• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coarse fragment content influences estimates of soil C and N stocks of alpine grassland on the northeastern edge of Qinghai-Tibetan Plateau,China

    2022-06-21 12:41:08YuQinShuHuaYiJianJunChen
    Sciences in Cold and Arid Regions 2022年2期

    Yu Qin ,ShuHua Yi ,JianJun Chen

    1.State Key Laboratory of Cryospheric Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,No.320 West Donggang Road,Lanzhou,Gansu 730000,China

    2.Institute of Fragile Ecosystem and Environment,Nantong University,No.999 Tongjing Road,Nantong,Jiangsu 226007,China

    3.Guangxi Key Laboratory of Spatial Information and Geomatics,No.12 Jiangan Road,Guilin,Guangxi 541004,China

    ABSTRACT Soil organic carbon (SOC) and total nitrogen (TN) stocks are usually calculated with samples collected using core sam‐plers.Although the calculation considers the effects of gravel in soil samples,other coarse fragments such as stones or boulders in soil may not be collected due to the restricted diameter of core samplers.This would cause an incorrect estima‐tion of soil bulk density and ultimately SOC and TN stocks.In this study,we compared the relative volume of coarse frag‐ment and bulk density of fine earth determined by large size soil sampler with three core samplers.We also investigated the uncertainties in estimation of SOC and TN stocks caused by this soil sampler procedure in three typical alpine grass‐lands on the northeast edge of the Qinghai-Tibetan Plateau (QTP),China.Results show that (1) the relative volume and size of coarse fragment collected by large size sampler were significantly (p <0.05) higher and larger than those of core samplers,while bulk density of fine earth,SOC and TN stocks show opposite patterns in all grassland types;(2)SOC and TN stocks determined by core samplers were 17%?45%and 18%?46%higher than larger size sampler for three typical al‐pine grasslands;and (3) bulk density of fine earth,SOC and TN stocks exponentially decreased with the increasing of coarse fragment content.We concluded that core sampler methods significantly underestimated the volume occupied by coarse fragment but overestimated SOC and TN stocks.Thus,corrections should be made to the results from core sam‐plers using large size samplers on regions with gravel and stone-rich soils in future studies.

    Keywords:coarse fragment;sampler size;soil C;alpine grassland;the Qinghai-Tibetan Plateau

    1 Introduction

    The global soil carbon(C)pool(2,500 Gt)has been estimated to be approximately 3.3 times the size of the atmospheric pool (760 Gt) and 4.5 times the size of the biotic pool (560 Gt) (Lal,2004).Thus,even a minor change in soil organic carbon (SOC) stock may greatly influence atmospheric CO2concentration(Johnstonet al.,2004).It is critical to improve the ac‐curacy in estimating SOC and TN stocks in terrestrial ecosystems (Schimel,1995;Houghton,2007;Hei‐mann and Reichstein,2008).However,accurate esti‐mation of SOC and TN stocks are associated with large uncertainties because they stem from complex interactions between the variables involved in SOC and TN stocks (i.e.,the heterogeneity of SOC and TN concentration,bulk density of fine earth,sampling depth and coarse fragment content) (Eswaranet al.,1993).Therefore,it is crucial to determine soil vol‐ume occupied by coarse fragment and bulk density(Batjes,1996;Liski and Westman,1997;Goidtset al.,2009;Schrumpfet al.,2011).

    Determining the relative volume occupied by coarse fragment in the soil is challenging but impor‐tant.Three primary methods have been applied for es‐timating the volume of gravel and stone in the soil,in‐cluding rod penetration (Viro,1952),ground-penetrat‐ing radar (Sucreet al.,2011) and digging soil pits.Each method has its advantages and disadvantages.However,to convert soil nutrition concentration into amounts per soil volume,digging soil pits and collect‐ing soil samples with known volume container are therefore necessary.Estimation (soil particle classifi‐cation according to Miller and Guthrie,1984) of bulk density (particle size <2 mm) and relative gravel vol‐ume(2?75 mm)are commonly collected by core sam‐pling.Coarser fragments such as stones (75?250 mm)and boulders (>250 mm) will not be sampled due to the restricted diameter.Thus,large volume of soil samples is collected to determine the volume occu‐pied by coarse fragment and the uncertainty in SOC stock estimation caused by coarse fragment in agricul‐tural and forest ecosystems (Batjes,1996;Liski and Westman,1997;Goidtset al.,2009;Rytter,2012).

    Grasslands cover approximately 1/4 of the world's land surface (Shantz,1954).SOC stock stored in this ecosystem amounts to 10% of the global total (Es‐waranet al.,1993),with a share of 2.5% from alpine grassland on the Qinghai-Tibetan Plateau (QTP) of China (Wanget al.,2002).Alpine grassland is consid‐ered as an important terrestrial ecosystem carbon pool in the "Third Pole".The latest study suggests that or‐ganic carbon contained in permafrost soils on the QTP is approximately 8.5?17.8 Pg in the top soil lay‐er of 1 m (Muet al.,2020).Despite intensive efforts made over the past few decades,much uncertainty ex‐ists regarding the estimates of SOC stock in alpine grasslands (Ni,2002;Yanget al.,2008).To estimate SOC stock,core samplers are widely used for deter‐mining bulk density and volume of fine earth in al‐pine grasslands (Yanget al.,2010;Liuet al.,2012;Changet al.,2014;Qinet al.,2015b;Wanget al.,2020).Due to the large soil spatial heterogeneity,soil with high volumes of gravel and stone are common in alpine grasslands (Qinet al.,2015a).Collecting soil samples by core samplers on one hand can be dam‐aged by stones or boulders,while on the other hand can result in incorrect estimates of the volume of coarse fragments and ultimately SOC stock.There‐fore,the aim of this study was to compare the differ‐ence in coarse fragment volume sampled by lager size sampler with core samplers,and to determine the un‐certainty of estimating soil C and N stocks caused by core samplers in the top soil volume of typical alpine grasslands on the QTP.

    2 Materials and methods

    2.1 Study area and field work

    The study site is located in the source region of the Shule River Basin oriented southeast-northwest and surrounded by the Qilian Mountains,the northeastern edge of the QTP,China.The average altitude of the mountains is 4,200 m and the valley is 2,500?4,100 m.The area has a continental arid desert climate.The av‐erage annual temperature is about ?4.0 °C (Changet al.,2016) and the average annual precipitation is about 200?400 mm (Qinet al.,2014).The landscape is characterized by large mountain ranges with steep valleys and gorges interspersed with relatively level and wide inter-mountain grassland basins (Wuet al.,2015).

    Between the end of July to middle of August in 2014,we selected three major types of alpine grass‐land in the study area,including alpine meadow,steppe meadow and alpine steppe.The basic condi‐tion of each grassland type is listed in Table 1.For each grassland type,we set up three plots (50m×50m)(Figure 1).There was no grazing of all plots during the growing season and slopes of all plots are gentle(less than 4°).In each plot,three soil pits were exca‐vated by hand with a spade.In all,27 soil pits were excavated.In each pit,soil samples were taken at each depth with an interval of 10 cm in the top 1 m.Within each depth,soil samples were horizontally collected by a square large size sampler (30 cm in length,30 cm in width and 10 cm in depth) and three cylindrical core samplers (5 cm in diameter and 5 cm in depth,7 cm in diameter and 5.2 cm in depth,and 10 cm in diameter and 6.4 cm in depth).Detailed in‐formation about each sampler can be found in Table 2.There were a total of 1,080 soil samples (9 plots×3 replications×10 depths×4 methods) from the study area.

    Table 1 Descriptions of the study sites

    Figure 1 The location of sampling plots in the source region of the Shule River Basin

    Table 2 Detailed information of four soil samplers

    In each plot,we randomly set up five 50cm×50cm squares to determine fractional vegetation cover (FVC),aboveground biomass (AGB) and belowground bio‐mass (BGB).We took one picture of each square with an ordinary digital camera (Fujifilm (China),1,000 megapixels) held vertically at a height of 1.4 m.All aboveground living plants were collected by clipping them at ground level.Belowground biomass was de‐termined by digging soil pit with a spade.Soil column(10 cm in length,10 cm in width and 40 cm in depth)was collected and washed with a gentle spray of water over a fine mesh screen until the roots were free of soil,and then the samples were packed in bags and brought to the laboratory.

    2.2 Laboratory analysis

    Soil samples were air-dried.Gravel(2?75 mm)and stone (75 ?250 mm) were removed by sieving,and weighed.There were no boulders collected in our field sampling.The remaining soil samples with diam‐eter less than 2 mm were ground to pass through a 0.25 mm sieve for analysis of SOC and TN concentra‐tion.SOC concentration was measured by dichromate oxidation using Walkley-Black acid digestion.TN concentration was determined by digestion and then tested using a flow injection analysis system (FIAstar 5000,Foss Inc.,Sweden).The above ground living plant and root samples were oven dried at 65 °C for 48 h and then weighed.The threshold method was used to calculate the FVC of a square(Yiet al.,2011).

    2.3 Data analysis

    The coarse fragment volume (Vcoarsefragment) was cal‐culated by using the following Equation(1):

    The coarse fragment volume (Vcoarsefragment) was cal‐culated by using the following Equation(1):whereVgravelis volume of gravel,Vstoneis volume of stone,Mgravelis mass of gravel,ρgravelis the mean densi‐ty of gravel,Mstoneis mass of stone andρstoneis the mean density of stone.ρgravelandρstonewere assumed to be 2.17 g/cm3and 2.65 g/cm3,respectively (Poesen and Lavee,1994).

    The relative volume of coarse fragment (σcoarsefragment)was calculated according to Equation(2):

    whereVcoarsefragmentis the volume of coarse fragment,andVsoilsamplersis volume of different size soil samplers.

    The bulk density of fine earth (ρfineearth) was calcu‐lated using Equation(3):

    whereMfineearthis mass of fine earth,Vfineearthis the vol‐ume of fine earth,Vcoresampleris total soil volume deter‐mined by different samplers andσcoarsefragmentis the rela‐tive volume of coarse fragment.

    The SOC stock (SSOC,(kg·C)/m2) and TN stock(STN,(kg·N)/m2) were calculated using Equations(4)and(5):

    where SSOC is SOC stock,STN is TN stock,ρfineearthis the bulk density of fine earth,σcoarsefragmentis the relative volume of coarse fragment,CSOCis soil organic carbon content (g/kg),CTNis soil total nitrogen content (g/kg)and Diis soil thickness (cm) at layeri,respectively;i=1,…,10.

    Data on the relative volume of coarse fragment,bulk density of fine earth,SOC and TN stocks were subjected to a one-way analysis of variance (ANO‐VA) and the means of the variables were tested for significant differences at LSD=5%.The relationships of the relative volume of coarse fragment and bulk density of fine earth,SOC and TN stocks were ana‐lyzed by regression analysis.All statistical analyses were completed in SPSS 17.0(SPSS Inc.,U.S.A.).

    3 Results

    3.1 Coarse fragment volume,size and bulk density of fine earth

    Soil sampler size has a significant effect on the coarse fragment volume (F=21.86,P<0.001),coarse fragment size (F=184.50,P<0.001) and bulk density of fine earth (F=69.59,P<0.001) (Table 3).For each grassland types,coarse fragment volume collected by CS4 was higher than those of core samplers (CS1,CS2 and CS3) (Figure 2a).Mean volume of coarse fragment in top 1 m collected by CS4 were 35.52%,37.15% and 50.69%,which were 9.47%,18.88% and 23.71% higher than core samplers (CS1,CS2 and CS3) for alpine meadow,alpine steppe and steppe meadow.Coarse fragment size collected by CS4 was significantly larger than core samplers (CS1,CS2 and CS3) (Figure 2b).Coarse fragment size collected by CS4 was in a range of 104 to 155 mm,while those collected by core samplers (CS1,CS2 and CS3)ranged from 32 to 67 mm for each grassland types(Figure 2b).Bulk density of fine earth is provided in Figure 2c.Mean bulk density of fine earth in the top 1 m estimated by CS4 were 1.15,1.18and 1.11 g/cm3,which was 14.47%,18.24% and 22.63% lower than core samplers (CS1,CS2 and CS3) for alpine mead‐ow,alpine steppe and steppe meadow.

    Figure 2 Mean relative volume of coarse fragment(σcoarsefragment)(a),mean size of coarse fragment(Scoarsefragment)(b)and bulk density of fine earth(BDfineearth)(c)in the top 1 m of typical grassland types.Error bars represent the standard error of the mean.CS1,CS2 and CS3 represent core samplers with diameters of 5,7,and 9 cm;CS4 represents large size sampler(30 cm in length,30 cm in width and 10 cm in depth)

    Table 3 The effect of core samplers on σcoarsefragment,RFS,BDfineearth,SSOC and STN stocks

    3.2 Stocks of SOC and TN

    Soil sampler size significantly affected SOC(F=47.59,P<0.001)and TN stocks(F=69.05,P<0.001)(Table 3).Both SOC and TN stocks decreased from the upper to the bottom layers and appeared to be mainly constrained to the upper 50 cm.Below this depth,stocks were lower (Figures 3a ?3f).For each grassland types,both SOC and TN stocks were less for CS4 than those of core samplers (CS1,CS2 and CS3) at each depth (Figure 3).Average SOC (Figure 4a) and TN stock (Figure 4b) in the top 1 m were also less for CS4 than those of core samplers(CS1,CS2 and CS3) in all three grassland types.Core samplers(CS1,CS2 and CS3) led to approximate 17%?31%and 18%?32% overestimation for SOC and TN stocks in alpine meadow,22%?34% and 23%?36% in alpine steppe,and 37%?45%and 38%?46%in steppe meadow.

    3.3 Correlation of SOC,TN Stocks and bulk density of fine earth with the volume of coarse fragment

    Correlations between SOC,TN stocks and the rel‐ative volume of coarse fragment are provided in Fig‐ure 5.Both SOC (P<0.05) and TN stocks (P<0.05)were negatively correlated with the relative volume of coarse fragment.Bulk density of fine earth was also significantly negatively correlated with the relative volume of coarse fragment,although the correlation coefficient was low(R2=0.35,P<0.05)(Figure 5c).

    Figure 3 Soil organic carbon stock(SOC stock)of alpine meadow(a),steppe(b),steppe meadow(c),soil total nitrogen stock(TN stock)of alpine meadow(d),steppe(e)and steppe meadow(f)in soil profiles.Error bars represent the standard error of the mean.CS1,CS2 and CS3 represent core samplers with diameters of 5,7,and 9 cm;CS4 represents large size sampler(30 cm in length,30 cm in width and 10 cm in depth)

    Figure 4 Soil organic carbon stock(SOC stock)(a)and soil total nitrogen stock(TN stock)(b)in the top 1 m of typical grassland types.Error bars represent the standard error of the mean.CS1,CS2 and CS3 represent core samplers with diameters of 5,7,and 9 cm;CS4 represents large size sampler(30 cm in length,30 cm in width and 10 cm in depth)

    4 Discussions

    Coarse fragment is common in soil profiles of dif‐ferent terrestrial ecosystems.For example,agricultur‐al soils containing coarse fragment accounted for about 30% of the surface area of Western Europe and even as much as 60% in the Mediterranean zone (Po‐esen and Lavee,1994).Similarly,relative volumes of coarse fragment were estimated to be 42%,43%?50%and 50% on average in the forest soils of Finland (Vi‐ro,1958),Sweden (Eriksson and Holmgren,1996;Stendahlet al.,2009) and England (Lyford,1964).This is also true for alpine grassland,were the mean relative volume of coarse fragment in the top 1 m is in a range of 36%?51% collected by large size soil sam‐pler (CS4) for three typical alpine grasslands in this study.This result was similar to that determined by large soil sampler (25cm×25cm×10cm in size) which reported that coarse fragment was 38%?58% for al‐pine meadow in the hinterland of the QTP (Yanget al.,2009a),but was larger than that determined by core clod method (with the diameter of 7.6 cm).This indicates that gravel content was 18%?35% for two typical alpine grasslands in the Central Western QTP(Wuet al.,2012).

    Apart from the spatial distribution of sampling sites across the study region was different,the relative volume occupied by stone excluded by core samplers might be another cause for the difference in coarse fragment content.Coarse fragment size collected by larger size sampler (CS4) were all larger than 100 mm,while those collected by core samplers (CS1,CS2 and CS3) were all less than 70 mm (Figure 2b).In contrast with large size soil sampler (CS4),core samplers (CS1?3) led to approximate 9%?24% un‐derestimate of the relative volume of coarse frag‐ment for three typical alpine grasslands in our study.Taking into consideration substantial gravel and stone,large soil sampler is needed to determine the relative volume of coarse fragment,which is a criti‐cal factor for improving estimates of soil bulk densi‐ty and nutrient stocks,e.g.,soil organic carbon(Sten‐dahlet al.,2009).

    Figure 5 The relationships among the relative volume of coarse fragment(σcoarsefragment)and soil organic carbon stock(SOC stock)(a),soil total nitrogen stock(TN stock)(b)and bulk density of fine earth(BDfineearth)(c)

    It is well known that large spatial heterogeneity in soil C stock inventories (Allenet al.,2010) and insuf‐ficient field observations (Changet al.,2014) led to great uncertainty in estimation of SOC stock.Soil sampler size should also not be neglected in field sam‐pling for stony soils.Bulk density is one of many es‐sential parameters known for calculating soil C and N stocks,but is affected significantly by coarse frag‐ment content (Stewartet al.,1970;Torriet al.,1994)and our results fit this pattern (Figure 5c).Soil parti‐cle size composition estimation based on core sam‐plers disregarding stones in soil do not refer to the whole soil volume.Hence,bulk density of fine earth is significantly overestimated due to coarse fragments that reduces space that is otherwise occupied by air,moisture and fine earth (Rytter,2012).Our results in‐dicate that core samplers led to approximately 14%?23% overestimation of bulk density of fine earth for three typical alpine grasslands.As a consequence,it results in the underestimation of the relative volume of coarse fragment but the overestimation of SOC and TN stocks.Calculated mean SOC and TN stock in the top 1 m based on large sampler ranged from 3.84 kg/m2to 5.91 kg/m2and 0.48 kg/m2to 0.61 kg/m2.These re‐sults are significantly lower than those calculated based on core samplers in this study (5.26 kg/m2to 7.77 kg/m2and 0.66 kg/m2to 0.82 kg/m2) and other studies in the same region (4.39 kg/m2to 8.70 kg/m2and 0.68 kg/m2to 0.81 kg/m2)(Liuet al.,2012).

    Similar to the aforementioned studies (Jobbágy and Jackson 2000;Leifeldet al.,2005;Meersmanset al.,2012;De Baetset al.,2013),SOC stock (R2=0.72,P<0.05) (Figure 5a) and TN stock (R2=0.77,P<0.05)(Figure 5b) had a negative correlation with coarse fragment.However,this negative correlation de‐creased with the increasing of soil depth.Due to shal‐low root allocation and low turnover rates of organic matter in alpine ecosystems (Yanget al.,2009b),the distribution of SOC stocks in three grassland types was similar,with 89.61%,83.60% and 87.39% of to‐tal stock in the uppermost 50 cm for alpine meadow,alpine steppe and steppe meadow,respectively.The relative volume occupied by coarse fragment in the top 50 cm ranged from 10.99% to 36.09% for three grassland types.It has been suggested that relative volumes of stone and gravel were only 8%,however neglecting the volume occupied by coarse fragments led to an overestimation of C and N stocks by 8%?9%(Rytter,2012).Therefore,corrections should be made to the incorrect estimation of SOC and TN stock from core samplers using large size samplers on regions with gravel-rich soils in future studies.

    5 Conclusions

    In this study,we compared the difference in the rel‐ative volume of coarse fragment and bulk density of fine earth determined by larger size sampler and core samplers.Furthermore,we analyzed the uncertainties in estimating SOC and TN stocks caused by coarse fragment content determined with this soil sampler procedure.Our results demonstrate that core samplers were unable to collect stones,which shows that the relative volume of coarse fragment was underestimat‐ed but bulk density of fine earth,SOC and TN stocks were overestimated.Due to high volume of coarse fragment in alpine grassland soils,more attention should be paid to gravel and stone in estimates of soil C and N stocks and corrections should be made to the results from core samplers using large size samplers in future studies.

    Acknowledgments:

    This study was jointly supported by grants from the National Natural Science Foundation (42071139),Gansu province Science Fund for Distinguished Young Scholars (21JR7RA066) and the independent grants from the State Key Laboratory of Cryosphere Sciences(SKLCS-ZZ-2021).

    国产成人av教育| 在线精品无人区一区二区三| 欧美变态另类bdsm刘玥| 欧美在线黄色| 久久毛片免费看一区二区三区| 成年人免费黄色播放视频| 精品福利永久在线观看| 首页视频小说图片口味搜索| 中国国产av一级| 色老头精品视频在线观看| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区| 天天添夜夜摸| 免费观看a级毛片全部| 夫妻午夜视频| 精品少妇一区二区三区视频日本电影| 他把我摸到了高潮在线观看 | 亚洲精品一二三| 国产一区二区激情短视频 | 男人爽女人下面视频在线观看| 日韩中文字幕欧美一区二区| 精品人妻在线不人妻| 90打野战视频偷拍视频| 一进一出抽搐动态| 亚洲精品av麻豆狂野| 日韩一区二区三区影片| kizo精华| 亚洲七黄色美女视频| 欧美人与性动交α欧美精品济南到| 久久久久视频综合| 国产成+人综合+亚洲专区| 欧美 日韩 精品 国产| 考比视频在线观看| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| 99久久99久久久精品蜜桃| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密| 亚洲人成电影观看| 91老司机精品| 国产欧美日韩一区二区三区在线| 91成年电影在线观看| 99精品久久久久人妻精品| 黄片播放在线免费| 日韩一区二区三区影片| 黄色视频不卡| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 纯流量卡能插随身wifi吗| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 精品亚洲成国产av| 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 日日爽夜夜爽网站| 悠悠久久av| 精品亚洲成a人片在线观看| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 免费在线观看日本一区| 亚洲精品成人av观看孕妇| 成年动漫av网址| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 日本av手机在线免费观看| 欧美成人午夜精品| 精品一品国产午夜福利视频| 最近最新免费中文字幕在线| 91老司机精品| 少妇粗大呻吟视频| 久久国产精品大桥未久av| 99热国产这里只有精品6| 日本av手机在线免费观看| 12—13女人毛片做爰片一| 在线精品无人区一区二区三| 极品人妻少妇av视频| 热re99久久国产66热| 成年av动漫网址| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产av影院在线观看| 搡老乐熟女国产| 又紧又爽又黄一区二区| 久久精品国产亚洲av香蕉五月 | 久久亚洲国产成人精品v| 狠狠狠狠99中文字幕| 亚洲av男天堂| 91精品国产国语对白视频| 999久久久国产精品视频| 久久久久精品人妻al黑| 日本vs欧美在线观看视频| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 久久国产精品大桥未久av| 日韩大片免费观看网站| 少妇 在线观看| 国产91精品成人一区二区三区 | 欧美一级毛片孕妇| 一级毛片精品| 乱人伦中国视频| 99精国产麻豆久久婷婷| 欧美另类亚洲清纯唯美| 热re99久久精品国产66热6| 日本精品一区二区三区蜜桃| 亚洲国产av新网站| 岛国在线观看网站| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| 真人做人爱边吃奶动态| 在线观看免费视频网站a站| 男女下面插进去视频免费观看| 777米奇影视久久| 亚洲精品一卡2卡三卡4卡5卡 | 最黄视频免费看| 50天的宝宝边吃奶边哭怎么回事| 纯流量卡能插随身wifi吗| 黑丝袜美女国产一区| 在线av久久热| 亚洲欧美日韩另类电影网站| www.av在线官网国产| bbb黄色大片| 99九九在线精品视频| 丝袜喷水一区| 又大又爽又粗| 热re99久久国产66热| 亚洲欧美色中文字幕在线| av超薄肉色丝袜交足视频| 国产97色在线日韩免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| 久久天躁狠狠躁夜夜2o2o| 男女国产视频网站| 亚洲全国av大片| 国产精品.久久久| 一区二区av电影网| 欧美日韩av久久| 国产不卡av网站在线观看| 国产av又大| 午夜福利视频精品| 免费少妇av软件| 中亚洲国语对白在线视频| 久久影院123| 韩国高清视频一区二区三区| 亚洲性夜色夜夜综合| 国产精品免费大片| 不卡一级毛片| 最近中文字幕2019免费版| 色综合欧美亚洲国产小说| 97精品久久久久久久久久精品| 欧美在线黄色| 亚洲少妇的诱惑av| 欧美人与性动交α欧美软件| 高潮久久久久久久久久久不卡| 免费一级毛片在线播放高清视频 | 中国国产av一级| 欧美精品啪啪一区二区三区 | 成年人免费黄色播放视频| 久久精品国产亚洲av高清一级| 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 99精品欧美一区二区三区四区| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 91国产中文字幕| 亚洲精品国产色婷婷电影| 啦啦啦啦在线视频资源| 日韩大码丰满熟妇| 亚洲第一欧美日韩一区二区三区 | 国产精品一区二区精品视频观看| 捣出白浆h1v1| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 高清黄色对白视频在线免费看| 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 成人亚洲精品一区在线观看| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 日韩,欧美,国产一区二区三区| 国产黄频视频在线观看| 久久影院123| 午夜视频精品福利| 巨乳人妻的诱惑在线观看| 日韩一区二区三区影片| 超碰97精品在线观看| 蜜桃国产av成人99| 亚洲国产看品久久| 亚洲精品国产精品久久久不卡| 他把我摸到了高潮在线观看 | 日韩精品免费视频一区二区三区| 老司机影院毛片| 精品国产乱码久久久久久小说| 人人澡人人妻人| 啦啦啦啦在线视频资源| 国产伦理片在线播放av一区| 午夜福利在线观看吧| 成人三级做爰电影| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 操美女的视频在线观看| 一本久久精品| 亚洲精品中文字幕在线视频| 啦啦啦啦在线视频资源| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 十分钟在线观看高清视频www| 精品少妇内射三级| 国产在线一区二区三区精| 色94色欧美一区二区| av福利片在线| 日日夜夜操网爽| 12—13女人毛片做爰片一| 国产在线视频一区二区| 国产精品偷伦视频观看了| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美视频二区| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 三级毛片av免费| 亚洲精品成人av观看孕妇| 精品国产一区二区三区久久久樱花| 男女高潮啪啪啪动态图| 欧美精品高潮呻吟av久久| 国产欧美日韩一区二区精品| a级毛片黄视频| 捣出白浆h1v1| 欧美国产精品一级二级三级| 啦啦啦免费观看视频1| 超色免费av| 丝袜美足系列| 精品少妇黑人巨大在线播放| 搡老乐熟女国产| tube8黄色片| 日本av免费视频播放| 高清欧美精品videossex| 国产在线视频一区二区| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 一进一出抽搐动态| 性色av一级| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 大陆偷拍与自拍| 国产亚洲午夜精品一区二区久久| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 建设人人有责人人尽责人人享有的| 亚洲九九香蕉| 精品国内亚洲2022精品成人 | 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 亚洲精品成人av观看孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 久久精品亚洲熟妇少妇任你| 美女视频免费永久观看网站| 国产淫语在线视频| 亚洲av日韩精品久久久久久密| 国产成人免费观看mmmm| 99国产精品一区二区三区| 欧美在线黄色| 亚洲精品自拍成人| 久久综合国产亚洲精品| 久久久久久久国产电影| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 久久久久网色| 亚洲,欧美精品.| 最黄视频免费看| 亚洲专区字幕在线| 国产亚洲一区二区精品| 99国产精品免费福利视频| 欧美精品一区二区大全| 日本vs欧美在线观看视频| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 母亲3免费完整高清在线观看| 精品少妇内射三级| 欧美日本中文国产一区发布| 国产精品一区二区免费欧美 | 国产男人的电影天堂91| 国产精品久久久久成人av| 欧美日韩亚洲高清精品| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 亚洲欧美精品综合一区二区三区| 水蜜桃什么品种好| 巨乳人妻的诱惑在线观看| 天天添夜夜摸| 亚洲精品粉嫩美女一区| 黄频高清免费视频| 美女扒开内裤让男人捅视频| 激情视频va一区二区三区| 久久久水蜜桃国产精品网| 99久久精品国产亚洲精品| 又黄又粗又硬又大视频| 女人高潮潮喷娇喘18禁视频| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影 | 国产在线视频一区二区| 欧美黄色淫秽网站| 精品少妇一区二区三区视频日本电影| 精品人妻熟女毛片av久久网站| 三级毛片av免费| 欧美激情久久久久久爽电影 | 超碰97精品在线观看| 国内毛片毛片毛片毛片毛片| 国产精品免费大片| 91字幕亚洲| 欧美日韩成人在线一区二区| 手机成人av网站| 久久中文字幕一级| 搡老熟女国产l中国老女人| www.av在线官网国产| 亚洲欧美日韩高清在线视频 | 交换朋友夫妻互换小说| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产麻豆69| 亚洲精品在线美女| 久久性视频一级片| 国产一级毛片在线| 日本av免费视频播放| 侵犯人妻中文字幕一二三四区| 性高湖久久久久久久久免费观看| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频| 国产男人的电影天堂91| 婷婷成人精品国产| 大陆偷拍与自拍| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 一级,二级,三级黄色视频| 99久久综合免费| 热99久久久久精品小说推荐| 日本一区二区免费在线视频| 亚洲欧美清纯卡通| 亚洲男人天堂网一区| 男女国产视频网站| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 欧美激情 高清一区二区三区| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| bbb黄色大片| 午夜福利视频精品| 99久久人妻综合| 欧美xxⅹ黑人| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频 | 久久久精品免费免费高清| 久久久国产一区二区| 美女中出高潮动态图| 亚洲国产欧美在线一区| 无遮挡黄片免费观看| 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 两个人看的免费小视频| 一二三四社区在线视频社区8| 9色porny在线观看| 国产欧美亚洲国产| 99九九在线精品视频| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区 | 国产成人精品久久二区二区免费| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| 黄片大片在线免费观看| 女人被躁到高潮嗷嗷叫费观| 少妇人妻久久综合中文| 国产又爽黄色视频| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 久久热在线av| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 亚洲av电影在线进入| 美国免费a级毛片| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 欧美在线一区亚洲| 建设人人有责人人尽责人人享有的| 欧美成狂野欧美在线观看| 飞空精品影院首页| 日本撒尿小便嘘嘘汇集6| videos熟女内射| 日韩中文字幕视频在线看片| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久人妻熟女aⅴ| 曰老女人黄片| 免费高清在线观看视频在线观看| 国产高清视频在线播放一区 | 两个人免费观看高清视频| 一级毛片电影观看| 高清视频免费观看一区二区| 久久 成人 亚洲| 国产成人精品在线电影| 欧美精品啪啪一区二区三区 | 老司机深夜福利视频在线观看 | 国产高清视频在线播放一区 | 国产免费av片在线观看野外av| 亚洲国产精品一区三区| 成年人免费黄色播放视频| 大片免费播放器 马上看| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲 | www.熟女人妻精品国产| 十八禁网站网址无遮挡| 搡老熟女国产l中国老女人| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 一区在线观看完整版| 乱人伦中国视频| av有码第一页| 色播在线永久视频| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 久久香蕉激情| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清videossex| 精品少妇黑人巨大在线播放| 午夜成年电影在线免费观看| 亚洲成人免费av在线播放| 在线观看免费午夜福利视频| 成年人午夜在线观看视频| 丝袜美腿诱惑在线| 色视频在线一区二区三区| 考比视频在线观看| 国产成人欧美在线观看 | 精品久久蜜臀av无| videos熟女内射| 99热网站在线观看| 午夜精品国产一区二区电影| 国产精品成人在线| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | a在线观看视频网站| 国产精品久久久久久精品电影小说| 免费女性裸体啪啪无遮挡网站| 中文字幕高清在线视频| 久久av网站| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看 | 亚洲精品一区蜜桃| 香蕉国产在线看| 啦啦啦啦在线视频资源| 桃红色精品国产亚洲av| 777久久人妻少妇嫩草av网站| 最近最新中文字幕大全免费视频| 一区二区三区乱码不卡18| 午夜福利在线免费观看网站| 亚洲 欧美一区二区三区| 精品人妻熟女毛片av久久网站| 91老司机精品| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久| 久久久精品免费免费高清| 午夜久久久在线观看| 午夜免费观看性视频| 欧美另类亚洲清纯唯美| 午夜福利乱码中文字幕| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | 日本撒尿小便嘘嘘汇集6| 少妇精品久久久久久久| 欧美大码av| 一个人免费在线观看的高清视频 | 免费高清在线观看日韩| 亚洲精品一卡2卡三卡4卡5卡 | 黄网站色视频无遮挡免费观看| 三级毛片av免费| 男女无遮挡免费网站观看| 日本av手机在线免费观看| 免费观看av网站的网址| 亚洲熟女毛片儿| 热99re8久久精品国产| avwww免费| 50天的宝宝边吃奶边哭怎么回事| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看| 极品人妻少妇av视频| 在线观看一区二区三区激情| 亚洲国产精品一区三区| 丝袜美腿诱惑在线| 韩国高清视频一区二区三区| 成人国产av品久久久| 日韩熟女老妇一区二区性免费视频| 老司机深夜福利视频在线观看 | 老熟女久久久| 各种免费的搞黄视频| 人妻一区二区av| 9191精品国产免费久久| 亚洲精品久久久久久婷婷小说| 99久久人妻综合| 男女高潮啪啪啪动态图| 国产一区二区三区在线臀色熟女 | 热99re8久久精品国产| 成年动漫av网址| 中文字幕av电影在线播放| 人成视频在线观看免费观看| 18禁观看日本| 免费av中文字幕在线| 国产欧美亚洲国产| 丝袜脚勾引网站| 国产国语露脸激情在线看| 午夜免费观看性视频| 精品高清国产在线一区| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 欧美大码av| 精品国产乱码久久久久久男人| 在线观看www视频免费| 各种免费的搞黄视频| 99re6热这里在线精品视频| 老司机深夜福利视频在线观看 | 一个人免费看片子| 色视频在线一区二区三区| 亚洲七黄色美女视频| 成人av一区二区三区在线看 | 成年人免费黄色播放视频| 男人爽女人下面视频在线观看| 操出白浆在线播放| av视频免费观看在线观看| 91精品伊人久久大香线蕉| 中国美女看黄片| 精品亚洲成a人片在线观看| 久久人人爽av亚洲精品天堂| 男女免费视频国产| 免费在线观看影片大全网站| 免费久久久久久久精品成人欧美视频| 亚洲av日韩精品久久久久久密| 久久久久国产精品人妻一区二区| av片东京热男人的天堂| 日本精品一区二区三区蜜桃| 国产老妇伦熟女老妇高清| 国产极品粉嫩免费观看在线| 午夜免费观看性视频| 亚洲av片天天在线观看| 大香蕉久久成人网| 欧美av亚洲av综合av国产av| 黄色怎么调成土黄色| 亚洲av欧美aⅴ国产| 亚洲av成人不卡在线观看播放网 | 欧美日韩中文字幕国产精品一区二区三区 | 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 一二三四社区在线视频社区8| 男人爽女人下面视频在线观看| 99久久国产精品久久久| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 99香蕉大伊视频| 国产免费av片在线观看野外av| 精品久久久精品久久久| 国产色视频综合| 精品视频人人做人人爽| 精品高清国产在线一区| 久久精品亚洲av国产电影网| 日韩视频在线欧美| 亚洲成人手机| 中文欧美无线码| 一区福利在线观看| 午夜日韩欧美国产| 欧美亚洲 丝袜 人妻 在线| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 18在线观看网站| 国产又爽黄色视频| 亚洲成人手机| 欧美成狂野欧美在线观看| 男人添女人高潮全过程视频| 在线观看免费高清a一片| 免费人妻精品一区二区三区视频| 精品一区二区三卡| netflix在线观看网站| 国产欧美日韩一区二区精品| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 精品熟女少妇八av免费久了| 亚洲精品一二三| 美女国产高潮福利片在线看| 99热网站在线观看| 日韩三级视频一区二区三区| 一边摸一边做爽爽视频免费|