• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels

    2022-06-11 09:01:26ZhoqingZhngXiliCuiXiomingJingQiDingJiyuCuiYuninZhngYoussefBelmkhoutKrimAdilMohmedEddoudiHuinXing
    Engineering 2022年4期

    Zhoqing Zhng,Xili Cui,Xioming Jing,Qi Ding,Jiyu Cui,Yunin Zhng,Youssef Belmkhout,Krim Adil, Mohmed Eddoudi, Huin Xing,*

    a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

    c Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

    Keywords:Adsorption and separation Trans-/cis-butene Ultramicroporous metal–organic frameworks Pore engineering Guest-adaptive

    ABSTRACT Trans-/cis-olefin isomers play a vital role in the petrochemical industry. The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties.Herein, two new tailor-made anion-pillared ultramicroporous metal–organic frameworks (MOFs), ZU-36-Ni and ZU-36-Fe(GeFSIX-3-Ni and GeFSIX-3-Fe)are reported for the first time for the efficient trans-/cis-2-butene (trans-/cis-C4H8) mixture splitting by enhanced molecular exclusion. Notably, ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C4H8 with a remarkable adsorption capacity (2.45 mmol?g-1) while effectively rejecting cis-C4H8 with a high purity of 99.99%.The dispersion-corrected density functional theory (DFT-D) calculation suggested that the guestadaptive behavior of ZU-36-Ni in response to trans-C4H8 is derived from the organic linker rotation and the optimal pore dimensions, which not only improve the favorable adsorption/diffusion of trans-C4H8 with optimal host–guest interactions, but also enhance the size-exclusion of cis-C4H8. This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition.

    1. Introduction

    Trans-/cis-isomers differ only in the spatial arrangement of the atoms.Remarkably,such a minor variation imparts significant differences in their reactivity in organic synthesis and pharmacological activity. Trans-/cis-olefins have important applications in chemical research and processing. For example, trans- and cis-2-butenes (C4H8), the simplest olefins displaying trans-/cisisomerism,are the basic raw materials for producing various types of polymers and organic chemicals. Notably, cis-C4H8is a crucial feedstock for the production of maleic acid, butadiene, and polymers. However, the inevitable presence of trans-C4H8as an impurity in cis-C4H8adversely impacts the quality of the products [1–4].High-purity trans-C4H8(>95%)is significant for several applications, such as the production of propylene via the metathesis of trans-C4H8and ethylene [5,6]. Therefore, it is highly necessary to separate cis-C4H8and trans-C4H8. The similarity in the molecular structures and boiling points (Fig. 1(a) and Table S1 in Appendix A)of trans-/cis-olefin isomers poses great challenges in their separation [7–10]. Furthermore, 2-C4H8is highly reactive and tends to undergo copolymerization or dimerization at elevated temperatures. This characteristic renders the isolation of the high purity individual 2-C4H8isomers highly challenging via the traditional energy-intensive extractive distillation [9,11–12]. Size-selective physisorption using ultramicroporous materials is a promising energy-efficient alternative and has been demonstrated as a promising candidate for the efficient separation of light hydrocarbon mixtures[13–16]. However, to the best of our knowledge,the efficient separation of trans-/cis-olefin isomers by porous materials has rarely been reported.

    Fig. 1. Schematic of representative robust porous materials with (a) rigid pore structures and (b) a typical Langmuir adsorption isotherm for microporous materials. Novel porous materials with (c) guest-adaptive pore channels and (d) corresponding desired stepped adsorption isotherm for increasing the working capacity. 1 bar = 105 Pa.

    Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are custom-tailored porous crystalline materials with tunable pore chemistry. This kind of material has recently been successfully used as systems for separating mixtures of varying degrees of complexity [16], such as paraffins and olefins[13,17–21], olefins and alkynes [23–31], n-isomer and iso-isomer mixtures [12,32–34], and other analogous molecules. However,achieving high efficiency for the high-level separation complexity using MOFs is still exceedingly challenging [16] when the differences in size and shape between the probes, such as trans-/cisisomers, are subtle. The trans-/cis-isomer separation selectivity,and particularly the diffusivity, achieved using the current stateof-the-art MOFs is still not suitable for use in industrial processes in comparison to distillation [9]. For example, zeolitic imidazolate framework-7 (ZIF-7) with its narrow pore window size and structural flexibility exhibits gate-opening phenomenon in response to the external stimuli of trans-/cis-C4H8. However, both the isomers exert the same gate-opening pressure of 2 kPa, which leads to a poor separation performance [35]. Zeolites with rigid frameworks have been used to separate trans-/cis-C4H8mixtures by sieving effect, however, their trans-C4H8uptake capacity is very low at 1.05 and 0.83 mmol?g-1on ITQ-32(ITQ stands for Instituto de Tecnología Química)[36] and deca-dodecasil 3 rhombohedral (DD3R)[37], respectively, owing to the limited space available for the gas uptake in the rigid pore structures within zeolites (Fig. 1(a)). Similar low trans-C4H8capacity was also observed for metal-gallates(Ni,Mg,and Co)owing to their robust nature[8].In general,robust zeolites exhibit Langmuir-type adsorption isotherms for trans-C4H8which is the cause for their limited loading capacity (Fig. 1(b)) in swing adsorption processes driven by pressure. This, in turn, presents major bottlenecks in their practical application owing to recyclability concerns. Furthermore, porous materials with large pore sizes (> 5.0 ?, 1 ? = 10-10m) usually exhibit high capacity but almost no separation selectivity for trans-/cis-C4H8, such as Y-fum-fcu-MOF (fum stands for fumarate; fcu stands for facecentered cubic) [10] and ZJNU-30 (ZJNU stands for Zhejiang Normal University).Thus,the discovery of a porous material with optimal pore dimensions, functionality, and energetics, that could discriminate or sieve particular trans-/cis-olefin isomers without sacrificing high gas uptake capacity, is a significantly profound challenge.

    Anion-pillared ultramicroporous MOFs featuring electronegative inorganic and contracted pore surface [38–41] have unveiled outstanding separation performance for several important industrial gases such as C2H2/C2H4[28]and C3H6/C3H8[21].The variable combination of inorganic anions and metal ions enables the ultrafine-tuning of the pore apertures within the 0.1–0.5 ? scale[41–46].Herein,we report the results from the further exploration of this fluorinated ultramicroporous platform that allowed us to unveil ZU-36-Ni (GeFSIX-3-Ni, Ni(GeF6)(pyz)2, GeFSIX = GeF62-,3 = pyrazine = pyz), which displayed an unprecedented efficiency in trapping significant amounts of trans-C4H8while achieving effective exclusion of the cis-isomers (Fig. 1(c)). Importantly, ZU-36-Ni displayed an interesting step-wise adsorption isotherm that indicates an enhanced adsorption capacity and regeneration process with less energy input. Moreover, the adaptive pore channels for separating trans-C4H8, derived from the organic linker rotation for the guest molecule,conferred an increased sorption capacity to ZU-36-Ni (2.45 mmol?g-1) while the contracted pore window enhanced the cis-C4H8exclusion effect,leading to improved trans-/cis-C4H8separation selectivity (Fig. 1(d)).

    2. Material and methods

    2.1. Materials

    Nickel(II) tetrafluoroborate hexahydrate (Ni(BF4)2?6H2O, 99%,J&K Scientific, China), ammonium hexafluorogermanate ((NH4)2-GeF6, 99.99%, J&K Scientific), ammonium hexafluorosilicate((NH4)2SiF6,99.99%,Sigma–Aldrich,USA),iron(II)tetrafluoroborate hexahydrate (Fe(BF4)2?6H2O, 97%, Sigma–Aldrich), and methanol(CH3OH, anhydrous, 99.8%, Sigma–Aldrich) were purchased and used without further purification.

    Trans-2-butene (trans-C4H8, 99.9%), cis-2-butene (cis-C4H8,99.9%), and helium (He, 99.99%) were purchased from Hangzhou Jingong material Co., Ltd. (China). The mixture of 1,3-butadiene/trans-2-butene/1-butene/cis-2-butene/iso-butene/n-butane/isobutane (45/6.5/13/5.5/24/5/1, v/v) was purchased from Shanghai Weichuang Standard Gas Co., Ltd. (China).

    2.2. Material syntheses

    ZU-36-Ni (GeFSIX-3-Ni) was prepared using a literature report[41]. In a typical process, 1 mmol of Ni(BF4)2?6H2O (340 mg),1 mmol of(NH4)2GeF6(223 mg),and 1 g of pyrazine were dissolved in 2 mL of CH3OH and 2 mL of H2O, and stirred at ambient conditions for 2 d, which yielded a blue powder. The blue powder was then heated to 140 °C at 5 °C?min-1and was maintained for 24 h under vacuum to obtain the ZU-36-Ni material. SIFSIX-3-Ni was synthesized with the same method except that (NH4)2GeF6was substituted by (NH4)2SiF6. For ZU-36-Fe, the synthesis procedure is the same as that for GeFSIX-3-Ni,except that Ni(BF4)2?6H2-O was replaced by Fe(BF4)2?6H2O.

    2.3. Characterization

    Powder X-ray diffraction (PXRD) was conducted at room temperature on a Bruker D8 Advance diffractometer (Bruker AXS,Germany) using Cu-Kα radiation (λ = 1.5418 ?). PXRD data treatment and the structural determination were performed using the JANA2006.FullProf.98 program was applied for the Rietveld refinements. The background was refined with a polynomial function.The thermal stability of the obtained materials was investigated via thermalgravimetric analysis (TGA, TA Instruments SDT 600,USA) under N2atmosphere with a flow rate of 20 mL?min-1.

    2.4. Gas adsorption

    The sorption isotherms of C4hydrocarbons at low pressures up to 1 bar(1 bar=105Pa)were collected on a fully automated ASAP 2050 adsorption analyzer (Micromeritics Instruments, USA). The temperature was controlled with a water circulation bath.

    2.5. Breakthrough test of C4 isomers

    The fixed-bed breakthrough tests were conducted on a selfmade dynamic gas breakthrough equipment [30]. The test was conducted using a stainless-steel chromatographic column with an inner diameter of 4.6 mm and length of 50 mm. Samples of ZU-36-Ni, SIFSIX-3-Ni, and ZU-36-Fe were packed in three of the same columns which weighed 0.62, 0.64, and 0.67 g, respectively.The column packed with the sample powders was first activated with a flow of He (10 mL?min-1) at 100 °C for 12 h. After the activation, a cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 0.5 mL?min-1was introduced. After the breakthrough test, the fixed-bed was regenerated under He flow (5 mL?min-1) at 100 °C for 12 h. The actual separation performance of the as-synthesized material for C4mixtures including 1,3-butadiene, trans-2-butene,1-butene, cis-2-butene, iso-butene, n-butane, and iso-butane(1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10,45/6.5/13/5.5/24/5/1,v/v)was further investigated with a flow rate of 0.75 mL?min-1. The real-time outlet gas eluted from the fixedbed was monitored using a gas chromatography (Micro GC-490,Agilent,USA).For studying the effect of humidity on the separation performance, the cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 1 mL?min-1was introduced into a water tank at 298 K, and the outflow gas was then flowed through a sorption column. The outlet gas from the column was monitored using a GC-2010 (Shimadzu, Japan) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD).

    A correction for the dead time was applied by He breakthrough experiments, and the He retention time (He is regarded as nonadsorbed) was applied as the dead time.

    3. Results and discussion

    3.1. Fine-tuned pore structure

    Two ultramicroporous MOFs, ZU-36-Ni and ZU-36-Fe(Fe(GeF6)(pyz)2), were prepared by the reaction of ammonium hexafluorogermanate ((NH4)2GeF6), pyrazine, and Ni(BF4)2or Fe(BF4)2in a CH3OH and H2O mixture,followed by heating the isolated solid at 140 °C for 24 h in vacuo (Figs. 2(a) and (b)). The refined unit cell parameters of ZU-36-Ni were a = b = 6.984 ?,and c = 7.587 ? (also termed as the pore dimension of ZU-36-Ni,Table S2 in Appendix A), which is in accordance with the threedimensional scales of trans-C4H8(7.4 ? × 5.35 ? × 4.16 ?) and favors the preferential binding of trans-C4H8in the unit cells of ZU-36-Ni. In contrast, ZU-36-Fe showed a longer pore cell with c = 7.73 ?, resulting from the weak coordination affinity between Fe2+and the N atoms in the organic linker. Such a different pore dimension may lead to different sorption behaviors and host–guest interaction modes in limited pore space [27]. The introduction of GeF62-with increased Ge–F distance (1.83 ?) results in onedimensional (1D) contracted pore channels compared with SIFSIX-3-Ni (Si–F distance: 1.67 ?). The abundant electronegative F atoms protruding into the 1D pore channels can bind the guest molecule via strong H-bonding[42–45].The quasi-maximum pore sizes(upper limit of the pore size,Fig.S1 in Appendix A)of ZU-36-Ni and ZU-36-Fe(blue break lines in Fig.2(c))are 4.75 and 4.85 ?,respectively. Such ultra-micro pores could efficiently exclude cis-C4H8(4.94 ?, kinetic diameter), but allow the trapping of trans-C4H8(4.31 ?, kinetic diameter) (Fig. 2(d)). The purity of the assynthesized ZU-36-Ni and ZU-36-Fe was confirmed by comparing the PXRD patterns with the calculated patterns of ZU-36-Ni and ZU-36-Fe (Fig. S2 in Appendix A). The Brunauer–Emmett–Teller(BET) surface areas calculated by CO2adsorption isotherms at 273 K were 313 and 295 m2?g-1for ZU-36-Ni and ZU-36-Fe,respectively(Fig. S3 in Appendix A). Thermostability is a key metric that reflects certain aspects of the framework stability.The TGA results demonstrated that ZU-36-Ni is stable up to 340 °C (Fig. S4 in Appendix A), which is relatively superior to the other reported ultramicroporous MOFs such as NbOFFIVE-1-Ni (310 °C) [43] and SIFSIX-3-Ni (210 °C). The improved thermal stability of ZU-36-Ni compared with the analogous MOFs may be attributed to the short and strong bonds between Ni2+and the organic linkers, and the strong binding affinity of GeF62-with Ni2+,which leads to the contracted framework.Furthermore,the structure and adsorption performance of both the anion-pillared MOFs could be well retained after exposure to humid air, indicating their high tolerance to humid air (Figs. S2 and S3).

    3.2. Adsorption performances

    When used as sorbents for the separation of trans-/cis-C4H8,ZU-36-Fe exhibited a typical Langmuir-type adsorption isotherm for trans-C4H8with strong binding affinity and high uptake at low pressures. The trans-C4H8uptake amount on ZU-36-Fe is 1.81 mmol?g-1at 1 bar and 298 K. On the other hand, ZU-36-Ni(Fig. 3(a)) exhibited a stepped-adsorption isotherm for trans-C4H8. At the low-pressure range (< 0.01 bar), the less steep slope of the adsorption isotherm indicated that trans-C4H8interacts less strongly with ZU-36-Ni, which caused the low capture uptake of trans-C4H8at such low pressures. With the pressure increasing,the slope increased, indicating that ZU-36-Ni shows increased and homogeneous binding affinity for trans-C4H8. Finally, ZU-36-Ni showed a remarkable trans-C4H8capacity of 2.45 mmol?g-1(equals to one molecule per cell), which is significantly higher than that on ZU-36-Fe although the pore size is relatively smaller(Fig. 3(b)). Such reversal in adsorption behavior is attributed to the adaptivity of the pore structure of ZU-36-Ni, which allowed the enhanced accommodation of trans-C4H8molecules. A desorption pressure(Pdesor)of 0.01 bar was selected according to the purity and yield requirements of the product. The working capacity(Fig.S5 in Appendix A)of ZU-36-Ni,2.25 mmol?g-1,is much higher than that for ZU-36-Fe (0.77 mmol?g-1). Notably, ZU-36-Ni exhibited much higher uptake for trans-C4H8(2.45 mmol?g-1)than other reported size-sieving materials (Table S3 in Appendix A), such as ITQ-32 (1.1 mmol?g-1) [36] and DD3R [37] (0.832 mmol?g-1at 303 K).In contrast,both ZU-36-Ni and ZU-36-Fe showed relatively negligible adsorption of cis-C4H8because of the molecular exclusion effect. Owing to its relatively smaller aperture size, ZU-36-Ni (4.75 ? vs 4.85 ? for ZU-36-Fe) exhibited a lower cis-C4H8uptake (0.35 mmol?g-1) than ZU-36-Fe (0.5 mmol?g-1) and SIFSIX-3-Ni (0.8 mmol?g-1, Fig. S6 in Appendix A) at 1 bar and 298 K. Such a low cis-C4H8uptake and high trans-C4H8capacity endowed ZU-36-Ni with a benchmark trans-/cis-C4H8uptake ratio of 7, which is much higher than that of ZU-36-Fe (3.6) and the other previously reported materials such as Mg-gallate (3.2) [8],Y-fum-fcu-MOF (0.94) [10], and ZJNU-30 (1.13).

    Fig. 2. Schematic illustration of (a) synthesis and (b) pore structure of ZU-36 material. (c) Quasi-maximum and empirical pore size are defined by paralleled F–F distance(blue break lines)and diagonal F–F distance(pink break lines),respectively,and the unit cell of ZU-36 viewed from a direction with c axis controlled.(d)Molecular structures and sizes of trans-C4H8 and cis-C4H8.

    Fig.3. (a)Stepped sorption isotherms of trans-C4H8 on ZU-36-Ni compared with(b)typical Langmuir adsorption isotherms of trans-C4H8 on ZU-36-Fe(298 K).(c)Trans-/cis-C4H8 adsorption isotherms on other ultramicroporous materials at 298 K.(d)Ideal adsorbed solution theory(IAST)selectivities of various MOFs for trans-/cis-C4H8(50/50,v/v)mixture.

    Other ultramicroporous MOFs were also investigated for comparison.Interpenetrated anion-pillared MOFs with larger pore size only exhibit moderate uptake ratios for trans-/cis-C4H8(Fig. 3(c),Fig. S7 in Appendix A, and Table S3). For example, ZU-32(GeFSIX-2-Cu-i) with a pore window size of 4.5 ? × 4.5 ? exhibits high trans-C4H8and cis-C4H8uptake capacity (3.55 and 2.85 mmol?g-1, respectively) at 1 bar and 298 K but a low uptake ratio of 1.37 (Fig. 3(c)), and moderate separation potential.SIFSIX-1-Cu and ZIF-8-Zn exhibit high but almost the same uptake for both trans- and cis-C4H8, indicating the negligible separation selectivity for trans-/cis-C4H8mixtures (Fig. 3(c)).

    3.3. Separation selectivities

    The feasible separation selectivity of anion-pillared ultramicroporous MOFs for trans-/cis-C4H8(50/50,v/v)mixture were qualitatively evaluated using calculations of the ideal adsorbed solution theory (IAST) (Fig. 3(d), Table S4 in Appendix A) [47]. ZU-36-Ni and ZU-36-Fe displayed separation selectivities of 191 and 170,respectively, which were much higher than that for ZU-32 (7.6),ZIF-8-Zn (1.2), and ZJNU-30 (1.5). Furthermore, the initial slope ratios (Figs. S8–S13 and Table S5 in Appendix A) also suggest that ZU-36-Ni (18.7) exhibits excellent separation performance compared with other materials, such as Ni-gallate (7.9) [8] and ZU-32(7), and can be a promising physical adsorbent for trans-/cis-C4H8separation.

    3.4. Dispersion-corrected density functional theory (DFT-D)calculations

    To better understand the origin of the guest-adaptivity, the binding sites of trans-C4H8were systematically investigated through DFT-D calculations (Figs. 4 and S14 in Appendix A). The initial ZU-36-Ni exhibited a primitive cubic (pcu) network with vicinal pyrazine rings in one cell perpendicular to each other and parallel with the inorganic pillars (Fig. 4(a)). When trans-C4H8was trapped into the pore channels, an obvious rotation of pyrazine was observed to adapt the trans-C4H8molecules (Figs. 4(b)and S14). Trans-C4H8preferentially resides at the middle of the cavity because of the suitable pore dimension and π–π interactions between its sp2carbons and the aromatic ring of pyrazine. After saturation, one trans-C4H8molecule is grasped by eight F atoms from the two planes with C–H???F H-bonding (distances: 2.50–2.59, 3.41, and 3.47 ?) accompanied with the pyrazine rotation by 9.5° (Fig. 4(b)), with a calculated binding energy (ΔE) of 49.6 kJ?mol-1. Such effective binding configuration of trans-C4H8in ZU-36-Ni results from the combination of suitable c-axis length(7.587 ?)and pore size of ZU-36-Ni,which affords full immobilization of one trans-C4H8in one cell. In summary, the guest-adaptive behavior of ZU-36-Ni is realized by the rotation of organic linkers to maximize the host–guest interactions with optimal conformation. Additionally, the transport of trans-C4H8from one cell to another in the 1D pore channels requires co-operative rotation of the pyrazines to accelerate this process owing to the limited pore space [20]. Such adaptive configuration transformation for guest molecules makes a great contribution to enhancing the recognition ability of trans-C4H8and increasing the uptake capacity.

    The calculated binding sites of trans-C4H8in ZU-36-Fe were quite different (Fig. 4(c)). Trans-C4H8is bound only by the four F atoms from the same plane via strong H-bonding,which indicated the availability of a large space unoccupied by the guest molecules in one unit cell. This is consistent with the adsorption isotherm of trans-C4H8on ZU-36-Fe, and only 0.8 molecule of trans-C4H8trapped in each unit cell of ZU-36-Fe, thus leading to a reduced uptake amount of trans-C4H8at saturation. Such a different optimized binding configuration of trans-C4H8in ZU-36-Fe, compared with that in ZU-36-Ni, is due to the fact that the longer c-axis(7.73 ?) in ZU-36-Fe could not fully match the scale or dimension of trans-C4H8. The calculated ΔE of trans-C4H8on ZU-36-Fe was 60.5 kJ?mol-1, which is much higher than that of ZU-36-Ni(49.6 kJ?mol-1), implying the stronger host–guest interactions between trans-C4H8with ZU-36-Fe at low trans-C4H8loading. The lower ΔE on ZU-36-Ni can be ascribed to the compensation by the deformation of the framework (11.0 kJ?mol-1) to adapt the guest molecule. Simultaneously, coverage-dependent adsorption enthalpy (Qst) calculated based on Clausius–Clapeyron equation using the isotherms at different temperatures (Figs. S15 and S16 in Appendix A) shows that the Qstfor trans-C4H8at zero loading on ZU-36-Ni is 42.0 kJ?mol-1(Fig.S17 in Appendix A),which is also lower than that on ZU-36-Fe (61.8 kJ?mol-1), signifying that much milder regeneration conditions are required for ZU-36-Ni compared with those for ZU-36-Fe. To confirm the easier regeneration of ZU-36-Ni,cyclic adsorption tests were conducted with the materials regenerated using the room temperature and vacuum condition (Fig. S18 in Appendix A). Indeed, the results confirmed that ZU-36-Ni can be more easily regenerated with the trans-C4H8uptake well retained, whereas the trans-C4H8uptake on ZU-36-Fe slightly declined under the same conditions, which may be attributed to the insufficient regeneration of ZU-36-Fe resulting from the strong binding affinity for trans-C4H8.

    3.5. Breakthrough experiments

    Fig. 4. (a) Initial framework of ZU-36. Binding configurations of trans-C4H8 in (b) ZU-36-Ni and (c) ZU-36-Fe, respectively, obtained by DFT-D calculations. Color code: H,gray-25%; C, gray; N, blue; Ni, turquoise; Ge, light blue; F, peak green; Fe, lime. Bond length unit: ?.

    Fig. 5. (a) Breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) mixture separation on ZU-36-Ni and ZU-36-Fe (with dead volume excluded; CA/C0: the relative concentration in outlet stream compared with that in feed gas). (b) Cycling breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) separation on ZU-36-Ni.

    The actual separation performances of the trans-/cis-C4H8(50/50, v/v) mixture on ZU-36-Ni and ZU-36-Fe were evaluated using experimental fixed-bed breakthrough tests at 1 bar and 298 K (Fig. 5(a)). Both materials exhibit excellent trans-/cis-C4H8separation performances. Cis-C4H8elutes out of the column of ZU-36-Ni or ZU-36-Fe almost simultaneously with high purity(>99.99%),indicating the excellent sieving effect of both materials for cis-C4H8.Trans-C4H8could be trapped in the ZU-36-Ni fixed bed for about 58 min (93.5 min?g-1) with the corresponding capture amount of 1.15 mmol?g-1, which is better than that of ZU-36-Fe(37 min, 55.2 min?g-1) with a capture amount of 0.72 mmol?g-1.Additionally,a sharp molecular cut-off behavior for the separation of trans-/cis-C4H8mixture was not observed when using SIFSIX-3-Ni(Fig.S19 in Appendix A),which is consistent with the isotherms of trans-/cis-C4H8on the material (Fig. S6). More importantly, for ZU-36-Ni, there was no noticeable loss in trans-C4H8adsorption and separation capacity even after 10 cycles of breakthrough experiments (Fig. 5(b)), illustrating the excellent structural and cycling stability of ZU-36-Ni for trans-/cis-C4H8mixtures separation. Furthermore, the separation performance is unimpeded by humidity(Fig.S20 in Appendix A)showcasing the strong potential of ZU-36-Ni for trans-/cis-C4H8mixture separation for industrial applications. Last but not least, ZU-36-Ni also exhibited good separation performance for the C4mixture (1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10, 45/6.5/13/5.5/24/5/1, v/v, Fig. S21 in Appendix A) indicating that ZU-36-Ni is a promising material for C4hydrocarbon separation.

    4. Conclusions

    In summary, two anion-pillared ultramicroporous MOFs, ZU-36-Ni (GeFSIX-3-Ni) and ZU-36-Fe (GeFSIX-3-Fe) are reported for the first time and used for highly efficient trans-/cis-C4H8splitting.ZU-36-Ni with its guest-adaptive pore channels coming from the rotation of organic linkers, exhibited an interesting step-wise adsorption isotherm for trans-C4H8. This attribute confers ZU-36-Ni with an increased capacity (2.45 mmol?g-1) compared to ZU-36-Fe (1.81 mmol?g-1) that does not possess adaptive pore channels. In addition, ZU-36-Ni adsorbed less cis-C4H8than ZU-36-Fe,as ZU-36-Ni with the contracted pore window size excluded cis-C4H8with a higher efficiency.The excellent trans-/cis-C4H8separation selectivity(191)and high-purity cis-C4H8(99.99%)observed in the breakthrough tests present ZU-36-Ni as an ideal adsorbent for trans-/cis-C4H8separation. This work provides new insights into the structural property–adsorption relationships necessary for anticipating the discovery of smart and efficient porous materials for the separation of hydrocarbon isomers of different dimensions and shapes.

    Acknowledgments

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LZ18B060001), and the National Natural Science Foundation of China (21725603, 21476192, and U1862110).

    Compliance with ethics guidelines

    Zhaoqiang Zhang, Xili Cui, Xiaoming Jiang, Qi Ding, Jiyu Cui,Yuanbin Zhang, Youssef Belmabkhout, Karim Adil, Mohamed Eddaoudi, and Huabin Xing declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.10.013.

    欧美 日韩 精品 国产| 亚洲国产精品专区欧美| 欧美zozozo另类| 妹子高潮喷水视频| 91精品一卡2卡3卡4卡| 边亲边吃奶的免费视频| 国产精品免费大片| 下体分泌物呈黄色| 99久久精品一区二区三区| 天堂中文最新版在线下载| 亚洲av成人精品一二三区| 精品少妇久久久久久888优播| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 国产精品.久久久| 亚洲成人中文字幕在线播放| 黄色怎么调成土黄色| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 午夜福利高清视频| 伦理电影免费视频| 一级黄片播放器| 久久婷婷青草| 亚洲av欧美aⅴ国产| 777米奇影视久久| 我要看黄色一级片免费的| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看| av国产久精品久网站免费入址| 纯流量卡能插随身wifi吗| 欧美+日韩+精品| 中文欧美无线码| 一级二级三级毛片免费看| 少妇 在线观看| 久久这里有精品视频免费| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 久久青草综合色| 国产乱来视频区| 国产久久久一区二区三区| 美女中出高潮动态图| 看十八女毛片水多多多| 国产乱人视频| 青春草亚洲视频在线观看| 免费在线观看成人毛片| 内射极品少妇av片p| 国产一区二区三区av在线| 偷拍熟女少妇极品色| 久久99热6这里只有精品| 中文资源天堂在线| 黄片无遮挡物在线观看| 人人妻人人添人人爽欧美一区卜 | 免费观看在线日韩| 亚洲欧洲日产国产| 欧美3d第一页| 三级经典国产精品| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 日日摸夜夜添夜夜添av毛片| 美女主播在线视频| 日韩免费高清中文字幕av| 国产色爽女视频免费观看| 久久人妻熟女aⅴ| av又黄又爽大尺度在线免费看| 2021少妇久久久久久久久久久| tube8黄色片| av.在线天堂| 爱豆传媒免费全集在线观看| 51国产日韩欧美| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 午夜免费鲁丝| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 日本vs欧美在线观看视频 | 国产日韩欧美亚洲二区| 中文天堂在线官网| 亚洲精品久久午夜乱码| 尤物成人国产欧美一区二区三区| 寂寞人妻少妇视频99o| 777米奇影视久久| 麻豆成人午夜福利视频| av专区在线播放| 亚洲精品视频女| 偷拍熟女少妇极品色| 久热久热在线精品观看| 免费观看在线日韩| 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 欧美 日韩 精品 国产| 看十八女毛片水多多多| 一边亲一边摸免费视频| 热re99久久精品国产66热6| 99re6热这里在线精品视频| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 在线观看一区二区三区激情| 国产黄色免费在线视频| 91精品国产国语对白视频| 国产久久久一区二区三区| 在线天堂最新版资源| 亚洲精品色激情综合| 亚洲欧美中文字幕日韩二区| 欧美极品一区二区三区四区| av.在线天堂| 国产成人精品婷婷| 91精品国产九色| h日本视频在线播放| 亚洲综合色惰| 免费观看的影片在线观看| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 日本爱情动作片www.在线观看| 欧美高清性xxxxhd video| 国产av精品麻豆| 精品午夜福利在线看| 水蜜桃什么品种好| 尾随美女入室| 少妇被粗大猛烈的视频| 一本一本综合久久| 亚洲久久久国产精品| 成人国产麻豆网| 日韩免费高清中文字幕av| 免费人成在线观看视频色| 午夜福利在线在线| 99久久综合免费| 一个人免费看片子| 国产午夜精品久久久久久一区二区三区| 亚洲aⅴ乱码一区二区在线播放| videos熟女内射| 三级国产精品欧美在线观看| 久久青草综合色| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 下体分泌物呈黄色| 久久久久网色| 欧美一区二区亚洲| 一二三四中文在线观看免费高清| 久久久久性生活片| 精品一区二区三卡| 网址你懂的国产日韩在线| 久久久久久九九精品二区国产| 伦理电影免费视频| 亚洲av在线观看美女高潮| 永久网站在线| 激情 狠狠 欧美| 精品99又大又爽又粗少妇毛片| 99精国产麻豆久久婷婷| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| 男女边摸边吃奶| 日韩成人av中文字幕在线观看| 直男gayav资源| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 日日啪夜夜爽| 久久99蜜桃精品久久| 一区二区三区免费毛片| 人妻一区二区av| 亚洲怡红院男人天堂| 日韩亚洲欧美综合| 九草在线视频观看| 亚洲国产欧美人成| 国产欧美日韩一区二区三区在线 | 99热这里只有是精品50| 日产精品乱码卡一卡2卡三| 综合色丁香网| 青春草视频在线免费观看| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 日本欧美国产在线视频| 黄色一级大片看看| 国国产精品蜜臀av免费| 精品99又大又爽又粗少妇毛片| 身体一侧抽搐| 午夜福利视频精品| 青春草视频在线免费观看| 深夜a级毛片| 97热精品久久久久久| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 国产美女午夜福利| 国产av精品麻豆| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看日韩| 51国产日韩欧美| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 中文字幕免费在线视频6| 寂寞人妻少妇视频99o| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| 亚洲精品久久久久久婷婷小说| av在线播放精品| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 人妻制服诱惑在线中文字幕| 国产高清国产精品国产三级 | 欧美国产精品一级二级三级 | 黑丝袜美女国产一区| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 午夜福利高清视频| 中文字幕精品免费在线观看视频 | 春色校园在线视频观看| 国产精品一区二区三区四区免费观看| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区| 日本一二三区视频观看| 五月开心婷婷网| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 最后的刺客免费高清国语| 尾随美女入室| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 久久国产乱子免费精品| 97精品久久久久久久久久精品| 国产白丝娇喘喷水9色精品| 日韩三级伦理在线观看| 国产爽快片一区二区三区| 男女边摸边吃奶| 午夜老司机福利剧场| 亚洲国产精品999| 成人国产av品久久久| 99久久综合免费| 国产精品人妻久久久久久| 国产精品一及| 欧美成人午夜免费资源| 亚洲天堂av无毛| 热99国产精品久久久久久7| 国产探花极品一区二区| 搡老乐熟女国产| 国产高清三级在线| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 边亲边吃奶的免费视频| 婷婷色综合www| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 午夜福利视频精品| av在线老鸭窝| 欧美日韩视频精品一区| 天天躁日日操中文字幕| 又爽又黄a免费视频| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 亚洲国产av新网站| 丰满少妇做爰视频| 97在线人人人人妻| 夜夜看夜夜爽夜夜摸| 自拍欧美九色日韩亚洲蝌蚪91 | 韩国av在线不卡| 亚洲久久久国产精品| 黄片wwwwww| av卡一久久| 国产爽快片一区二区三区| 在线天堂最新版资源| 一级片'在线观看视频| 在线免费观看不下载黄p国产| 国产成人freesex在线| www.色视频.com| 中国国产av一级| 亚洲精品久久午夜乱码| 久久99热这里只有精品18| 少妇 在线观看| 色网站视频免费| 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 亚洲av二区三区四区| 男女国产视频网站| 国产久久久一区二区三区| 国产永久视频网站| 欧美成人a在线观看| 极品少妇高潮喷水抽搐| 久久精品人妻少妇| 天天躁日日操中文字幕| 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| av国产免费在线观看| 欧美xxxx黑人xx丫x性爽| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 色视频www国产| 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂 | 国产精品偷伦视频观看了| 男男h啪啪无遮挡| av在线老鸭窝| 中国三级夫妇交换| av黄色大香蕉| 国产成人免费观看mmmm| 直男gayav资源| 国产一区二区在线观看日韩| 纯流量卡能插随身wifi吗| 中文欧美无线码| 少妇 在线观看| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 亚洲人成网站在线观看播放| 国产亚洲最大av| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91 | 永久网站在线| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 永久网站在线| 亚洲国产精品成人久久小说| 欧美精品人与动牲交sv欧美| 狂野欧美白嫩少妇大欣赏| 国产高潮美女av| 中文字幕精品免费在线观看视频 | 欧美日韩国产mv在线观看视频 | 少妇精品久久久久久久| 欧美区成人在线视频| 一边亲一边摸免费视频| 久久久久性生活片| 汤姆久久久久久久影院中文字幕| 久久国产亚洲av麻豆专区| 赤兔流量卡办理| 99久久精品热视频| 免费黄色在线免费观看| 熟女电影av网| 国精品久久久久久国模美| av在线老鸭窝| 亚洲欧美日韩无卡精品| 国产 精品1| 国产av码专区亚洲av| 亚洲色图综合在线观看| 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 男人添女人高潮全过程视频| 亚洲综合色惰| 美女视频免费永久观看网站| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 人妻一区二区av| 有码 亚洲区| 又爽又黄a免费视频| 久久99精品国语久久久| 大香蕉97超碰在线| av天堂中文字幕网| 欧美zozozo另类| av视频免费观看在线观看| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有精品一区| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 熟女av电影| 99久久精品热视频| 亚洲欧美日韩另类电影网站 | 最近中文字幕2019免费版| 亚洲国产精品专区欧美| 99热全是精品| 国产成人精品福利久久| 精品午夜福利在线看| 成年免费大片在线观看| 高清午夜精品一区二区三区| 亚洲欧洲日产国产| 亚洲图色成人| 男女免费视频国产| a级毛片免费高清观看在线播放| 内地一区二区视频在线| 成年美女黄网站色视频大全免费 | 不卡视频在线观看欧美| 有码 亚洲区| 久久精品国产a三级三级三级| 亚洲怡红院男人天堂| 国产乱人偷精品视频| 亚洲av男天堂| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 国产在线男女| 免费大片18禁| 九草在线视频观看| 精品久久久精品久久久| 1000部很黄的大片| 久久精品国产亚洲网站| 精品人妻视频免费看| 中文字幕亚洲精品专区| 日本wwww免费看| 99久久人妻综合| 国产成人91sexporn| 观看免费一级毛片| 亚洲内射少妇av| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| 一二三四中文在线观看免费高清| 插逼视频在线观看| 丝袜脚勾引网站| 午夜福利在线在线| 亚洲av不卡在线观看| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 亚洲国产欧美在线一区| 欧美高清成人免费视频www| 欧美日韩视频高清一区二区三区二| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| 亚洲欧美日韩无卡精品| 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 男人添女人高潮全过程视频| 亚洲av电影在线观看一区二区三区| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 日本av免费视频播放| 狠狠精品人妻久久久久久综合| 亚洲国产精品专区欧美| 亚洲丝袜综合中文字幕| 国产综合精华液| 免费大片黄手机在线观看| 国模一区二区三区四区视频| 国产免费一级a男人的天堂| 免费黄色在线免费观看| 最黄视频免费看| 久久精品国产a三级三级三级| 亚州av有码| 国产av一区二区精品久久 | 久久婷婷青草| 少妇裸体淫交视频免费看高清| 成人免费观看视频高清| 一级毛片我不卡| 男女免费视频国产| 日本黄色片子视频| 成人国产麻豆网| 亚洲av成人精品一区久久| 国产精品三级大全| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 欧美日韩一区二区视频在线观看视频在线| 51国产日韩欧美| 亚洲成人中文字幕在线播放| 久久久a久久爽久久v久久| 麻豆国产97在线/欧美| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 26uuu在线亚洲综合色| 涩涩av久久男人的天堂| a级毛片免费高清观看在线播放| 日韩国内少妇激情av| 97热精品久久久久久| 91久久精品电影网| 久热久热在线精品观看| 免费不卡的大黄色大毛片视频在线观看| 免费人成在线观看视频色| 久久人人爽av亚洲精品天堂 | a 毛片基地| 亚洲欧美日韩无卡精品| 在线观看人妻少妇| 一级毛片电影观看| 性高湖久久久久久久久免费观看| 成年人午夜在线观看视频| 一区二区三区精品91| 99久久人妻综合| 少妇的逼好多水| 内射极品少妇av片p| 午夜老司机福利剧场| 永久网站在线| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 免费人成在线观看视频色| 欧美日韩视频高清一区二区三区二| av天堂中文字幕网| 久久久久国产精品人妻一区二区| 美女主播在线视频| 欧美97在线视频| 天堂8中文在线网| av福利片在线观看| 97精品久久久久久久久久精品| 少妇被粗大猛烈的视频| 国产色婷婷99| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人 | 91狼人影院| 一区二区三区免费毛片| 男人舔奶头视频| 九九爱精品视频在线观看| 国产亚洲91精品色在线| 免费看光身美女| 高清欧美精品videossex| 久久久午夜欧美精品| 99久久人妻综合| 国产精品欧美亚洲77777| 国产成人一区二区在线| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片 | 亚洲av不卡在线观看| 在线观看三级黄色| 国产探花极品一区二区| 色婷婷久久久亚洲欧美| 日本午夜av视频| av在线app专区| 国产精品一区二区在线不卡| 亚洲色图av天堂| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久 | 久久久久久久久久成人| 毛片女人毛片| 亚洲欧美日韩无卡精品| 精品久久久噜噜| 亚洲精品久久午夜乱码| 人妻夜夜爽99麻豆av| 18禁动态无遮挡网站| 国产国拍精品亚洲av在线观看| 久久久久国产网址| a 毛片基地| 日韩不卡一区二区三区视频在线| av视频免费观看在线观看| 美女内射精品一级片tv| av网站免费在线观看视频| 纯流量卡能插随身wifi吗| 亚洲内射少妇av| 成人免费观看视频高清| 97精品久久久久久久久久精品| 日韩制服骚丝袜av| 在线播放无遮挡| 18禁裸乳无遮挡免费网站照片| av在线观看视频网站免费| 在线观看人妻少妇| 日韩成人av中文字幕在线观看| 日本黄大片高清| 国产一级毛片在线| 国产国拍精品亚洲av在线观看| 精品酒店卫生间| 国产精品99久久99久久久不卡 | 国产一区二区三区av在线| 国产成人精品一,二区| 啦啦啦中文免费视频观看日本| 日韩欧美 国产精品| 成年av动漫网址| 夫妻午夜视频| av福利片在线观看| 日本黄色片子视频| 亚洲av福利一区| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 亚洲国产精品专区欧美| 人妻一区二区av| 国产精品嫩草影院av在线观看| 黄片wwwwww| 赤兔流量卡办理| 亚洲va在线va天堂va国产| 亚洲熟女精品中文字幕| 国产色婷婷99| 国产精品久久久久久av不卡| 欧美亚洲 丝袜 人妻 在线| 国产精品麻豆人妻色哟哟久久| 国产综合精华液| 午夜福利网站1000一区二区三区| 中文字幕免费在线视频6| 国产精品爽爽va在线观看网站| 美女脱内裤让男人舔精品视频| 婷婷色av中文字幕| 免费久久久久久久精品成人欧美视频 | 久久精品人妻少妇| videos熟女内射| 日本爱情动作片www.在线观看| 久久久久久九九精品二区国产| 精品人妻一区二区三区麻豆| 校园人妻丝袜中文字幕| 在线观看av片永久免费下载| 老熟女久久久| 超碰av人人做人人爽久久| 三级国产精品欧美在线观看| 九九爱精品视频在线观看| 欧美性感艳星| 日韩欧美 国产精品| 高清在线视频一区二区三区| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美清纯卡通| 哪个播放器可以免费观看大片| 80岁老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 久久精品久久久久久噜噜老黄| 91精品一卡2卡3卡4卡| 老司机影院成人| 国内揄拍国产精品人妻在线| 欧美日本视频| 国产老妇伦熟女老妇高清| 最新中文字幕久久久久| 亚洲国产精品999|