喘喷水9色精品| 国产精品一区二区在线不卡| 久久这里有精品视频免费| 国产成人91sexporn| 日韩一区二区三区影片| 亚洲中文av在线| 亚洲伊人久久精品综合| 久久久久久久精品精品| 亚洲欧美中文字幕日韩二区| 99国产精品免费福利视频| 久久久久久伊人网av| 51国产日韩欧美| 久久鲁丝午夜福利片| 一级毛片 在线播放| 美女cb高潮喷水在线观看| 国产深夜福利视频在线观看| 精品酒店卫生间| 桃花免费在线播放| 精品一区二区三区视频在线| 国产精品人妻久久久久久| 成人黄色视频免费在线看| 亚洲成人手机| 成人综合一区亚洲| 这个男人来自地球电影免费观看 | 婷婷色综合大香蕉| 亚洲成人手机| 国产色婷婷99| 精品国产一区二区久久| 香蕉精品网在线| freevideosex欧美| 国产黄色视频一区二区在线观看| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| www.av在线官网国产| 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区 | 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 成人亚洲精品一区在线观看| 日韩av免费高清视频| 看十八女毛片水多多多| 日日撸夜夜添| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| av天堂久久9| videos熟女内射| 国产一区二区三区av在线| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 国产精品.久久久| 99热网站在线观看| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| 精品少妇久久久久久888优播| 中文字幕久久专区| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 国产男女内射视频| 99热这里只有是精品在线观看| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图 | 18禁动态无遮挡网站| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 男人狂女人下面高潮的视频| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 女的被弄到高潮叫床怎么办| 美女脱内裤让男人舔精品视频| 97在线视频观看| 国产爽快片一区二区三区| 欧美精品一区二区大全| 黄色怎么调成土黄色| 新久久久久国产一级毛片| 精品熟女少妇av免费看| 一区二区av电影网| 国产淫片久久久久久久久| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 亚洲精品中文字幕在线视频 | 有码 亚洲区| 色视频www国产| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| 亚洲精品亚洲一区二区| 天堂俺去俺来也www色官网| 久久久午夜欧美精品| 在线免费观看不下载黄p国产| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 亚洲精品乱久久久久久| 免费观看的影片在线观看| 国产精品人妻久久久久久| www.色视频.com| 国产精品国产三级国产专区5o| 国产欧美亚洲国产| 国产精品三级大全| 欧美成人午夜免费资源| 看十八女毛片水多多多| 欧美日韩综合久久久久久| 久久人人爽人人爽人人片va| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图 | 国产视频首页在线观看| 国产永久视频网站| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线 | 中文字幕久久专区| 日韩av免费高清视频| 久久这里有精品视频免费| 欧美国产精品一级二级三级 | 毛片一级片免费看久久久久| 插逼视频在线观看| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 亚洲精品,欧美精品| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| √禁漫天堂资源中文www| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 久久久国产欧美日韩av| 国产国拍精品亚洲av在线观看| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 精品午夜福利在线看| 精品视频人人做人人爽| 搡老乐熟女国产| 91精品一卡2卡3卡4卡| 久久综合国产亚洲精品| 精品酒店卫生间| 男男h啪啪无遮挡| 伦精品一区二区三区| 日本av手机在线免费观看| 99re6热这里在线精品视频| 嫩草影院新地址| 国产精品一区二区三区四区免费观看| 亚洲国产最新在线播放| 午夜福利在线观看免费完整高清在| 在线 av 中文字幕| freevideosex欧美| 极品教师在线视频| 精品久久久久久电影网| 国产成人精品一,二区| 少妇的逼好多水| 少妇被粗大的猛进出69影院 | 国产av码专区亚洲av| 午夜福利影视在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 国产淫片久久久久久久久| 久久久亚洲精品成人影院| 99热6这里只有精品| 欧美精品一区二区免费开放| 亚洲精品乱码久久久v下载方式| 亚洲av.av天堂| 午夜影院在线不卡| 一级毛片电影观看| 伊人久久精品亚洲午夜| 亚洲国产最新在线播放| 永久免费av网站大全| 少妇熟女欧美另类| 美女主播在线视频| 老女人水多毛片| 高清av免费在线| 亚洲精华国产精华液的使用体验| 少妇裸体淫交视频免费看高清| www.av在线官网国产| 亚洲国产最新在线播放| 欧美精品人与动牲交sv欧美| 性色av一级| 国产欧美日韩综合在线一区二区 | 久久国产乱子免费精品| 精品亚洲乱码少妇综合久久| 一边亲一边摸免费视频| 成人亚洲欧美一区二区av| 亚洲国产精品一区三区| 中文字幕久久专区| 久久久午夜欧美精品| 亚洲美女黄色视频免费看| 亚洲四区av| 久久女婷五月综合色啪小说| 青青草视频在线视频观看| 亚洲欧美一区二区三区国产| 国产亚洲av片在线观看秒播厂| 日本av免费视频播放| a 毛片基地| av天堂中文字幕网| 免费观看性生交大片5| 久久久欧美国产精品| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 精品国产一区二区久久| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| a 毛片基地| 久久99一区二区三区| 亚洲四区av| 熟女电影av网| 精品卡一卡二卡四卡免费| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 97在线视频观看| 99久久精品一区二区三区| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 成年av动漫网址| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 久久精品国产自在天天线| 一级av片app| 日产精品乱码卡一卡2卡三| 纯流量卡能插随身wifi吗| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃| 人妻系列 视频| 草草在线视频免费看| 国产淫语在线视频| 最近中文字幕高清免费大全6| 一级毛片黄色毛片免费观看视频| 99热全是精品| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄| 国产免费视频播放在线视频| 51国产日韩欧美| 日本免费在线观看一区| 最后的刺客免费高清国语| 国产在线免费精品| 国精品久久久久久国模美| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 视频区图区小说| 久久久久久久国产电影| 国产精品无大码| 另类精品久久| 一区在线观看完整版| 晚上一个人看的免费电影| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 国产极品天堂在线| 日本黄色片子视频| 欧美日韩视频精品一区| 婷婷色av中文字幕| 国产熟女午夜一区二区三区 | 日本欧美国产在线视频| 如日韩欧美国产精品一区二区三区 | 天美传媒精品一区二区| 欧美xxⅹ黑人| 亚洲国产欧美日韩在线播放 | 国产伦在线观看视频一区| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 中文在线观看免费www的网站| 在线观看国产h片| av福利片在线观看| 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频 | 精品少妇内射三级| 亚洲精品亚洲一区二区| av黄色大香蕉| 久久综合国产亚洲精品| 欧美xxⅹ黑人| 欧美日韩亚洲高清精品| 国产精品三级大全| .国产精品久久| 在线免费观看不下载黄p国产| 亚洲国产精品专区欧美| 日韩成人伦理影院| 99久久精品国产国产毛片| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 欧美日韩视频高清一区二区三区二| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久久久久久性| 亚洲自偷自拍三级| 国产欧美亚洲国产| 国产黄色视频一区二区在线观看| 少妇人妻久久综合中文| 人妻一区二区av| 在现免费观看毛片| 亚洲av中文av极速乱| 丁香六月天网| 观看美女的网站| 两个人的视频大全免费| 高清毛片免费看| 我要看日韩黄色一级片| 亚洲成人av在线免费| 国产亚洲一区二区精品| 欧美精品国产亚洲| 久久久久久久久久久免费av| 一级黄片播放器| 一级毛片 在线播放| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 国产一区二区在线观看av| 尾随美女入室| 一级毛片黄色毛片免费观看视频| 另类精品久久| 2018国产大陆天天弄谢| 免费av不卡在线播放| 丰满饥渴人妻一区二区三| 五月玫瑰六月丁香| 亚洲中文av在线| 人妻系列 视频| av又黄又爽大尺度在线免费看| 免费大片黄手机在线观看| 97精品久久久久久久久久精品| 女人精品久久久久毛片| 国产在线视频一区二区| 麻豆成人午夜福利视频| 九九久久精品国产亚洲av麻豆| 亚洲性久久影院| 男人爽女人下面视频在线观看| 亚洲怡红院男人天堂| 伦精品一区二区三区| 久久久久精品性色| 3wmmmm亚洲av在线观看| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 哪个播放器可以免费观看大片| av视频免费观看在线观看| 人妻人人澡人人爽人人| 国产精品成人在线| av专区在线播放| 最近手机中文字幕大全|