• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels

    2022-06-11 09:01:26ZhoqingZhngXiliCuiXiomingJingQiDingJiyuCuiYuninZhngYoussefBelmkhoutKrimAdilMohmedEddoudiHuinXing
    Engineering 2022年4期

    Zhoqing Zhng,Xili Cui,Xioming Jing,Qi Ding,Jiyu Cui,Yunin Zhng,Youssef Belmkhout,Krim Adil, Mohmed Eddoudi, Huin Xing,*

    a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

    c Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

    Keywords:Adsorption and separation Trans-/cis-butene Ultramicroporous metal–organic frameworks Pore engineering Guest-adaptive

    ABSTRACT Trans-/cis-olefin isomers play a vital role in the petrochemical industry. The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties.Herein, two new tailor-made anion-pillared ultramicroporous metal–organic frameworks (MOFs), ZU-36-Ni and ZU-36-Fe(GeFSIX-3-Ni and GeFSIX-3-Fe)are reported for the first time for the efficient trans-/cis-2-butene (trans-/cis-C4H8) mixture splitting by enhanced molecular exclusion. Notably, ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C4H8 with a remarkable adsorption capacity (2.45 mmol?g-1) while effectively rejecting cis-C4H8 with a high purity of 99.99%.The dispersion-corrected density functional theory (DFT-D) calculation suggested that the guestadaptive behavior of ZU-36-Ni in response to trans-C4H8 is derived from the organic linker rotation and the optimal pore dimensions, which not only improve the favorable adsorption/diffusion of trans-C4H8 with optimal host–guest interactions, but also enhance the size-exclusion of cis-C4H8. This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition.

    1. Introduction

    Trans-/cis-isomers differ only in the spatial arrangement of the atoms.Remarkably,such a minor variation imparts significant differences in their reactivity in organic synthesis and pharmacological activity. Trans-/cis-olefins have important applications in chemical research and processing. For example, trans- and cis-2-butenes (C4H8), the simplest olefins displaying trans-/cisisomerism,are the basic raw materials for producing various types of polymers and organic chemicals. Notably, cis-C4H8is a crucial feedstock for the production of maleic acid, butadiene, and polymers. However, the inevitable presence of trans-C4H8as an impurity in cis-C4H8adversely impacts the quality of the products [1–4].High-purity trans-C4H8(>95%)is significant for several applications, such as the production of propylene via the metathesis of trans-C4H8and ethylene [5,6]. Therefore, it is highly necessary to separate cis-C4H8and trans-C4H8. The similarity in the molecular structures and boiling points (Fig. 1(a) and Table S1 in Appendix A)of trans-/cis-olefin isomers poses great challenges in their separation [7–10]. Furthermore, 2-C4H8is highly reactive and tends to undergo copolymerization or dimerization at elevated temperatures. This characteristic renders the isolation of the high purity individual 2-C4H8isomers highly challenging via the traditional energy-intensive extractive distillation [9,11–12]. Size-selective physisorption using ultramicroporous materials is a promising energy-efficient alternative and has been demonstrated as a promising candidate for the efficient separation of light hydrocarbon mixtures[13–16]. However, to the best of our knowledge,the efficient separation of trans-/cis-olefin isomers by porous materials has rarely been reported.

    Fig. 1. Schematic of representative robust porous materials with (a) rigid pore structures and (b) a typical Langmuir adsorption isotherm for microporous materials. Novel porous materials with (c) guest-adaptive pore channels and (d) corresponding desired stepped adsorption isotherm for increasing the working capacity. 1 bar = 105 Pa.

    Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are custom-tailored porous crystalline materials with tunable pore chemistry. This kind of material has recently been successfully used as systems for separating mixtures of varying degrees of complexity [16], such as paraffins and olefins[13,17–21], olefins and alkynes [23–31], n-isomer and iso-isomer mixtures [12,32–34], and other analogous molecules. However,achieving high efficiency for the high-level separation complexity using MOFs is still exceedingly challenging [16] when the differences in size and shape between the probes, such as trans-/cisisomers, are subtle. The trans-/cis-isomer separation selectivity,and particularly the diffusivity, achieved using the current stateof-the-art MOFs is still not suitable for use in industrial processes in comparison to distillation [9]. For example, zeolitic imidazolate framework-7 (ZIF-7) with its narrow pore window size and structural flexibility exhibits gate-opening phenomenon in response to the external stimuli of trans-/cis-C4H8. However, both the isomers exert the same gate-opening pressure of 2 kPa, which leads to a poor separation performance [35]. Zeolites with rigid frameworks have been used to separate trans-/cis-C4H8mixtures by sieving effect, however, their trans-C4H8uptake capacity is very low at 1.05 and 0.83 mmol?g-1on ITQ-32(ITQ stands for Instituto de Tecnología Química)[36] and deca-dodecasil 3 rhombohedral (DD3R)[37], respectively, owing to the limited space available for the gas uptake in the rigid pore structures within zeolites (Fig. 1(a)). Similar low trans-C4H8capacity was also observed for metal-gallates(Ni,Mg,and Co)owing to their robust nature[8].In general,robust zeolites exhibit Langmuir-type adsorption isotherms for trans-C4H8which is the cause for their limited loading capacity (Fig. 1(b)) in swing adsorption processes driven by pressure. This, in turn, presents major bottlenecks in their practical application owing to recyclability concerns. Furthermore, porous materials with large pore sizes (> 5.0 ?, 1 ? = 10-10m) usually exhibit high capacity but almost no separation selectivity for trans-/cis-C4H8, such as Y-fum-fcu-MOF (fum stands for fumarate; fcu stands for facecentered cubic) [10] and ZJNU-30 (ZJNU stands for Zhejiang Normal University).Thus,the discovery of a porous material with optimal pore dimensions, functionality, and energetics, that could discriminate or sieve particular trans-/cis-olefin isomers without sacrificing high gas uptake capacity, is a significantly profound challenge.

    Anion-pillared ultramicroporous MOFs featuring electronegative inorganic and contracted pore surface [38–41] have unveiled outstanding separation performance for several important industrial gases such as C2H2/C2H4[28]and C3H6/C3H8[21].The variable combination of inorganic anions and metal ions enables the ultrafine-tuning of the pore apertures within the 0.1–0.5 ? scale[41–46].Herein,we report the results from the further exploration of this fluorinated ultramicroporous platform that allowed us to unveil ZU-36-Ni (GeFSIX-3-Ni, Ni(GeF6)(pyz)2, GeFSIX = GeF62-,3 = pyrazine = pyz), which displayed an unprecedented efficiency in trapping significant amounts of trans-C4H8while achieving effective exclusion of the cis-isomers (Fig. 1(c)). Importantly, ZU-36-Ni displayed an interesting step-wise adsorption isotherm that indicates an enhanced adsorption capacity and regeneration process with less energy input. Moreover, the adaptive pore channels for separating trans-C4H8, derived from the organic linker rotation for the guest molecule,conferred an increased sorption capacity to ZU-36-Ni (2.45 mmol?g-1) while the contracted pore window enhanced the cis-C4H8exclusion effect,leading to improved trans-/cis-C4H8separation selectivity (Fig. 1(d)).

    2. Material and methods

    2.1. Materials

    Nickel(II) tetrafluoroborate hexahydrate (Ni(BF4)2?6H2O, 99%,J&K Scientific, China), ammonium hexafluorogermanate ((NH4)2-GeF6, 99.99%, J&K Scientific), ammonium hexafluorosilicate((NH4)2SiF6,99.99%,Sigma–Aldrich,USA),iron(II)tetrafluoroborate hexahydrate (Fe(BF4)2?6H2O, 97%, Sigma–Aldrich), and methanol(CH3OH, anhydrous, 99.8%, Sigma–Aldrich) were purchased and used without further purification.

    Trans-2-butene (trans-C4H8, 99.9%), cis-2-butene (cis-C4H8,99.9%), and helium (He, 99.99%) were purchased from Hangzhou Jingong material Co., Ltd. (China). The mixture of 1,3-butadiene/trans-2-butene/1-butene/cis-2-butene/iso-butene/n-butane/isobutane (45/6.5/13/5.5/24/5/1, v/v) was purchased from Shanghai Weichuang Standard Gas Co., Ltd. (China).

    2.2. Material syntheses

    ZU-36-Ni (GeFSIX-3-Ni) was prepared using a literature report[41]. In a typical process, 1 mmol of Ni(BF4)2?6H2O (340 mg),1 mmol of(NH4)2GeF6(223 mg),and 1 g of pyrazine were dissolved in 2 mL of CH3OH and 2 mL of H2O, and stirred at ambient conditions for 2 d, which yielded a blue powder. The blue powder was then heated to 140 °C at 5 °C?min-1and was maintained for 24 h under vacuum to obtain the ZU-36-Ni material. SIFSIX-3-Ni was synthesized with the same method except that (NH4)2GeF6was substituted by (NH4)2SiF6. For ZU-36-Fe, the synthesis procedure is the same as that for GeFSIX-3-Ni,except that Ni(BF4)2?6H2-O was replaced by Fe(BF4)2?6H2O.

    2.3. Characterization

    Powder X-ray diffraction (PXRD) was conducted at room temperature on a Bruker D8 Advance diffractometer (Bruker AXS,Germany) using Cu-Kα radiation (λ = 1.5418 ?). PXRD data treatment and the structural determination were performed using the JANA2006.FullProf.98 program was applied for the Rietveld refinements. The background was refined with a polynomial function.The thermal stability of the obtained materials was investigated via thermalgravimetric analysis (TGA, TA Instruments SDT 600,USA) under N2atmosphere with a flow rate of 20 mL?min-1.

    2.4. Gas adsorption

    The sorption isotherms of C4hydrocarbons at low pressures up to 1 bar(1 bar=105Pa)were collected on a fully automated ASAP 2050 adsorption analyzer (Micromeritics Instruments, USA). The temperature was controlled with a water circulation bath.

    2.5. Breakthrough test of C4 isomers

    The fixed-bed breakthrough tests were conducted on a selfmade dynamic gas breakthrough equipment [30]. The test was conducted using a stainless-steel chromatographic column with an inner diameter of 4.6 mm and length of 50 mm. Samples of ZU-36-Ni, SIFSIX-3-Ni, and ZU-36-Fe were packed in three of the same columns which weighed 0.62, 0.64, and 0.67 g, respectively.The column packed with the sample powders was first activated with a flow of He (10 mL?min-1) at 100 °C for 12 h. After the activation, a cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 0.5 mL?min-1was introduced. After the breakthrough test, the fixed-bed was regenerated under He flow (5 mL?min-1) at 100 °C for 12 h. The actual separation performance of the as-synthesized material for C4mixtures including 1,3-butadiene, trans-2-butene,1-butene, cis-2-butene, iso-butene, n-butane, and iso-butane(1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10,45/6.5/13/5.5/24/5/1,v/v)was further investigated with a flow rate of 0.75 mL?min-1. The real-time outlet gas eluted from the fixedbed was monitored using a gas chromatography (Micro GC-490,Agilent,USA).For studying the effect of humidity on the separation performance, the cis-C4H8/trans-C4H8(50/50, v/v) mixture with a flow rate of 1 mL?min-1was introduced into a water tank at 298 K, and the outflow gas was then flowed through a sorption column. The outlet gas from the column was monitored using a GC-2010 (Shimadzu, Japan) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD).

    A correction for the dead time was applied by He breakthrough experiments, and the He retention time (He is regarded as nonadsorbed) was applied as the dead time.

    3. Results and discussion

    3.1. Fine-tuned pore structure

    Two ultramicroporous MOFs, ZU-36-Ni and ZU-36-Fe(Fe(GeF6)(pyz)2), were prepared by the reaction of ammonium hexafluorogermanate ((NH4)2GeF6), pyrazine, and Ni(BF4)2or Fe(BF4)2in a CH3OH and H2O mixture,followed by heating the isolated solid at 140 °C for 24 h in vacuo (Figs. 2(a) and (b)). The refined unit cell parameters of ZU-36-Ni were a = b = 6.984 ?,and c = 7.587 ? (also termed as the pore dimension of ZU-36-Ni,Table S2 in Appendix A), which is in accordance with the threedimensional scales of trans-C4H8(7.4 ? × 5.35 ? × 4.16 ?) and favors the preferential binding of trans-C4H8in the unit cells of ZU-36-Ni. In contrast, ZU-36-Fe showed a longer pore cell with c = 7.73 ?, resulting from the weak coordination affinity between Fe2+and the N atoms in the organic linker. Such a different pore dimension may lead to different sorption behaviors and host–guest interaction modes in limited pore space [27]. The introduction of GeF62-with increased Ge–F distance (1.83 ?) results in onedimensional (1D) contracted pore channels compared with SIFSIX-3-Ni (Si–F distance: 1.67 ?). The abundant electronegative F atoms protruding into the 1D pore channels can bind the guest molecule via strong H-bonding[42–45].The quasi-maximum pore sizes(upper limit of the pore size,Fig.S1 in Appendix A)of ZU-36-Ni and ZU-36-Fe(blue break lines in Fig.2(c))are 4.75 and 4.85 ?,respectively. Such ultra-micro pores could efficiently exclude cis-C4H8(4.94 ?, kinetic diameter), but allow the trapping of trans-C4H8(4.31 ?, kinetic diameter) (Fig. 2(d)). The purity of the assynthesized ZU-36-Ni and ZU-36-Fe was confirmed by comparing the PXRD patterns with the calculated patterns of ZU-36-Ni and ZU-36-Fe (Fig. S2 in Appendix A). The Brunauer–Emmett–Teller(BET) surface areas calculated by CO2adsorption isotherms at 273 K were 313 and 295 m2?g-1for ZU-36-Ni and ZU-36-Fe,respectively(Fig. S3 in Appendix A). Thermostability is a key metric that reflects certain aspects of the framework stability.The TGA results demonstrated that ZU-36-Ni is stable up to 340 °C (Fig. S4 in Appendix A), which is relatively superior to the other reported ultramicroporous MOFs such as NbOFFIVE-1-Ni (310 °C) [43] and SIFSIX-3-Ni (210 °C). The improved thermal stability of ZU-36-Ni compared with the analogous MOFs may be attributed to the short and strong bonds between Ni2+and the organic linkers, and the strong binding affinity of GeF62-with Ni2+,which leads to the contracted framework.Furthermore,the structure and adsorption performance of both the anion-pillared MOFs could be well retained after exposure to humid air, indicating their high tolerance to humid air (Figs. S2 and S3).

    3.2. Adsorption performances

    When used as sorbents for the separation of trans-/cis-C4H8,ZU-36-Fe exhibited a typical Langmuir-type adsorption isotherm for trans-C4H8with strong binding affinity and high uptake at low pressures. The trans-C4H8uptake amount on ZU-36-Fe is 1.81 mmol?g-1at 1 bar and 298 K. On the other hand, ZU-36-Ni(Fig. 3(a)) exhibited a stepped-adsorption isotherm for trans-C4H8. At the low-pressure range (< 0.01 bar), the less steep slope of the adsorption isotherm indicated that trans-C4H8interacts less strongly with ZU-36-Ni, which caused the low capture uptake of trans-C4H8at such low pressures. With the pressure increasing,the slope increased, indicating that ZU-36-Ni shows increased and homogeneous binding affinity for trans-C4H8. Finally, ZU-36-Ni showed a remarkable trans-C4H8capacity of 2.45 mmol?g-1(equals to one molecule per cell), which is significantly higher than that on ZU-36-Fe although the pore size is relatively smaller(Fig. 3(b)). Such reversal in adsorption behavior is attributed to the adaptivity of the pore structure of ZU-36-Ni, which allowed the enhanced accommodation of trans-C4H8molecules. A desorption pressure(Pdesor)of 0.01 bar was selected according to the purity and yield requirements of the product. The working capacity(Fig.S5 in Appendix A)of ZU-36-Ni,2.25 mmol?g-1,is much higher than that for ZU-36-Fe (0.77 mmol?g-1). Notably, ZU-36-Ni exhibited much higher uptake for trans-C4H8(2.45 mmol?g-1)than other reported size-sieving materials (Table S3 in Appendix A), such as ITQ-32 (1.1 mmol?g-1) [36] and DD3R [37] (0.832 mmol?g-1at 303 K).In contrast,both ZU-36-Ni and ZU-36-Fe showed relatively negligible adsorption of cis-C4H8because of the molecular exclusion effect. Owing to its relatively smaller aperture size, ZU-36-Ni (4.75 ? vs 4.85 ? for ZU-36-Fe) exhibited a lower cis-C4H8uptake (0.35 mmol?g-1) than ZU-36-Fe (0.5 mmol?g-1) and SIFSIX-3-Ni (0.8 mmol?g-1, Fig. S6 in Appendix A) at 1 bar and 298 K. Such a low cis-C4H8uptake and high trans-C4H8capacity endowed ZU-36-Ni with a benchmark trans-/cis-C4H8uptake ratio of 7, which is much higher than that of ZU-36-Fe (3.6) and the other previously reported materials such as Mg-gallate (3.2) [8],Y-fum-fcu-MOF (0.94) [10], and ZJNU-30 (1.13).

    Fig. 2. Schematic illustration of (a) synthesis and (b) pore structure of ZU-36 material. (c) Quasi-maximum and empirical pore size are defined by paralleled F–F distance(blue break lines)and diagonal F–F distance(pink break lines),respectively,and the unit cell of ZU-36 viewed from a direction with c axis controlled.(d)Molecular structures and sizes of trans-C4H8 and cis-C4H8.

    Fig.3. (a)Stepped sorption isotherms of trans-C4H8 on ZU-36-Ni compared with(b)typical Langmuir adsorption isotherms of trans-C4H8 on ZU-36-Fe(298 K).(c)Trans-/cis-C4H8 adsorption isotherms on other ultramicroporous materials at 298 K.(d)Ideal adsorbed solution theory(IAST)selectivities of various MOFs for trans-/cis-C4H8(50/50,v/v)mixture.

    Other ultramicroporous MOFs were also investigated for comparison.Interpenetrated anion-pillared MOFs with larger pore size only exhibit moderate uptake ratios for trans-/cis-C4H8(Fig. 3(c),Fig. S7 in Appendix A, and Table S3). For example, ZU-32(GeFSIX-2-Cu-i) with a pore window size of 4.5 ? × 4.5 ? exhibits high trans-C4H8and cis-C4H8uptake capacity (3.55 and 2.85 mmol?g-1, respectively) at 1 bar and 298 K but a low uptake ratio of 1.37 (Fig. 3(c)), and moderate separation potential.SIFSIX-1-Cu and ZIF-8-Zn exhibit high but almost the same uptake for both trans- and cis-C4H8, indicating the negligible separation selectivity for trans-/cis-C4H8mixtures (Fig. 3(c)).

    3.3. Separation selectivities

    The feasible separation selectivity of anion-pillared ultramicroporous MOFs for trans-/cis-C4H8(50/50,v/v)mixture were qualitatively evaluated using calculations of the ideal adsorbed solution theory (IAST) (Fig. 3(d), Table S4 in Appendix A) [47]. ZU-36-Ni and ZU-36-Fe displayed separation selectivities of 191 and 170,respectively, which were much higher than that for ZU-32 (7.6),ZIF-8-Zn (1.2), and ZJNU-30 (1.5). Furthermore, the initial slope ratios (Figs. S8–S13 and Table S5 in Appendix A) also suggest that ZU-36-Ni (18.7) exhibits excellent separation performance compared with other materials, such as Ni-gallate (7.9) [8] and ZU-32(7), and can be a promising physical adsorbent for trans-/cis-C4H8separation.

    3.4. Dispersion-corrected density functional theory (DFT-D)calculations

    To better understand the origin of the guest-adaptivity, the binding sites of trans-C4H8were systematically investigated through DFT-D calculations (Figs. 4 and S14 in Appendix A). The initial ZU-36-Ni exhibited a primitive cubic (pcu) network with vicinal pyrazine rings in one cell perpendicular to each other and parallel with the inorganic pillars (Fig. 4(a)). When trans-C4H8was trapped into the pore channels, an obvious rotation of pyrazine was observed to adapt the trans-C4H8molecules (Figs. 4(b)and S14). Trans-C4H8preferentially resides at the middle of the cavity because of the suitable pore dimension and π–π interactions between its sp2carbons and the aromatic ring of pyrazine. After saturation, one trans-C4H8molecule is grasped by eight F atoms from the two planes with C–H???F H-bonding (distances: 2.50–2.59, 3.41, and 3.47 ?) accompanied with the pyrazine rotation by 9.5° (Fig. 4(b)), with a calculated binding energy (ΔE) of 49.6 kJ?mol-1. Such effective binding configuration of trans-C4H8in ZU-36-Ni results from the combination of suitable c-axis length(7.587 ?)and pore size of ZU-36-Ni,which affords full immobilization of one trans-C4H8in one cell. In summary, the guest-adaptive behavior of ZU-36-Ni is realized by the rotation of organic linkers to maximize the host–guest interactions with optimal conformation. Additionally, the transport of trans-C4H8from one cell to another in the 1D pore channels requires co-operative rotation of the pyrazines to accelerate this process owing to the limited pore space [20]. Such adaptive configuration transformation for guest molecules makes a great contribution to enhancing the recognition ability of trans-C4H8and increasing the uptake capacity.

    The calculated binding sites of trans-C4H8in ZU-36-Fe were quite different (Fig. 4(c)). Trans-C4H8is bound only by the four F atoms from the same plane via strong H-bonding,which indicated the availability of a large space unoccupied by the guest molecules in one unit cell. This is consistent with the adsorption isotherm of trans-C4H8on ZU-36-Fe, and only 0.8 molecule of trans-C4H8trapped in each unit cell of ZU-36-Fe, thus leading to a reduced uptake amount of trans-C4H8at saturation. Such a different optimized binding configuration of trans-C4H8in ZU-36-Fe, compared with that in ZU-36-Ni, is due to the fact that the longer c-axis(7.73 ?) in ZU-36-Fe could not fully match the scale or dimension of trans-C4H8. The calculated ΔE of trans-C4H8on ZU-36-Fe was 60.5 kJ?mol-1, which is much higher than that of ZU-36-Ni(49.6 kJ?mol-1), implying the stronger host–guest interactions between trans-C4H8with ZU-36-Fe at low trans-C4H8loading. The lower ΔE on ZU-36-Ni can be ascribed to the compensation by the deformation of the framework (11.0 kJ?mol-1) to adapt the guest molecule. Simultaneously, coverage-dependent adsorption enthalpy (Qst) calculated based on Clausius–Clapeyron equation using the isotherms at different temperatures (Figs. S15 and S16 in Appendix A) shows that the Qstfor trans-C4H8at zero loading on ZU-36-Ni is 42.0 kJ?mol-1(Fig.S17 in Appendix A),which is also lower than that on ZU-36-Fe (61.8 kJ?mol-1), signifying that much milder regeneration conditions are required for ZU-36-Ni compared with those for ZU-36-Fe. To confirm the easier regeneration of ZU-36-Ni,cyclic adsorption tests were conducted with the materials regenerated using the room temperature and vacuum condition (Fig. S18 in Appendix A). Indeed, the results confirmed that ZU-36-Ni can be more easily regenerated with the trans-C4H8uptake well retained, whereas the trans-C4H8uptake on ZU-36-Fe slightly declined under the same conditions, which may be attributed to the insufficient regeneration of ZU-36-Fe resulting from the strong binding affinity for trans-C4H8.

    3.5. Breakthrough experiments

    Fig. 4. (a) Initial framework of ZU-36. Binding configurations of trans-C4H8 in (b) ZU-36-Ni and (c) ZU-36-Fe, respectively, obtained by DFT-D calculations. Color code: H,gray-25%; C, gray; N, blue; Ni, turquoise; Ge, light blue; F, peak green; Fe, lime. Bond length unit: ?.

    Fig. 5. (a) Breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) mixture separation on ZU-36-Ni and ZU-36-Fe (with dead volume excluded; CA/C0: the relative concentration in outlet stream compared with that in feed gas). (b) Cycling breakthrough experiments for trans-/cis-C4H8 (50/50, v/v) separation on ZU-36-Ni.

    The actual separation performances of the trans-/cis-C4H8(50/50, v/v) mixture on ZU-36-Ni and ZU-36-Fe were evaluated using experimental fixed-bed breakthrough tests at 1 bar and 298 K (Fig. 5(a)). Both materials exhibit excellent trans-/cis-C4H8separation performances. Cis-C4H8elutes out of the column of ZU-36-Ni or ZU-36-Fe almost simultaneously with high purity(>99.99%),indicating the excellent sieving effect of both materials for cis-C4H8.Trans-C4H8could be trapped in the ZU-36-Ni fixed bed for about 58 min (93.5 min?g-1) with the corresponding capture amount of 1.15 mmol?g-1, which is better than that of ZU-36-Fe(37 min, 55.2 min?g-1) with a capture amount of 0.72 mmol?g-1.Additionally,a sharp molecular cut-off behavior for the separation of trans-/cis-C4H8mixture was not observed when using SIFSIX-3-Ni(Fig.S19 in Appendix A),which is consistent with the isotherms of trans-/cis-C4H8on the material (Fig. S6). More importantly, for ZU-36-Ni, there was no noticeable loss in trans-C4H8adsorption and separation capacity even after 10 cycles of breakthrough experiments (Fig. 5(b)), illustrating the excellent structural and cycling stability of ZU-36-Ni for trans-/cis-C4H8mixtures separation. Furthermore, the separation performance is unimpeded by humidity(Fig.S20 in Appendix A)showcasing the strong potential of ZU-36-Ni for trans-/cis-C4H8mixture separation for industrial applications. Last but not least, ZU-36-Ni also exhibited good separation performance for the C4mixture (1,3-C4H6/trans-C4H8/n-C4H8/cis-C4H8/iso-C4H8/n-C4H10/iso-C4H10, 45/6.5/13/5.5/24/5/1, v/v, Fig. S21 in Appendix A) indicating that ZU-36-Ni is a promising material for C4hydrocarbon separation.

    4. Conclusions

    In summary, two anion-pillared ultramicroporous MOFs, ZU-36-Ni (GeFSIX-3-Ni) and ZU-36-Fe (GeFSIX-3-Fe) are reported for the first time and used for highly efficient trans-/cis-C4H8splitting.ZU-36-Ni with its guest-adaptive pore channels coming from the rotation of organic linkers, exhibited an interesting step-wise adsorption isotherm for trans-C4H8. This attribute confers ZU-36-Ni with an increased capacity (2.45 mmol?g-1) compared to ZU-36-Fe (1.81 mmol?g-1) that does not possess adaptive pore channels. In addition, ZU-36-Ni adsorbed less cis-C4H8than ZU-36-Fe,as ZU-36-Ni with the contracted pore window size excluded cis-C4H8with a higher efficiency.The excellent trans-/cis-C4H8separation selectivity(191)and high-purity cis-C4H8(99.99%)observed in the breakthrough tests present ZU-36-Ni as an ideal adsorbent for trans-/cis-C4H8separation. This work provides new insights into the structural property–adsorption relationships necessary for anticipating the discovery of smart and efficient porous materials for the separation of hydrocarbon isomers of different dimensions and shapes.

    Acknowledgments

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LZ18B060001), and the National Natural Science Foundation of China (21725603, 21476192, and U1862110).

    Compliance with ethics guidelines

    Zhaoqiang Zhang, Xili Cui, Xiaoming Jiang, Qi Ding, Jiyu Cui,Yuanbin Zhang, Youssef Belmabkhout, Karim Adil, Mohamed Eddaoudi, and Huabin Xing declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.10.013.

    91久久精品电影网| 一个人免费在线观看电影| 给我免费播放毛片高清在线观看| 国产 一区 欧美 日韩| 欧美不卡视频在线免费观看| 国产 一区精品| 国产一区二区亚洲精品在线观看| 国产精品一区www在线观看| 亚洲国产精品国产精品| 国产黄片美女视频| 色吧在线观看| 高清毛片免费观看视频网站| 蜜桃久久精品国产亚洲av| 国产伦一二天堂av在线观看| 亚洲乱码一区二区免费版| 久久精品综合一区二区三区| 国产美女午夜福利| 人人妻人人看人人澡| 国产成人精品久久久久久| 久久久成人免费电影| 欧美zozozo另类| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 全区人妻精品视频| 亚洲18禁久久av| 亚洲va在线va天堂va国产| 内地一区二区视频在线| 插逼视频在线观看| 高清日韩中文字幕在线| 一本一本综合久久| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 国产一区二区在线av高清观看| 午夜精品在线福利| 99精品在免费线老司机午夜| 男女啪啪激烈高潮av片| 欧美一区二区国产精品久久精品| 免费在线观看成人毛片| 伦精品一区二区三区| 国产精品综合久久久久久久免费| a级毛片a级免费在线| 国产美女午夜福利| 尾随美女入室| 欧美bdsm另类| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 久久久色成人| 成人欧美大片| 亚洲精品一区av在线观看| 激情 狠狠 欧美| 精品无人区乱码1区二区| a级一级毛片免费在线观看| 亚洲成人久久性| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 国产欧美日韩精品一区二区| 亚洲美女黄片视频| 女人十人毛片免费观看3o分钟| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 午夜a级毛片| 精品不卡国产一区二区三区| 国产一区亚洲一区在线观看| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 午夜福利高清视频| 中文字幕熟女人妻在线| 午夜精品国产一区二区电影 | 插逼视频在线观看| 精品久久国产蜜桃| 国产69精品久久久久777片| 亚洲精华国产精华液的使用体验 | 激情 狠狠 欧美| 三级毛片av免费| 午夜日韩欧美国产| 一区二区三区高清视频在线| 久久99热这里只有精品18| 亚洲av熟女| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器| 伦精品一区二区三区| 精品久久久久久久久亚洲| av视频在线观看入口| 午夜精品国产一区二区电影 | 老熟妇仑乱视频hdxx| 国产一区二区亚洲精品在线观看| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 国产精品,欧美在线| 春色校园在线视频观看| 国产色婷婷99| 2021天堂中文幕一二区在线观| 日韩成人av中文字幕在线观看 | 国产精品,欧美在线| 久久午夜亚洲精品久久| 国产亚洲精品av在线| 午夜影院日韩av| 日日干狠狠操夜夜爽| 国产91av在线免费观看| 日本黄大片高清| 九色成人免费人妻av| 一进一出抽搐动态| 亚洲无线观看免费| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 国产av一区在线观看免费| 欧美区成人在线视频| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 黄色一级大片看看| 亚洲熟妇熟女久久| 三级毛片av免费| 欧美+日韩+精品| 一a级毛片在线观看| 久久久久国内视频| 久久久欧美国产精品| 亚洲美女黄片视频| 国产成人a∨麻豆精品| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 欧美性猛交黑人性爽| 国产精品伦人一区二区| 日本-黄色视频高清免费观看| 床上黄色一级片| 精品无人区乱码1区二区| 精品少妇黑人巨大在线播放 | 国产激情偷乱视频一区二区| 全区人妻精品视频| 久久久久久伊人网av| 99久国产av精品国产电影| 国产伦精品一区二区三区四那| av中文乱码字幕在线| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 一a级毛片在线观看| 亚洲va在线va天堂va国产| 免费人成在线观看视频色| 亚洲精品在线观看二区| 插阴视频在线观看视频| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 久久国内精品自在自线图片| 天天一区二区日本电影三级| 亚洲熟妇中文字幕五十中出| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 老女人水多毛片| 日韩欧美 国产精品| 国产精品女同一区二区软件| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| а√天堂www在线а√下载| 久久精品国产鲁丝片午夜精品| 国产一级毛片七仙女欲春2| 成年女人永久免费观看视频| 蜜桃久久精品国产亚洲av| 寂寞人妻少妇视频99o| 乱人视频在线观看| 亚洲国产精品国产精品| 欧美日本亚洲视频在线播放| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 久久久久久久久久黄片| 欧美xxxx性猛交bbbb| 亚洲欧美日韩东京热| 国产成人91sexporn| 在线免费十八禁| 久久精品国产亚洲av涩爱 | 毛片女人毛片| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 搡老熟女国产l中国老女人| 成人国产麻豆网| 国产淫片久久久久久久久| 久久久久久久久久成人| 国产亚洲91精品色在线| 99热这里只有精品一区| 大型黄色视频在线免费观看| 美女cb高潮喷水在线观看| 91在线观看av| 亚洲av免费在线观看| 99热全是精品| 亚洲一区二区三区色噜噜| 中国国产av一级| 亚洲不卡免费看| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 成人亚洲欧美一区二区av| 久久久精品94久久精品| 一本精品99久久精品77| 色在线成人网| 禁无遮挡网站| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 亚洲美女搞黄在线观看 | 女的被弄到高潮叫床怎么办| 大型黄色视频在线免费观看| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| 欧美极品一区二区三区四区| 99国产极品粉嫩在线观看| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 精品乱码久久久久久99久播| 亚洲美女搞黄在线观看 | 九九爱精品视频在线观看| 日本免费一区二区三区高清不卡| 一级毛片我不卡| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 搡老熟女国产l中国老女人| 久久久久久久久久黄片| 麻豆精品久久久久久蜜桃| 女同久久另类99精品国产91| 亚洲欧美日韩卡通动漫| 欧美日韩国产亚洲二区| 国产亚洲91精品色在线| 亚洲天堂国产精品一区在线| 最新中文字幕久久久久| 国产精品一二三区在线看| 九九在线视频观看精品| 日韩欧美免费精品| 成人综合一区亚洲| av免费在线看不卡| 晚上一个人看的免费电影| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 丰满乱子伦码专区| 国产色婷婷99| 97超视频在线观看视频| 亚洲不卡免费看| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 国产精品久久久久久精品电影| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| 久久天躁狠狠躁夜夜2o2o| 欧美日韩国产亚洲二区| 亚洲最大成人av| 欧美一级a爱片免费观看看| 91av网一区二区| 能在线免费观看的黄片| 免费在线观看影片大全网站| 午夜福利视频1000在线观看| 国产白丝娇喘喷水9色精品| av在线天堂中文字幕| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 一级黄片播放器| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 国产精品人妻久久久久久| 精品乱码久久久久久99久播| 国产在视频线在精品| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 久久精品影院6| 又爽又黄a免费视频| av国产免费在线观看| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 欧美精品国产亚洲| 国内精品久久久久精免费| 久久久成人免费电影| 极品教师在线视频| 久久国产乱子免费精品| 国产精品伦人一区二区| 国产 一区精品| 在线看三级毛片| 免费在线观看影片大全网站| 国产亚洲精品久久久com| 波野结衣二区三区在线| av卡一久久| 欧美人与善性xxx| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 亚洲第一电影网av| 久久亚洲精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 亚洲久久久久久中文字幕| 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看| 久久这里只有精品中国| 免费观看的影片在线观看| 亚洲国产日韩欧美精品在线观看| 日韩制服骚丝袜av| 在线免费十八禁| 久久久久国产网址| 免费高清视频大片| 国产精品一二三区在线看| 欧美最新免费一区二区三区| 长腿黑丝高跟| 欧美中文日本在线观看视频| 国产老妇女一区| a级毛片免费高清观看在线播放| 成人二区视频| 女同久久另类99精品国产91| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片| 成人特级黄色片久久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲国产精品久久男人天堂| 成人毛片a级毛片在线播放| 亚洲av一区综合| 国产色爽女视频免费观看| 国产av在哪里看| 嫩草影院入口| 欧美潮喷喷水| 在线观看一区二区三区| 色av中文字幕| 搡女人真爽免费视频火全软件 | 欧美又色又爽又黄视频| 国产日本99.免费观看| 久久欧美精品欧美久久欧美| 国产亚洲欧美98| 国产男靠女视频免费网站| 免费在线观看成人毛片| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 国内少妇人妻偷人精品xxx网站| 两个人视频免费观看高清| 国产成年人精品一区二区| 能在线免费观看的黄片| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 97超级碰碰碰精品色视频在线观看| 一个人看的www免费观看视频| 99热网站在线观看| 赤兔流量卡办理| 久久精品国产亚洲av香蕉五月| 少妇人妻精品综合一区二区 | 午夜老司机福利剧场| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 成人无遮挡网站| 成人精品一区二区免费| 日韩中字成人| 99在线视频只有这里精品首页| 黄色配什么色好看| 在线免费观看的www视频| 又爽又黄无遮挡网站| av.在线天堂| 少妇裸体淫交视频免费看高清| 丝袜喷水一区| 国产一区二区三区av在线 | 日本黄色片子视频| 我的老师免费观看完整版| 99久国产av精品国产电影| 国产精品一区二区性色av| 亚洲国产色片| 日产精品乱码卡一卡2卡三| 日本黄色片子视频| avwww免费| 九九爱精品视频在线观看| 国产蜜桃级精品一区二区三区| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 亚洲在线自拍视频| 久久精品综合一区二区三区| 91狼人影院| 超碰av人人做人人爽久久| 国产精品亚洲美女久久久| 精品免费久久久久久久清纯| 婷婷精品国产亚洲av| 一级毛片我不卡| 精品一区二区三区视频在线观看免费| 国产精品一区www在线观看| 日韩精品青青久久久久久| 国产视频内射| 婷婷色综合大香蕉| 亚洲精品乱码久久久v下载方式| 一区福利在线观看| 男女那种视频在线观看| 天堂动漫精品| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 久久人人爽人人片av| 国产一区二区三区av在线 | 少妇高潮的动态图| 日韩欧美免费精品| 日韩欧美在线乱码| 一夜夜www| 一个人看视频在线观看www免费| 床上黄色一级片| 最近最新中文字幕大全电影3| 亚洲av成人av| 国产亚洲精品av在线| 久久综合国产亚洲精品| h日本视频在线播放| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 国产高潮美女av| 少妇熟女欧美另类| 国产不卡一卡二| 亚洲图色成人| 波多野结衣高清作品| 看片在线看免费视频| 我要看日韩黄色一级片| 婷婷亚洲欧美| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 97超级碰碰碰精品色视频在线观看| 高清日韩中文字幕在线| 精品一区二区三区av网在线观看| 淫秽高清视频在线观看| 黄色配什么色好看| 免费观看的影片在线观看| ponron亚洲| 桃色一区二区三区在线观看| 久久精品久久久久久噜噜老黄 | 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看| 精品一区二区三区av网在线观看| 日韩强制内射视频| 99久久九九国产精品国产免费| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区视频在线观看免费| 少妇熟女欧美另类| 男女下面进入的视频免费午夜| 国产在视频线在精品| 床上黄色一级片| 亚洲性久久影院| 日日摸夜夜添夜夜爱| 夜夜看夜夜爽夜夜摸| 国产麻豆成人av免费视频| 日韩欧美精品v在线| 亚洲第一电影网av| 国产一区二区激情短视频| 97超碰精品成人国产| 丝袜美腿在线中文| av在线蜜桃| 97超级碰碰碰精品色视频在线观看| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 狂野欧美激情性xxxx在线观看| 亚洲国产精品合色在线| 亚洲欧美清纯卡通| 国产精品久久久久久亚洲av鲁大| 99热这里只有精品一区| 国产av不卡久久| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 亚洲一区二区三区色噜噜| 日本撒尿小便嘘嘘汇集6| 久久精品夜夜夜夜夜久久蜜豆| 天堂网av新在线| 欧美性感艳星| 插逼视频在线观看| 韩国av在线不卡| 国产高清激情床上av| 天堂网av新在线| 99九九线精品视频在线观看视频| av天堂中文字幕网| 美女 人体艺术 gogo| av国产免费在线观看| 丝袜喷水一区| 偷拍熟女少妇极品色| 一级黄色大片毛片| 午夜激情福利司机影院| 久久精品久久久久久噜噜老黄 | 尤物成人国产欧美一区二区三区| 97在线视频观看| 亚洲欧美日韩东京热| 久久国内精品自在自线图片| 午夜影院日韩av| 级片在线观看| 听说在线观看完整版免费高清| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看 | 欧美又色又爽又黄视频| 亚洲图色成人| 亚洲精品国产成人久久av| 又黄又爽又免费观看的视频| 日韩亚洲欧美综合| 美女免费视频网站| 精品一区二区三区av网在线观看| 观看美女的网站| 久久精品91蜜桃| 国产69精品久久久久777片| 日日撸夜夜添| 尾随美女入室| 春色校园在线视频观看| 日本与韩国留学比较| 乱码一卡2卡4卡精品| 我要看日韩黄色一级片| 国产亚洲精品久久久久久毛片| 久久精品夜色国产| www.色视频.com| 看片在线看免费视频| 一个人观看的视频www高清免费观看| 12—13女人毛片做爰片一| 精品日产1卡2卡| 99在线人妻在线中文字幕| 久久精品国产亚洲av涩爱 | 99热精品在线国产| 亚洲七黄色美女视频| 亚洲中文字幕一区二区三区有码在线看| 国产69精品久久久久777片| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华液的使用体验 | 国产 一区 欧美 日韩| 偷拍熟女少妇极品色| av.在线天堂| 男人狂女人下面高潮的视频| 久久久久久久久久黄片| 日本熟妇午夜| 国产真实乱freesex| 日韩精品有码人妻一区| 少妇的逼水好多| 亚洲五月天丁香| 91午夜精品亚洲一区二区三区| 国内久久婷婷六月综合欲色啪| a级毛片a级免费在线| 女同久久另类99精品国产91| 麻豆av噜噜一区二区三区| 久久精品国产清高在天天线| 国产精品亚洲美女久久久| 99久国产av精品国产电影| 婷婷色综合大香蕉| 国产激情偷乱视频一区二区| 中国美女看黄片| 午夜福利高清视频| 久久人人爽人人爽人人片va| 欧美激情久久久久久爽电影| 国产精品一区www在线观看| 草草在线视频免费看| 国产精品人妻久久久久久| 一本久久中文字幕| 久久国产乱子免费精品| 啦啦啦韩国在线观看视频| 天天躁日日操中文字幕| 亚洲av中文av极速乱| 国产综合懂色| 综合色丁香网| 亚洲成人久久性| 亚洲不卡免费看| av在线天堂中文字幕| 永久网站在线| 成人亚洲精品av一区二区| 欧美性猛交黑人性爽| 国产熟女欧美一区二区| 中出人妻视频一区二区| 国国产精品蜜臀av免费| 欧美区成人在线视频| 一级av片app| 哪里可以看免费的av片| .国产精品久久| 欧美3d第一页| 99在线人妻在线中文字幕| 国产精品1区2区在线观看.| 夜夜夜夜夜久久久久| 长腿黑丝高跟| av天堂中文字幕网| 男人狂女人下面高潮的视频| 国产一区二区激情短视频| 精品不卡国产一区二区三区| 国产精品伦人一区二区| 久久久久久国产a免费观看| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 亚州av有码| 免费无遮挡裸体视频| 久久99热6这里只有精品| 国产男人的电影天堂91| 伦理电影大哥的女人| 97超级碰碰碰精品色视频在线观看| 国产男人的电影天堂91| 亚洲av二区三区四区| 亚洲一区高清亚洲精品| 精品久久国产蜜桃| 在线天堂最新版资源| 校园春色视频在线观看| 成人漫画全彩无遮挡|