• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of collision energy on magnetically tuned 6Li–6Li Feshbach resonance

    2022-06-29 08:54:16RongZhang張蓉YongChangHan韓永昌ShuLinCong叢書林andMaksimShundalau
    Chinese Physics B 2022年6期
    關(guān)鍵詞:永昌叢書

    Rong Zhang(張蓉) Yong-Chang Han(韓永昌) Shu-Lin Cong(叢書林) and Maksim B Shundalau

    1Department of Physics,Dalian University of Technology,Dalian 116024,China

    2DUT-BSU Joint Institute,Dalian University of Technology,Dalian 116024,China

    3Physics Department,Belarusian State University,Minsk,Belarus

    Keywords: Feshbach resonance,collision energy, 6Li–6Li system

    1. Introduction

    Cold and ultracold atomic quantum gases play important roles and have broad application prospects in modern physics. Researches related to cold atomic systems include Bose–Einstein condensate,[1–4]superfluid,[5–7]atomic clocks,[8–10]topology,[11]etc.Compared to cold and ultracold atoms, molecules have some unique and superior properties. For the additional internal degrees of freedom of molecules, the interactions of molecules with external fields are more complicated. For instance, the interaction between molecules and extern electric fields can be induced by electric dipole moment.[12]Due to these properties,cold and ultracold molecules have many profound applications in different aspects,[13]including molecular dynamics control,[14,15]high resolution spectroscopy and quantum control,[16,17]tests of fundamental physical laws,[18]quantum simulations and quantum simulators,[19]chemical reactions.[20,21]Cold and ultracold molecules also play important roles in a great variety of fundamental researches, such as chemistry physics, precision measurements,few-body and many-body physics.[22–25]Thus,the investigations of the cold and ultracold molecules attract many researchers’attention.

    In order to produce cold and ultracold molecules, researchers have developed different kinds of experimental approaches which can be generally divided into two categories.One is the direct cooling method, including external field decelerations by electric, magnetic and optical fields,[26,27]buffer-gas cooling,[28]and collisional cooling,[29]etc.It is hard to produce ultracold molecules through the direct cooling method.[30]The other is the indirect cooling method. This method assembles two constituent ultracold atoms to form an ultracold molecule.[31]It can only be used in the situation that constituent atoms can be trapped and cooled to ultralow collision energies by using laser cooling.

    Feshbach resonance (FR), as an important phenomenon in the scattering processes of ultracold atoms and molecules,is widely applied to the molecular indirect cooling.[32]A Feshbach resonance occurs when the closed channel and the open channel degenerate energetically.[33]This results in a resonance enhancement in the cross section. Through ramping magnetic fields across Feshbach resonances, colliding atoms can be coupled to form molecules in specific weakly bound states.[34]The molecules formed in this way is Feshbach molecules. Deeply bound molecules can be obtained by state transfer techniques, such as microwave radiation and magnetic field ramping.[35]It is worth noticing that the present FR is a special case of rovibrational resonance in magnetic field. There are FRs in photo interaction,[36–38]electron scattering,[39]heavy particle scattering,[40]nuclear physics,[38]photonics,[41]nanoscale structures,[42]etc.

    One way to achieve Feshbach resonance is to adjust the energy difference between the open and the closed channels by tuning the magnetically field.[33]This corresponds to the magnetically tuned Feshbach resonance.The experimental approaches to detect magnetic Feshbach resonance including detection using inelastic collisional trap loss, elastic collisions and optical radiation.[43–45]The other way to achieve resonant coupling is optical Feshbach resonance.[46]Magneticlly tuned Feshbach resonance usually takes place in collisions of alkalimetal atomic systems, while the optical Feshbach resonance occurs in alkali-earth-metal atomic systems.[47,48]In magnetically tuned Feshbach resonance, interaction between atoms which is described by the scattering length,can be controlled by magnetic field. In optical Feshbach resonance, the resonance width can also be controlled. Based on Feshbach resonance,one can control the interaction strength between atoms and study the scattering characteristics.

    6Li is the lightest isotope among all alkali metals.Numerous works have been carried out on the Feshbach resonance related to6Li. Yeet al.attained a degenerate Fermi gas of6Li in contact with a Bose–Einstein condensate of84Sr.[49]Bartensteinet al.observed three wide s-wave Feshbach resonances at 834.1, 690.4, and 811.2 Gs in6Li–6Li system by utilizing radio-frequency spectroscopy.[50]The resonance widths of the three resonance positions are-300,-122.3,and-222.3 Gs,respectively. Streckeret al.verified a narrow resonance at 543.8 Gs in6Li–6Li collision complex and utilized it to convert the ultracold6Li atoms gas into ultracold molecules.[51]They chose this narrow resonance position for two reasons.First, it is convenient to sweep over a narrow magnetic field in experiment. Second, compared with broad resonances,the production of hot atomic pairs can be decreased in narrow resonances.[52,53]Schuncket al.reported three p-wave resonances of 159.14, 185.09, and 214.94 Gs of6Li–6Li complex via a joint experimental and theoretical study.[54]The scattering channels of these three resonances areaa,ab, andbb,respectively.[33]Another two s-wave resonances were also determined. One is 543.28 Gs, the other is within 822 Gs–834 Gs.

    Due to the properties of6Li Feshbach resonances,6Li has been applied in many researches. Weakly bound6Li2molecules were produced through three-body recombination near the 550 Gs Feshbach resonance with the number of the sample up to 3×105.[55]6Li atoms were evaporatively cooled below 600 nK near a Feshbach resonance and a BEC of up to 9×105molecules was observed.[56]Lompeet al.investigated the inelastic decay of the6Li atom–dimer collisions and observed that the resonant enhancement is correlated with the crossing between Efimov trimer states and the atom-dimer continuum.[57]Feshbach resonance was also used to make the mixture of the clouds of6Li and7Li atoms to reach the superfluid regime.[58]

    Among the above mentioned Feshbach resonance positions of6Li–6Li, we are interested in the s-wave resonance near 543 Gs and the p-wave resonance near 185 Gs. Recently,Liet al.investigated the three-atom recombination process around the narrow s-wave magnetic Feshbach resonance at 543.3 Gs,and it was found that the three-atom recombination follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions.[59]For the p-wave resonance near 185 Gs, there exists a doublet structure of 4 mGs, which is ascribed to the dipole–dipole interaction.[60]As reported in other cold atom systems,e.g.,85Rb–87Rb,the scattering characters are strongly dependent on the collision energy.[61]Thus,we are motivated to take these two specific resonances near 185 Gs (p wave) and 543 Gs (s wave) as examples, to study the influence of the collision energy on the6Li–6Li system.

    In order to study two-body scattering interaction, we need to solve a set of radial coupled-channel equations.There are several ways to solve such equations, including the multichannel quantum-defect theory(MQDT),the asymptotic bound state model (ABM), and the coupled-channel method (CC).[32,62]Among these theoretical treatments, the CC method has taken into account all the relevant channels and the interactions among them in the entire internuclear separation range. Thus, in this work, we use CC method to calculate the cross sections of the resonance positions at different collision energies from 1 μK·kBto 100 μK·kB. The influence of collision energy on the resonance positions,resonance widths, the amplitudes of the total cross sections, as well as the splitting width of the p-wave resonance are investigated.

    The paper is organized as follows.In Section 2,we briefly introduce the theory.In Section 3,we discuss the effect of collision energy on the s- and p-wave Feshbach resonances for the6Li–6Li collision. In Section 4, the conclusions are summarized.

    2. Theoretical method

    The Hamiltonian of two colliding6Li atoms in the presence of external magnetic fieldBis given by

    whereBis the magnetic field which is alongzaxis of the space-fixed coordinate frame.γeandγLiare the electronic and nuclear gyromagnetic ratios of the6Li atom respectively. ?sand ?iare the electronic and nuclear spin angular momenta,respectively,and the subscripts 1 and 2 denote the indexes of the two atoms.

    whereVS(R)is the adiabatic interaction potential of the collision complex in the total spin state.S=s1+s2(I=i1+i2)is the total electronic(nuclear)spin of the6Li2molecule andMS(MI) is its projection onzaxis (the direction of the magnetic field). In the6Li2system,s1=s2=1/2 andS=0, 1,corresponding to the singlet and triplet electronic states, respectively.

    The matrix elements of operator ?V(R)expressed in fully uncoupled basis is shown as

    The first term ofλ(R) results in the magnetic dipole–dipole interaction and the second term is the second order spin–orbit contribution, which is much smaller than the first term and well ignored in the present study. For a given partial wavel,the magnetic dipole–dipole interaction can split the resonance position according to different|ml|.

    The matrix element of spin–spin interaction can be expanded in the fully uncoupled basis

    The coupled-channel equations can be obtained by substituting Eq.(1)into the time-independent Schr¨odinger equation.The coupled-channel equations can be solved through using the log-derivative method.[32]The scattering channel (α,l),withαdenoting the atomic basis|f1mf1,f2mf2〉, is related to the channel basis which can be obtained by diagonalizing the hyperfine and Zeeman Hamiltonian. The open channel threshold energy is set to be 0. Thus the total energy of the collision complex equals to collision energy ˉh2k2/2μ. The log-derivative matrixY(R) is propagated from the minimum(Rmin)to the maximum(Rmax)ofR. TheKmatrix is obtained fromY(Rmax)

    The scattering cross section calculated in this paper is elastic scattering cross section. The elastic scattering cross section of a specific scattering channel energyEαis expressed as

    3. Results and discussion

    6Li–6Li is a homonuclear Fermion system,so we need to consider the exchange antisymmetry. The electronic and nuclear spins of6Li are 1/2 and 1, respectively. High partial waves are neglected because of their extremely tiny contributions compared to s and p waves. And there is no coupling between s- and p-wave resonances because the external field used is only magnetic field. We consider the dipole–dipole interaction because it has an effect on p-wave resonance splitting. The Zeeman state energies of the6Li–6Li complex for the s and p waves are presented in Figs.1(a)and 1(b),respectively.

    Fig. 1. Zeeman state energies of (a) s wave and (b) p wave for the 6Li–6Li complex.

    The adiabatic singlet and triplet interaction potentials are obtained from Ref.[64]and are shown in Fig.2. We first calculated the scattering length and resonance positions of6Li2at the collision energy of 1 μK·kB. For s wave, the FR position we calculated is 543.152 Gs and the resonance width is 0.085 Gs. For p wave,the resonance positions are 185.109 Gs(|ml|=0)and 185.113 Gs(|ml|=1),respectively. These theoretical calculations are in good agreement with the previous experimental observations,as shown in Table 1.

    Table 1. The FR positions B0 of CC calculations and experiments.

    Fig.2. The singlet and triplet adiabatic interaction potentials for the 6Li–6Li collision complex. The units,Rvdw and Evdw,correspond to 4.7840896 Bohr and 1594.194158 cm-1,respectively.

    Fig.3. The singlet potential including the centrifugal potentials of(a)s and p waves, (b) s and d waves. Inset: Partial enlarged details of the potential barrier.

    The effective singlet potential including the centrifugal potentials ?l2/2μR2of the s and p waves are shown in Fig.3(a).The inset shows the potential barrier of p wave. For comparison, the effective singlet potentials for s and d waves are shown in Fig.3(b)with the inset plot shows the potential barrier of d wave. The potential barriers of p and d waves are 7970.799 μK·kBand 41226.177 μK·kB,respectively. On one hand, the potential barrier of the d wave is much higher than that of the p wave. Thus,the influence of d wave on the FR is less significant than that of p wave. On the other hand,the potential barrier height of d wave is much larger than the upper limit of the collision energy we concerned,i.e., 100 μK·kB.Thus,d wave has almost no contribution to the total scattering section.Figure 4 is the sum of the scattering sections of different partial waves at 100 μK·kB. The solid black curve is the sum of the scattering sections of s and p waves. The dashed red curve is the sum of the scattering sections of s, p, and d waves. We observe that these two curves are almost on top of each other. This further indicates that the effect of d wave on the total scattering section can be ignored. Consequently, we focus on the scattering characters of s and p waves.

    Fig. 4. The sum of cross sections of different partial waves at 100 μK·kB.The solid black curve is the sum of the cross sections of s and p waves. The dashed red curve is the sum of the cross sections of s,p,and d waves.

    The cross sections near 543 Gs of s wave and 185 Gs of p wave (ml=0, +1,-1) at three different collision energiesE=1,50,and 100 μK·kBare plotted in Fig.5. Firstly,with the increase of the collision energy, the peak locations of the above four FRs shift towards the higher magnetic field. It is because at the higher collision energy,higher magnetic field is required to increase the energy difference between the scattering and closed channels. Additionally,the shifting amplitudes for the FRs of s wave and p wave are different. For the collision energy increasing fromE=1 μK·kBto 100 μK·kB,the former varies from 543.152 Gs to 543.895 Gs with an increase of~0.75 Gs;while the latter,taking the FR of p wave(ml=0)for example, shifts from 185.109 Gs to 185.953 Gs, which is a relatively larger shift of~0.85 Gs. This indicates that with the variation of collision energy, the change of energy difference between the scattering and closed channels related to the s-wave FR of 543 Gs is more sensitive to the variation of the magnetic field than that of p-wave FR of 185 Gs.

    Secondly, with the increase of the collision energy, the peak magnitude varies.For FR of s wave near 543 Gs,the peak magnitude decreases dramatically. As seen in Fig. 5(a), the maximum cross section atE=100 μK·kBis smaller than that atE=1 μK·kBby over 2 orders.On the contrary,for FRs of p wave(ml=0,+1,-1),the peak magnitude atT=100 μK·kBis much higher than that atT=1 μK·kB. Moreover,the variation tend of the peak magnitude with the three collision energies is different among the three FRs of p wave(ml=0, +1,-1).On one hand,the maximal cross section for FR of p wave(ml=0) first decreases and then increases whenEincreases from 1 μK·kBto 100 μK·kB, as shown in Fig. 5(b). On the other hand,the peak magnitude for FRs of p wave(ml=+1,-1),first increases and then decreases,as shown in Figs.5(c)and 5(d). This indicates that the variation of collision energy may also affect the coupling strength between the open and closed channels.

    We further investigated the variation of the scattering cross sections for the four FRs by varying the collision energy fromE=1 μK·kBto 100 μK·kBwith the interval of 1 μK·kB, and for each given collision energy, the magnetic fieldBis scanned with the interval of 0.001 Gs. As shown in Fig. 6(a), the resonance width of s-wave FR near 543 Gs,which we follow the same definition as Ref.[33],is 0.085 Gs.It does not change with the collision energy. Consistent with the above findings in Fig.5,with the increase of the collision energy,the cross section of the s-wave FR gradually vanishes at relatively higher magnetic field,indicating that the coupling strength between the open channel and the closed channel of this s-wave resonance declines. For the FRs of p wave, although there is no proper definition of the resonance width of p wave,it can be seen from the cross sections in Figs.6(b)–6(d),that the peak magnitude and width for each resonance both increase with the collision energy. Thus, we can conclude that the increasing collision energy enhances the coupling between the open and closed channels for the FRs of the p wave. Such different behaviors between the s-and p-wave FRs are because that there is a centrifugal potential barrier for the p-wave collision, while there is no barrier for the s-wave collision. The p-wave FR is more sensitive to the increase of the collision energy than the s-wave FR,since to achieve the p-wave FR,the open-channel wavefunction requires more collision energy to overcome(or tunneling through)the barrier before it resonates with the close channels.

    Although the location, the magnitude and the width of the peak of the cross section varies with the collision energy,the doublet structure for the p-wave FR remains the same. In Fig.7,we present the cross sections of p-wave FR at 1 μK·kBand 100 μK·kB,respectively. There is always a 4-mGs splitting between the|ml| = 0 and 1 resonance positions. The splitting is caused by the dipole–dipole interaction, which is denoted in Eq. (7). When magnetic field increases, the shift amplitude of the resonance peak of|ml|=0 equals to that of|ml|=1. And this causes the constant splitting width of pwave resonance.

    Fig. 5. The cross sections near 543 Gs of s wave and 185 Gs of p wave (ml =0, +1, -1) at three different collision energies E =1, 50 and 100 μK·kB.Panels (a)–(d) present the modulation of collision energy on s- and p-waves (ml =0, +1, -1) Feshbach resonances, respectively. Inset: Partial enlarged details of the cross sections.

    Fig.6. The cross sections near 543 G(s wave)and 185 Gs(p wave,ml =0,+1,-1)with the variations of magnetic field and collision energy.

    Fig. 7. The cross sections of p-wave FR near 185 Gs (|ml|=0, 1) at (a)1 μK·kB and(b)100 μK·kB.

    Fig. 8. The thermally averaged elastic rate coefficient 〈νσ〉 varies with the magnetic field B in the vicinity of 543 Gs(a)and 185 Gs(b),respectively,for T =10,15,20,25 μK. The dash curve is the envelope of the corresponding〈νσ〉curve.

    In experiment, the empirical resonance positions are not measured at a fixed collision energy but rather at a certain temperature, and hence the measured resonance positions represent some sort of average over the different resonant positions at different collision energies. Based on the above cross section in the collision energy range[1,100]μK·kB,we can obtain the integral of Eq.(14),i.e.,the thermally averaged elastic rate coefficient〈νσ〉, for a relatively smaller temperature range from 10 μK to 25 μK. The variation behavior of〈νσ〉withBin the vicinities of 543 Gs and 185 Gs are shown in Figs.8(a)and 8(b),respectively,for four specific temperatures of 10,15,20,and 25 μK.There are complicated substructures for each curve in Fig. 8, and we also note that although the tiny 4 mGs doublet structure is distinguishable in the cross section, it does not present in the thermally averaged elastic rate coefficient〈νσ〉. This is because the interval for the sampled collision energy(δE=1 μK·kB)is relatively large compared to either the narrower width of the cross section or the tiny doublet structure. Thus, to obtain an accurate integral of Eq.(14),i.e.,to keep the high resolution or finesse for such a small doublet structure in the thermally averaged elastic rate coefficient, one has to use even denser grids not only for the magnetic field but also for the collision energy,which is quite computationally consuming. Since the doublet structure has already been represented and discussed in the cross section,we now qualitatively discuss the variation of the rate coefficient with temperature. It can be expected that with increase of the grid densities of the magnetic field and the collision energy, those substructures and peaks in the〈νσ〉curve may merge and show a primary distribution.[61]Thus, to focus on the whole variation trend of the rate coefficient,we plot an additional envelope for each〈νσ〉curve by artificially connecting the major peaks with the dashed curve. Generally, with increase of the temperature, the amplitude of the envelope of〈νσ〉gradually decreases,however its peak position does not vary obviously. This is because that with the increase of the temperature, the contribution from the high collision energy component increases.

    4. Conclusion

    We have investigated theoretically the effect of collision energy on magnetically tuned Feshbach resonance (FR) for the ultracold6Li–6Li system. Based on the coupled-channel(CC) method, we obtain the s- and p-wave cross sections for the collision energy ranging from 1 μK·kBto 100 μK·kB.The FR positions at 1 μK·kBare 543.152 Gs for s wave and 185.109 Gs,185.113 Gs for p wave(|ml|=0,1),respectively.The resonance width of s wave is 0.085 Gs and it does not change with collision energy. There exists a 4 mGs dipolar splitting between the|ml|=0 and 1 resonances of p wave.

    With the increase of collision energy, the resonance positions near 543 Gs(s wave)and 185 Gs(p wave)are shifted to higher magnetic fields. The feature of s-wave FR gradually vanishes, while the feature of p-wave FR become obvious as the collision energy increases. The dipolar splitting of p wave does not change with the variation of collision energy,indicating that the shift amplitude of the|ml|=0 resonance equals to that of|ml|=1.

    Acknowledgments

    The project was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306503), the National Natural Science Foundation of China (Grant Nos. 21873016 and 12174044),the International Cooperation Fund Project of DBJI (Grant No. ICR2105), and the Fundamental Research Funds for the Central Universities(Grant No.DUT21LK08).

    猜你喜歡
    永昌叢書
    永昌小曲發(fā)展現(xiàn)狀調(diào)研報告
    “人梯書庫”叢書
    少年漫畫(藝術(shù)創(chuàng)想)(2020年6期)2020-08-10 04:32:58
    少年漫畫(藝術(shù)創(chuàng)想)(2020年4期)2020-07-28 15:43:36
    少年漫畫(藝術(shù)創(chuàng)想)(2020年1期)2020-07-24 12:16:13
    讀友·少年文學(xué)(清雅版)(2020年1期)2020-03-23 06:18:14
    書畫作品鑒賞
    書畫作品賞析
    國畫作品賞析
    《社會組織培訓(xùn)教材叢書》簡介
    大社會(2016年5期)2016-05-04 03:42:03

    Chinese Physics B2022年6期

    Chinese Physics B的其它文章
    Switchable terahertz polarization converter based on VO2 metamaterial
    Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schr¨odinger equation
    Neutron activation cross section data library
    Multi-phase field simulation of competitive grain growth for directional solidification
    A novel similarity measure for mining missing links in long-path networks
    Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
    三级经典国产精品| 91午夜精品亚洲一区二区三区| 久久久久久久大尺度免费视频| 日本黄色片子视频| 婷婷色av中文字幕| av在线老鸭窝| 在线观看免费视频网站a站| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟人妻熟丝袜美| 又爽又黄a免费视频| 免费黄频网站在线观看国产| 国产色爽女视频免费观看| 久热这里只有精品99| 青春草视频在线免费观看| av天堂中文字幕网| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 直男gayav资源| 欧美+日韩+精品| 亚洲激情五月婷婷啪啪| 久久人人爽人人爽人人片va| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 成人亚洲精品一区在线观看 | av福利片在线观看| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 中文字幕亚洲精品专区| 伦理电影大哥的女人| 亚洲美女黄色视频免费看| 黑人猛操日本美女一级片| videossex国产| 在线 av 中文字幕| .国产精品久久| 国产欧美日韩一区二区三区在线 | 亚洲av在线观看美女高潮| 欧美 日韩 精品 国产| 欧美丝袜亚洲另类| 国产亚洲精品久久久com| 少妇猛男粗大的猛烈进出视频| 午夜激情久久久久久久| 久久久久精品久久久久真实原创| 国产精品无大码| 男的添女的下面高潮视频| 夫妻性生交免费视频一级片| 久久婷婷青草| 在线观看一区二区三区激情| 夜夜爽夜夜爽视频| 一级毛片aaaaaa免费看小| 国产精品人妻久久久久久| 国产探花极品一区二区| av福利片在线观看| 久久久亚洲精品成人影院| 深夜a级毛片| 日本vs欧美在线观看视频 | 亚洲伊人久久精品综合| 久久午夜福利片| 中文字幕免费在线视频6| 在线精品无人区一区二区三 | 久久久久久人妻| 欧美日韩精品成人综合77777| 久久人人爽av亚洲精品天堂 | 搡女人真爽免费视频火全软件| 国精品久久久久久国模美| 国产精品伦人一区二区| 亚洲国产日韩一区二区| 亚洲怡红院男人天堂| 美女福利国产在线 | 免费高清在线观看视频在线观看| 国产综合精华液| 青春草国产在线视频| 人人妻人人看人人澡| 国产永久视频网站| 在线观看国产h片| 亚洲人与动物交配视频| 联通29元200g的流量卡| 婷婷色麻豆天堂久久| 免费av中文字幕在线| 国产精品一区www在线观看| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 欧美亚洲 丝袜 人妻 在线| 亚洲精品亚洲一区二区| 国产av精品麻豆| 精品酒店卫生间| 一个人看视频在线观看www免费| 国产精品一区二区三区四区免费观看| 99精国产麻豆久久婷婷| 中文天堂在线官网| 精华霜和精华液先用哪个| 中国三级夫妇交换| 亚洲精品国产成人久久av| av国产精品久久久久影院| 最近手机中文字幕大全| 韩国av在线不卡| 又爽又黄a免费视频| 日韩国内少妇激情av| 国产亚洲5aaaaa淫片| 伦理电影免费视频| 成人二区视频| 一个人看的www免费观看视频| 免费人妻精品一区二区三区视频| 国产黄频视频在线观看| 97在线人人人人妻| av黄色大香蕉| 青春草视频在线免费观看| 男人添女人高潮全过程视频| 1000部很黄的大片| 91久久精品国产一区二区三区| 亚洲精品日本国产第一区| 国产色婷婷99| 大话2 男鬼变身卡| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 国产在线视频一区二区| 亚洲天堂av无毛| 久久青草综合色| 成年av动漫网址| 大陆偷拍与自拍| 日韩三级伦理在线观看| 青春草国产在线视频| 内射极品少妇av片p| 在线观看一区二区三区| 毛片女人毛片| 中文资源天堂在线| 精品久久久久久电影网| 国产 精品1| 免费看不卡的av| 国产精品无大码| 少妇猛男粗大的猛烈进出视频| 新久久久久国产一级毛片| av.在线天堂| xxx大片免费视频| 人妻少妇偷人精品九色| 久久久欧美国产精品| 街头女战士在线观看网站| 亚洲色图综合在线观看| 观看免费一级毛片| 成人毛片a级毛片在线播放| 亚洲国产欧美人成| 欧美成人精品欧美一级黄| 欧美激情极品国产一区二区三区 | 日本欧美国产在线视频| 免费看不卡的av| 亚洲美女黄色视频免费看| 国产黄片视频在线免费观看| 在线观看人妻少妇| 日产精品乱码卡一卡2卡三| 中国国产av一级| 亚洲精品中文字幕在线视频 | 欧美xxⅹ黑人| 欧美性感艳星| tube8黄色片| 国产精品一区二区性色av| 麻豆国产97在线/欧美| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 午夜视频国产福利| 精品国产三级普通话版| 最近2019中文字幕mv第一页| 久久国产精品大桥未久av | 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 亚洲精品色激情综合| 水蜜桃什么品种好| 黄色日韩在线| 亚洲av电影在线观看一区二区三区| 国产欧美日韩一区二区三区在线 | 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 女性被躁到高潮视频| 小蜜桃在线观看免费完整版高清| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 永久网站在线| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 亚洲精品中文字幕在线视频 | 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 精品人妻熟女av久视频| 国产毛片在线视频| 日韩av免费高清视频| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 男女国产视频网站| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 中国国产av一级| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 久久6这里有精品| 观看免费一级毛片| 国产 一区精品| 成人无遮挡网站| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 99久国产av精品国产电影| 赤兔流量卡办理| 黄片wwwwww| 午夜福利影视在线免费观看| 欧美+日韩+精品| 日本vs欧美在线观看视频 | 午夜免费男女啪啪视频观看| 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 永久网站在线| 欧美一区二区亚洲| 直男gayav资源| 午夜福利网站1000一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 丝瓜视频免费看黄片| 日本黄大片高清| 亚洲国产精品一区三区| 美女中出高潮动态图| 欧美精品一区二区免费开放| 精品久久久精品久久久| 内射极品少妇av片p| 成人国产av品久久久| 欧美另类一区| 又爽又黄a免费视频| 日韩一本色道免费dvd| 人人妻人人添人人爽欧美一区卜 | 亚洲av成人精品一二三区| 五月天丁香电影| 成年女人在线观看亚洲视频| 夫妻性生交免费视频一级片| 深夜a级毛片| 免费av中文字幕在线| 少妇人妻精品综合一区二区| 人妻 亚洲 视频| 精品国产露脸久久av麻豆| 日韩中字成人| 大片电影免费在线观看免费| 日本av手机在线免费观看| 最近的中文字幕免费完整| av线在线观看网站| 日本黄色日本黄色录像| 深夜a级毛片| 一级毛片久久久久久久久女| 亚洲精品第二区| a级一级毛片免费在线观看| 人妻夜夜爽99麻豆av| xxx大片免费视频| 五月天丁香电影| 黄色欧美视频在线观看| 日本免费在线观看一区| 成人国产av品久久久| 熟女电影av网| av一本久久久久| 成年av动漫网址| 国内少妇人妻偷人精品xxx网站| 国产免费视频播放在线视频| 国产av一区二区精品久久 | 欧美3d第一页| 欧美区成人在线视频| 舔av片在线| 老女人水多毛片| 亚洲欧美日韩无卡精品| 最近的中文字幕免费完整| 欧美区成人在线视频| 天堂8中文在线网| 日本欧美视频一区| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 99久国产av精品国产电影| 内地一区二区视频在线| 久久久久久久久久人人人人人人| 久久久久久伊人网av| 亚洲综合精品二区| 免费少妇av软件| 成人毛片a级毛片在线播放| 亚洲欧洲国产日韩| 天堂8中文在线网| 晚上一个人看的免费电影| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 午夜福利在线观看免费完整高清在| 中文字幕精品免费在线观看视频 | 日本欧美视频一区| 五月伊人婷婷丁香| 婷婷色av中文字幕| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 美女脱内裤让男人舔精品视频| 久久97久久精品| 国产伦理片在线播放av一区| 日韩强制内射视频| 久久国产精品男人的天堂亚洲 | 人人妻人人看人人澡| 在线观看三级黄色| 亚洲国产毛片av蜜桃av| 我的女老师完整版在线观看| 国产乱人偷精品视频| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 丰满人妻一区二区三区视频av| 干丝袜人妻中文字幕| 在线 av 中文字幕| 激情五月婷婷亚洲| 天天躁日日操中文字幕| 热99国产精品久久久久久7| 狂野欧美白嫩少妇大欣赏| 午夜福利影视在线免费观看| 亚洲综合精品二区| 久久精品国产亚洲av天美| 黄片无遮挡物在线观看| 午夜福利影视在线免费观看| www.av在线官网国产| 成年美女黄网站色视频大全免费 | 国产在线视频一区二区| 精品国产一区二区三区久久久樱花 | 一区二区三区免费毛片| 人妻系列 视频| 成年女人在线观看亚洲视频| 色5月婷婷丁香| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| av福利片在线观看| 男女无遮挡免费网站观看| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 亚洲av福利一区| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 2018国产大陆天天弄谢| 超碰97精品在线观看| 中国美白少妇内射xxxbb| 国产精品三级大全| 99久久人妻综合| 久久精品人妻少妇| 下体分泌物呈黄色| 国产男女超爽视频在线观看| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 久久久久久久久大av| 人妻系列 视频| 亚洲精品日韩在线中文字幕| 亚洲综合精品二区| 伦理电影大哥的女人| 亚洲aⅴ乱码一区二区在线播放| h视频一区二区三区| 亚洲国产av新网站| av在线app专区| 街头女战士在线观看网站| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 18禁在线播放成人免费| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 永久网站在线| 成人无遮挡网站| 老司机影院毛片| 噜噜噜噜噜久久久久久91| 精品亚洲成a人片在线观看 | 成人漫画全彩无遮挡| 精品亚洲成a人片在线观看 | 国产又色又爽无遮挡免| 丰满迷人的少妇在线观看| 青春草视频在线免费观看| 国产真实伦视频高清在线观看| 综合色丁香网| 99久久人妻综合| 日本av免费视频播放| 少妇的逼好多水| 国产精品一区二区三区四区免费观看| 麻豆精品久久久久久蜜桃| 久久 成人 亚洲| 久久亚洲国产成人精品v| 91精品一卡2卡3卡4卡| av在线观看视频网站免费| 91精品伊人久久大香线蕉| 亚洲最大成人中文| 国产精品三级大全| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 99久久人妻综合| 国产精品福利在线免费观看| 国产精品久久久久成人av| 亚洲成人av在线免费| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 久久ye,这里只有精品| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级专区第一集| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 99热全是精品| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 久久久成人免费电影| 插阴视频在线观看视频| 一个人看的www免费观看视频| 能在线免费看毛片的网站| 高清视频免费观看一区二区| 成人国产av品久久久| 丰满少妇做爰视频| 亚洲最大成人中文| 精品久久久久久久末码| 麻豆成人av视频| 欧美国产精品一级二级三级 | av黄色大香蕉| 亚洲精品,欧美精品| 欧美xxxx黑人xx丫x性爽| 美女脱内裤让男人舔精品视频| 天美传媒精品一区二区| 欧美老熟妇乱子伦牲交| 久久久久久久精品精品| 久久久欧美国产精品| 我的女老师完整版在线观看| 国产色婷婷99| 亚洲av.av天堂| tube8黄色片| 日本色播在线视频| 99热6这里只有精品| 久久99精品国语久久久| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 日韩亚洲欧美综合| 久久这里有精品视频免费| 国产探花极品一区二区| a 毛片基地| 久久av网站| 最新中文字幕久久久久| 国产黄片视频在线免费观看| 在线亚洲精品国产二区图片欧美 | 熟女av电影| 男人舔奶头视频| 亚洲色图综合在线观看| 亚洲国产精品国产精品| 1000部很黄的大片| 偷拍熟女少妇极品色| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 亚洲图色成人| 亚洲精品日韩av片在线观看| 丝袜喷水一区| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站 | 又粗又硬又长又爽又黄的视频| 亚洲美女搞黄在线观看| 1000部很黄的大片| 在线免费观看不下载黄p国产| 亚洲av日韩在线播放| 国产亚洲最大av| 99热6这里只有精品| 久久毛片免费看一区二区三区| 亚洲怡红院男人天堂| 国产成人a∨麻豆精品| 日韩电影二区| 精品国产乱码久久久久久小说| 久久久久性生活片| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 美女高潮的动态| 午夜福利高清视频| 亚洲,一卡二卡三卡| 一级毛片黄色毛片免费观看视频| 大片免费播放器 马上看| 永久网站在线| 在现免费观看毛片| 夫妻性生交免费视频一级片| 久久久久精品性色| 亚洲第一区二区三区不卡| 水蜜桃什么品种好| 男的添女的下面高潮视频| 亚洲国产色片| 中文欧美无线码| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 青春草国产在线视频| 亚洲精品视频女| 香蕉精品网在线| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 日本与韩国留学比较| 国产美女午夜福利| 人人妻人人澡人人爽人人夜夜| 亚洲,一卡二卡三卡| 国产高清三级在线| 成人影院久久| 久久久精品免费免费高清| 综合色丁香网| 久热这里只有精品99| 日韩成人av中文字幕在线观看| 亚洲色图av天堂| 久久97久久精品| 寂寞人妻少妇视频99o| 2021少妇久久久久久久久久久| 国产极品天堂在线| 熟女人妻精品中文字幕| 日韩伦理黄色片| 三级国产精品片| 色婷婷av一区二区三区视频| 高清毛片免费看| 又大又黄又爽视频免费| 亚洲丝袜综合中文字幕| 各种免费的搞黄视频| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| a级一级毛片免费在线观看| 国产黄片视频在线免费观看| 九草在线视频观看| 国产在视频线精品| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 国产av码专区亚洲av| 久久ye,这里只有精品| 狂野欧美激情性bbbbbb| 午夜激情福利司机影院| 国产精品.久久久| 国产一区亚洲一区在线观看| 天堂俺去俺来也www色官网| 黄色配什么色好看| 91久久精品国产一区二区三区| 国产无遮挡羞羞视频在线观看| 三级经典国产精品| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | 午夜免费鲁丝| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 欧美激情极品国产一区二区三区 | 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 夜夜骑夜夜射夜夜干| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄| 亚洲av不卡在线观看| 亚洲av福利一区| 亚洲第一av免费看| 色吧在线观看| 国产av一区二区精品久久 | 天堂俺去俺来也www色官网| 七月丁香在线播放| 九九爱精品视频在线观看| av免费观看日本| 夜夜爽夜夜爽视频| 大片电影免费在线观看免费| 直男gayav资源| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 久久国产亚洲av麻豆专区| 国产精品.久久久| 亚洲精品国产av成人精品| 中文欧美无线码| 国产亚洲一区二区精品| 街头女战士在线观看网站| 国产高清三级在线| 亚洲国产欧美在线一区| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| 欧美激情极品国产一区二区三区 | videos熟女内射| 日日撸夜夜添| 97在线人人人人妻| 99九九线精品视频在线观看视频| 99久久精品一区二区三区| 久久午夜福利片| 99视频精品全部免费 在线| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 国产伦精品一区二区三区四那| 久久综合国产亚洲精品| 女性生殖器流出的白浆| 久久国内精品自在自线图片| av免费观看日本| 欧美日韩亚洲高清精品| 我的女老师完整版在线观看| 国产在线视频一区二区| 国产视频首页在线观看| 新久久久久国产一级毛片| 最黄视频免费看| 交换朋友夫妻互换小说| 一本色道久久久久久精品综合| 嘟嘟电影网在线观看| 亚洲一区二区三区欧美精品| 97热精品久久久久久| 久久久久久久久久久免费av| 在线观看国产h片| 免费少妇av软件| 最新中文字幕久久久久| 欧美zozozo另类| 黄色一级大片看看| 男女国产视频网站| 伊人久久国产一区二区| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 这个男人来自地球电影免费观看 | 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 精品午夜福利在线看|