• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery

    2022-06-11 09:03:20WnyuZhoMinGuoZhijunZuoXioliZhoHunglinDouYijieZhngShiyingLiZihenWuYyunShiZifengXioweiYng
    Engineering 2022年4期

    Wnyu Zho,Min Guo,Zhijun Zuo,Xioli Zho,Hunglin Dou,Yijie Zhng,Shiying Li,Zihen Wu,Yyun Shi, Zifeng M*, Xiowei Yng,*

    a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

    b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China

    c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

    d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    Keywords:Sodium metal anode Dendrite-free Compact electrodeposition Sodiophilic bismuthide Ion diffusion barrier

    ABSTRACT Sodium(Na)metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+nucleation and rapid Na+migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities.Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density(up to 5 mA?cm-2),high areal capacity(up to 5 mA?h?cm-2),and long-term cycling stability (up to 2800 h at 2 mA?cm-2).

    1. Introduction

    Rechargeable batteries with high volumetric energy densities that can be charged/discharged at high rates are desirable for electric vehicles(EVs)and other high-power devices[1–5].While considerable progress has been achieved in the most commercialized lithium-ion batteries, depleted Li resources remain a significant issue for market consideration [6–10]. Na-ion batteries offer an affordable and earth-abundant alternative to Li counterpart [11–13]; however, the commonly used hard carbon anodes with high-rate features suffer the suboptimal energy densities [14–16]. Na with a low electrochemical potential and high theoretical capacity is considered a promising anode material [17–21]. However, dendrite growth and loose deposition stacking remain the major barriers impeding the application of Na anodes in engineering, especially at high rates [22–32].

    The formation of dendrites on Na anodes stems from uneven ion distribution and electrodeposition[33,34].An ideal Na deposition at high current densities requires rapidly and evenly distributed Na+flux. Otherwise, Na+would prefer to selectively electrodeposite on local sites, causing dendrite or porous stacking growth[35].During the stripping process,Na ions have to migrate from the interior of the bulk Na anodes into the electrolyte[36,37].Nevertheless,Na in the dense metal foil primarily diffuses through sluggish lattice diffusion (10-9cm2?s-1) with a high Na+diffusion barrier [37–41], thus possibly leading to the localized dissolution of metallic Na during the high-rate stripping process, followed by the collapse of local solid electrolyte interphase (SEI) layer, and then triggering dendrite growth in the following plating process[37].To address the above issues,tactics of introducing ionic transport paths with a low Na+diffusion barrier is conducive to accelerate the Na diffusion throughout the bulk anodes. Although complex electrodes with mixed ion and electron-conducting scaffolds have been reported in recent studies,commonly using porous structures may result in irreversible electrolyte consumption and low volumetric capacity [25,42–46]. The balance between the fast charge/discharge, dendrite-free deposition, and compact stacking remains challenging.

    Here, we introduced ‘‘sodiophilic” Na3Bi penetration into Na anodes to build abundant phase-boundary ion-transport channels.Ion diffusion along the phase boundaries is supposed to enable several orders of magnitude faster than lattice diffusion [41,47–49].Thus,Na ions quickly extract/insert along the boundaries between Na and Na3Bi phase during stripping and plating processes, thus maintaining the even ion-flux distribution as shown in Fig. 1(a).Moreover, the sodiophilic bismuthide enables uniform and dense Na deposition during cycling,thus aiding high volumetric capacity.The Na3Bi-penetrated Na hybrid anode delivers a high current density of 5 mA?cm-2along with a capacity of 5 mA?h?cm-2for over 300 h and ultralong cycle life (over 2800 h) at 2 mA?cm-2under 2 mA?h?cm-2. The Na3V2(PO4)3(NVP)/(Na/Na3Bi) full cell exhibits superior electrochemical performance than those with the bare Na foil anodes.

    2. Results and discussion

    Fig.1 shows the comparison between Na3Bi-penetrated Na and Na on Cu foil (Na/Cu anode) during initial plating, subsequent stripping, and plating behaviors. During predepositing Na on Cu foil, Na+flux preferentially deposits at tips because of the convergent electrical field, thus forming non-uniform initial deposition(Fig. 1(b)). The sluggish and uneven Na+diffusion paths lead to localized dissolution and deposition over cycling in subsequent stripping and plating processes. The resulting cavities and volumetric fluctuations induce continuous destruction and repair of the SEI,thus becoming a potential danger of dendrite growth.Conversely, Na+flux nuclear homogenously on the Na3Bi framework for the initial plating because of the strong affinity between Na and Na3Bi, thereby filling the inner space of the Na3Bi framework(Fig. 1(a)) to ensure the compactness of Na3Bi-penetrated Na hybrid anode and deliver high volumetric capacity. Correspondingly,Na+rapidly exits/enters along the boundaries,thus maintaining the stability of the anode interface. Unlike the Na/bulk Na3Bi anode, although because of the sodiophilic nature of the Na3Bi material,bulk Na3Bi can lead to uniform deposition to some certain extent.However,because of the lack of a framework to accommodate metallic Na, it tends to concentrate on the upper part of the anode, which is not conducive to long-term cycle stability(Scheme S1 in Appendix A).

    The compact Na anodes with Na3Bi penetration (Na/Na3Bi anode) was developed by electroplating metallic Na into a threedimensional (3D) Na3Bi framework. The Na3Bi framework was evolved from bismuth (Bi) powder through alloying/dealloying processes (Figs. S1 and S2 in Appendix A) [50,51]. Fig. 2(a) shows the scanning electron microscopy (SEM, Nova NanoSEM450, FEI company, USA) image. The Na3Bi framework presents a coral-like structure, and the unique morphology makes it easier for Na+to be deposited uniformly (Fig. 2(b), as described later). In a highresolution transmission electron microscope (HRTEM, JEM-2100,JEOL,Japan)image(Fig.S3 in Appendix A),the interplanar distance of 4.04 ? (1 ? = 10-10m) corresponded to (101) crystal planes of Na3Bi. After electroplating, metallic Na is completely embedded in the Na3Bi framework to form the Na3Bi-penetrated Na anodes,as shown in Figs. 2(c) and (d). The prominent peaks in the X-ray diffraction (XRD, D8 Advance, Bruker, Germany) spectra are well matched to the characteristic Na3Bi and Na, confirming that the presence of Na does not affect the composition of the framework(Fig. S4 in Appendix A). We set up two control groups, namely,the Na/bulk Na3Bi (i.e., without the alloying/dealloying process and framework structure)and Na/Cu anodes,to compare the superiority of the Na/Na3Bi anode.Furthermore,the difference between the control groups is described in detail in Appendix A.

    The ‘‘sodiophilic” Na3Bi framework leads to uniform local ion distribution and delivers homogenous inner-space Na+plating.The energy to overcome the nucleation barrier between Na and substrates is remarked as a nucleation overpotential. As shown in Figs. 2(b) and S5 in Appendix A, the overpotential on Cu is~19 mV at 0.1 mA?cm-2and ~20 mV at 1 mA?cm-2, whereas Na3Bi framework and bulk Na3Bi show an extremely small overpotential (below 4 mV) at the same current density. Differences became apparent with increase in current (Fig. S6 in Appendix A).Thus,both bulk Na3Bi and Na3Bi framework samples effectively reduce the nucleation overpotential, thus confirming the sodiophilic nature of Na3Bi. The same conclusion could be drawn in the phase diagram where Na–Bi alloy exists, and there is no solubility for Na–Cu at room temperature(Fig.S7 in Appendix A),confirming that lower nucleation barriers are present on Na3Bi [52].

    Fig. 1. Schematic for Na stripping/plating in (a) Na3Bi-penetrated Na and (b) Na/Cu anode.

    Fig.2. (a)SEM images of the Na3Bi framework before penetrating in Na anode.(b) Na plating curves on three matrix samples at 0.1 mA?cm-2,showing overpotential of Na nucleation.SEM images of top and cross view of(c,d)compact Na anodes with Na3Bi penetration and(e,f)Na on Cu foil.The insets schematically elucidate the initial plating morphology.

    Uniform and compact deposition of Na on Na3Bi could be visually observed in SEM images.As shown in Fig.S8 in Appendix A,Na surrounds and covers the framework with even distribution and fills the original Na3Bi framework with the increasing initial plating capacity increases (from 3 to 5 mA?h?cm-2). Top and cross-sectional SEM images show a smooth surface and compact cross-section at 8 mA?h?cm-2of capacity (Figs. 2(c) and (d)).Moreover,the corresponding energy dispersive X-ray spectrometer(EDX, Model 550i, IXRF, USA) mapping intuitively presents the uniform deposition(Figs.S9 and S10 in Appendix A).Consequently,the dense electrode structure demonstrates the close volumetric capacity to the theoretical value of bulk Na with nearly the maximum sodium capacity this framework could withstand. However,mossy and walnut-like Na could be observed on Na plating on Cu foil, which confirms the formation of dendrite growth after nucleating Na on the top of the Cu foil.Furthermore,uneven deposition results in a porous and loose structure(Figs.2(e)and(f)),which is not conducive to subsequent anode long-term durability performance. As for bulk Na3Bi, the deposition of Na is still nonuniform (Fig. S11 in Appendix A), confirming the importance of the penetrated sodiophilic frameworks to the uniform and dense deposition. Based on the above evidence, we demonstrated that the‘‘sodiophilic”Na3Bi framework is prone to induce uniform local ion distribution, thereby delivering homogenous the inner-space Na+plating and suppressing volume fluctuations.

    In addition to the even nucleation,the ionic diffusion barrier of pure Na and Na3Bi was studied by using density-functional theory(DFT)calculation.By equivalent adsorption sites,the diffusion barrier of Na+in all directions can be calculated[53,54].Figs.3(a)and(b) show the minimum energy path for Na diffusion on Na and Na3Bi surfaces,and Figs.3(c)and(d)show Na diffusion along with the minimum energy path among different adsorption sites. We also compared the Na+adsorption energy on different adsorption sites (Figs. 3(e), S12, and Table S1 in Appendix A). The maximum Na+adsorption energy of pure Na and Na3Bi materials are -1.04 and -1.44 eV (1 eV = 1.602176 × 10-19J), respectively. The reduced adsorption energy of Na+on Na3Bi indicates that Na+is inclined to deposit on Na3Bi,thus ensuring the uniform deposition of metallic Na on the Na3Bi framework.The Na+diffusion barrier of Na3Bi(110) is 0.14 eV; however, that of pure Na(100) is 0.27 eV(Fig. 3(e)). The rapid Na+transport on Na3Bi(110) surface ensures phase boundaries between metallic Na and Na3Bi with high Na+migration. For metallic Na, the 0.27 eV of Na+diffusion barrier guides one-dimensional growth pattern to form Na dendrites(Fig. 3(e)). Consequently, 3D boundary diffusion paths are distributed in the entire anode, as shown in Fig. 3(f). Moreover, the diffusion coefficient (D) and corresponding ionic conductivity of Na+in the Na3Bi bulk phase were calculated by galvanostatic intermittent titration technique (GITT) test are 7 × 10-8cm2?s-1and 9.8 × 10-4S?m-1, respectively (Fig. S13 in Appendix A). The high Na+diffusion coefficient indicates that Na3Bi can withstand a part of Na+transportation.As shown in Fig.S14 in Appendix A,the GITT curves of Na/Na3Bi||Na/Na3Bi anode delivers lower overpotential compared to that of Na||Na anode,thus showing faster mass transfer kinetics of the Na/Na3Bi electrode.

    Electrochemical deposition/dissolution behaviors were further studied,and the top and cross-section of surface morphology were characterized (Figs. 4 and S15 in Appendix A). We notice an interesting phenomenon that no matter how the capacity of Na/Na3Bi anode changes during plating or stripping,the anode surface morphology always remains uniform and flat. The comparison of SEM images between Na/Na3Bi and Na/Cu anode with plating capacity of 3 and 5 mA?h?cm-2clearly indicate that Na/Cu anode is accompanied by uneven deposition and dendrites formation (Figs. 4(a)–(d)). As shown in Figs. 4(e)–(j), theoretically, Na3Bi could be gradually exposed with sodium capacity decreasing;however,the surface still maintains a relatively flat morphology, which indicates that the Na stripping process is entirely carried out on the Na/Na3Bi anode. In this manner, the integrity of the SEI formed on the surface is preserved and gradually stabilizes during subsequent plating and stripping. Cycled-anodes were disassembled and replaced in carbonate electrolyte containing specific Cl element to further confirm the stripping/deposition behaviors of bare Na along with Na/Na3Bi anode. As shown in Fig. S16 in Appendix A,EDX elemental exhibits the strong Cl signal is distributed over the bare Na foil and the content is more than 3%, indicating the permeation of electrolyte into the interior of the anode. However,Na3Bi-penetrated Na anodes maintain their dense structure with the Cl element’s weak signal on the cross-section. Consequently,the SEI layer of Na/Na3Bi anode remains stable, preventing the simultaneous permeation of electrolytes [44]. Theoretical volume change of ‘‘hostless” Na could reach 200% in the corresponding process (Fig. S17 in Appendix A); however, Na3Bi-penetrated Na anodes with different sodium capacities could almost maintain the same thickness, conducive to stability.

    The possible explanation for the flat surface is that theoretically,the metal holes during the stripping process would be left at the interface between Na and the SEI layer, which tend to submerge into the bulk of Na by diffusion. Unfortunately, lattice diffusion delivers a severe situation to atomic migration and is followed by poor Na diffusivity:The diffusivity of Na atoms in the Na metal possesses a low value of 10-9cm2?s-1(25 °C) [38]. Consequently,holes accumulate at the sodium/SEI interface and lead to the concentration of large cavities when the rate of Na+extraction is higher than that of holes submergence[37],which is not beneficial for the stability of the SEI layer[36].As for the Na3Bi-penetrated Na anodes,the Na and Na3Bi boundaries enable fast Na+diffusion such that the Na vacancies generating in the surface layer can be quickly filled to maintain the stability of the SEI layer and anode. Consequently,the stripping process can mobilize the Na source and help prevent SEI changes caused by the run-off of the surface sodium.As a result, the embedded Na is protected from exposure to the electrolyte, which causes low coulombic efficiency (CE) and contributes to the electrode’s long-life cycling durability.

    Fig.3. The minimum energy path for Na diffusion on(a)Na and(b)Na3Bi surfaces.Green and purple balls represent Na and Bi atoms.The energy barrier of Na diffusion along with the minimum energy path on (c) Na and (d) Na3Bi surfaces. Red ball stands for the diffusion Na. (e) Comparison of the energy barrier of Na diffusion and adsorption energies on Na and Na3Bi surfaces. (f) Schematic of 3D boundary diffusion path in Na/Na3Bi anode.

    Fig.4. Investigation of sodium plating/stripping process of Na/Na3Bi and Na/Cu anode.Top view SEM images between(a,b)Na/Na3Bi and(c,d)Na/Cu anode during plating process with 3 and 5 mA?h?cm-2.(e–j)Top and cross view SEM images of Na/Na3Bi anode during stripping process with(e,h)8,(f,i)5,and(g,j)3 mA?h?cm-2 capacity.The inset pictures schematically elucidate the presence of sodium inside the anode.

    CE is an important indicator to investigate the durability of anodes[55].The CE measurement was performed with three working electrodes(Cu foil,bulk Na3Bi,and Na3Bi framework)from the current densities of 2–5 mA?cm-2with capacities of from 2 to 5 mA?h?cm-2(Figs. 5(a), 5(b), and S18 in Appendix A). Over the 900 cycles, CE of Na3Bi could reach 99.78% at 2 mA?cm-2and 2 mA?h?cm-2, indicating SEI stability; however, Na deposition/stripping on the bulk Na3Bi and Cu foil samples exhibit lower CE with high fluctuation (Fig. 5(a)). The instability of SEI could be reflected by the low CE values on Cu foil and bulk Na3Bi, while the large fluctuation is attributed to the formation of dead Na and the consumption of electrolytes. The CE of Na3Bi framework anode reaches 97.25% over 300 cycles when the capacity is 4 mA?h?cm-2. Similar CE values and high retention exist for other current density and plating/stripping capacity (Fig. S18). The CE of Na/Na3Bi anode in this study is higher than that of scaffoldconstructing works and equal to that of artificial SEI-constructing works (Fig. S19 and Table S2 in Appendix A).

    The nature of the interface between electrolyte components and anodes can be reflected by the Tafel plot[46,56].Mass transfer dominants current density in high overpotential areas. The higher exchange current density (1.2 compared with 0.058 mA?cm-2)indicates that the Na/Na3Bi anode delivers a faster mass transfer process than that of Na foil (Fig. 5(c)). Electrochemical impedance spectroscopy (EIS, VMP3, Bio-Logic, France) is an effective method to research interface changes between electrolyte components and anodes before and after 50 cycles among Na/Cu anode, Na/bulk Na3Bi anode, and Na/Na3Bi anode (Figs. 5(d) and S20 in Appendix A).Before cycling,the interfacial impedances of Na/Na3Bi, Na/bulk Na3Bi, and Na/Cu anodes are ~2, ~3, and ~25 Ω, respectively.After repetitive cycling, Na/Cu anode showed augmented interfacial impedances to 55 Ω, which is commonly observed because of the SEI accumulation and excessive dead Na build-up; conversely,benefited from the fast Na+diffusion and a stable interface,the resistance of Na/Na3Bi anode maintained low and stable(~1.5 Ω).

    Fig.5. The CE of Na deposition of three samples for(a)2 mA?h?cm-2 and 2 mA?cm-2,and(b)4 mA?h?cm-2 and 4 mA?cm-2.(c)Tafel plots obtained from cyclic voltammetry measurements. (d) Nyquist plot with Na/Cu electrode, Na/bulk Na3Bi anode, and Na/Na3Bi anode before and after 50 cycles.

    The galvanostatic cycling durability for Na/Cu anode, Na/bulk Na3Bi anode and Na/Na3Bi anode was investigated.Fig.6(a)shows the voltage profiles for the three anodes cycled for 2 mA?cm-2along with 2 mA?h?cm-2. Note that the Na/Na3Bi anode exhibits low overpotential (~10 mV) with long-life stability for over 2800 h, while the other two anodes fail in 400 h. Moreover, Na/Na3Bi anode displays ~35.5 mV of low overpotentials after 300 h at a current density of 5 mA?cm-2with 5 mA?h?cm-2, which is superior to those of Na/Cu and Na/bulk Na3Bi anode, affirming the excellent stability of Na3Bi at high rates and with deep plating/stripping behaviors(Fig.6(b)).Top and cross view SEM images(Figs. 6(c)–(f) and S21 in Appendix A) are obtained to study the derivation of the cycling durability of Na/Na3Bi anode:Smooth surface morphology and compact Na3Bi-penetrated structure occur during the whole cycling, whereas increasingly uneven deposition and gradually loose structure cause the failure of Na/Cu anode in a short time. X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, USA) was also used to examine the SEI formed in the cycled anode(Fig.S22 in Appendix A).The C 1s spectrum can be fitted using three peaks with the binding energies of 288.2 eV (RCH2ONa), 286.0 eV (C–O), and 284.8 eV (C–C and C–H), whereas the O 1s spectrum shows a corresponding peak at 535.5 eV (C–O), both of which are consistent with sodium alkoxides being the main reduction product of diglyme [57,58]. The O 1s spectrum also shows a peak at 530.9 eV (Na–O). Combining these analyses with the Na 1s spectrum,we deduce that the Na 1s feature at 1071.0 eV comprises two overlapping peaks (Na–O and Na–F), which are consistent with the tabulated values for Na2O and NaF. These results indicate the formation of Na2O and NaOH(532.8 eV)as the reaction product of Na metal with trace amounts of O2and H2O in the Ar-filled glovebox(<0.5 ppm)and NaF as the main reduction product of NaPF6[57–59].Overall, we see that the top surface of the SEI contained both organic(RCH2ONa)and inorganic (Na2O and NaF) components. Note that the electrochemical performance of Na/bulk Na3Bi anode is not significantly optimized,which indirectly affirms the important role of phase-boundary diffusion in guiding homogeneous and rapid ion transport. Furthermore, the Na3Bi framework remains stable based on SEM images(Fig. S23 in Appendix A) because the plating/stripping potential(±50 mV) of Na is far away from the phase change potential of Na3Bi (0.7 and 0.5 V for alloying potentials and 0.6 and 0.75 V for de-alloying potentials), thus ensuring the structure’s stability.The advantages of the overpotential and cycle life are also reflected in other current density and fixed real capacity conditions(Fig.S24 in Appendix A). Moreover, the Na/Na3Bi anode delivers good rate performance (Fig. 6(g)), in which small polarization (~100 mV)can still be obtained even at a relatively high current density(10 mA?cm-2). It is essential to explore the performance of electrodes at low temperatures because ion-diffusion kinetics is closely related to the operating temperature,and demand for high-energy batteries that can operate at low-temperature conditions continues to grow. The cycling performance of the Na/Na3Bi and Na/Cu anodes at 2 mA?cm-2and 2 mA?h?cm-2at 278 K is shown in Fig. 6(h), and a Na/Na3Bi anode with lower overpotential(~100 mV) and stable cycling over 300 h is obtained. Conversely,Na/Cu anode fails quickly with 200–300 mV of overpotential,signifying that the low diffusion barrier of phase boundaries between Na and Na3Bi enable effective ion transportation even at low temperature.

    To assess the electrochemical performance of three different anodes in full cells, the Na/Na3Bi and bare Na anodes are coupled with NVP as the cathode in 1 mol?L-1NaClO4in ethylene carbonate(EC)/diethyl carbonate (DEC) respectively. Due to the fast ion transport and uniform deposition/stripping of Na/Na3Bi anode,high-energy-density Na–metal batteries are obtained. NVP/(Na/Na3Bi) cell shows good capability retention of 93.8% with current densities of 0.2 to 2 C (Fig. S25 in Appendix A), which is much higher than Na anodes. As current densities increasing, the polarization of the charge/discharge plateaus slowly increases(Fig. S26 in Appendix A). Moreover, NVP/(Na/Na3Bi) cell delivers excellent cycling performance for 72 mA?h?g-1of reversible capacity at 1 C and over 1000 cycles,and the capacity retention is 91.1%(Figs. S25 and S26). During charging, the average CE of NVP/(Na/Na3Bi) cell at 1 C could achieve 98.35% and maintains durable cycling performance.

    Fig.6. Galvanostatic cycling performance of different anodes for(a)2 mA?h?cm-2 and 2 mA?cm-2m,and(b)5 mA?h?cm-2 and 5 mA?cm-2.Top and cross view SEM images of(c, d) Na3Bi-penetrated Na anode and (e, f) Na/Cu anode after galvanostatic cycling. (g) Rate performance of the Na/Na3Bi anode. (h) Low temperature (278 K) cycling performance of Na/Na3Bi and Na/Cu anode.

    3. Conclusions

    In this work,bulk Na–metal anodes with sodiophilic Na3Bi penetration, which holds even nucleation and uniform and dense Na deposition, could deliver a high rate, a long cycle life, and a high volumetric capacity. As a result, abundant Na/Na3Bi phase boundaries, which proved to enable Na+diffusion several orders of magnitude faster than lattice diffusion,ensure sufficient and rapid Na+migration taking place upon plating and stripping. During initial deposition, the exposed ‘‘sodiophilic” Na3Bi framework induces uniform local ion distribution, thereby delivering homogenous inner-space Na+plating and suppressing volume fluctuations. In subsequent stripping and plating processes, Na+rapidly exits and enters along the boundaries of Na and Na3Bi phase, maintaining the stability of the anode/electrolyte interface. Furthermore, the obtained anode delivers superior cycling and rate performances coupled with the NVP cathodes.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (21938005 and 21776197) and Key Laboratory of Coal Science and Technology, Education Ministry and Shanxi Province, Taiyuan University of Technology.

    Compliance with ethics guidelines

    Wanyu Zhao, Min Guo, Zhijun Zuo, Xiaoli Zhao, Huanglin Dou,Yijie Zhang, Shiying Li, Zichen Wu, Yayun Shi, Zifeng Ma, and Xiaowei Yang declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.08.028.

    极品教师在线免费播放| 国产精品永久免费网站| 国产免费男女视频| 日本免费一区二区三区高清不卡 | 久久久久国产一级毛片高清牌| 亚洲在线自拍视频| 午夜激情av网站| 午夜影院日韩av| av有码第一页| 在线观看免费午夜福利视频| 成人精品一区二区免费| 韩国精品一区二区三区| 亚洲av电影在线进入| 久9热在线精品视频| 亚洲精品国产色婷婷电影| 精品久久久精品久久久| 国产野战对白在线观看| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 在线国产一区二区在线| 午夜影院日韩av| 免费高清在线观看日韩| 国产区一区二久久| 国产精品亚洲美女久久久| 男人舔女人的私密视频| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 夜夜躁狠狠躁天天躁| 久久香蕉精品热| 亚洲精品久久成人aⅴ小说| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看 | 国产精品久久久人人做人人爽| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 精品不卡国产一区二区三区| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 九色国产91popny在线| 侵犯人妻中文字幕一二三四区| 久久狼人影院| 欧美在线一区亚洲| 久久久久精品国产欧美久久久| 久久久久国产精品人妻aⅴ院| 97人妻精品一区二区三区麻豆 | av超薄肉色丝袜交足视频| 欧美成人免费av一区二区三区| 成人永久免费在线观看视频| 99re在线观看精品视频| 一级,二级,三级黄色视频| 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 亚洲色图av天堂| 国产不卡一卡二| 两个人视频免费观看高清| 少妇的丰满在线观看| 国产精品亚洲美女久久久| 午夜福利18| 国产精品av久久久久免费| aaaaa片日本免费| 亚洲国产欧美网| www.自偷自拍.com| 91成年电影在线观看| 热99re8久久精品国产| 久久国产亚洲av麻豆专区| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| av片东京热男人的天堂| 一本大道久久a久久精品| 午夜免费成人在线视频| 国产高清有码在线观看视频 | 91av网站免费观看| www.熟女人妻精品国产| 悠悠久久av| 久久久水蜜桃国产精品网| 香蕉国产在线看| 午夜免费鲁丝| 免费看a级黄色片| 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区| 变态另类成人亚洲欧美熟女 | 一级毛片高清免费大全| 美女大奶头视频| 满18在线观看网站| 国产aⅴ精品一区二区三区波| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 久久久久九九精品影院| 国产精品电影一区二区三区| 91字幕亚洲| 嫩草影院精品99| 国产97色在线日韩免费| 国产精品免费视频内射| 天堂√8在线中文| 在线观看日韩欧美| 久久精品国产综合久久久| 国产三级在线视频| 最近最新免费中文字幕在线| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 一卡2卡三卡四卡精品乱码亚洲| 曰老女人黄片| 99国产精品免费福利视频| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| www.熟女人妻精品国产| 国产精品亚洲一级av第二区| 欧美在线黄色| 亚洲精品国产精品久久久不卡| a在线观看视频网站| 亚洲精品国产色婷婷电影| 999久久久精品免费观看国产| 国产黄a三级三级三级人| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 亚洲激情在线av| 久久九九热精品免费| 日日夜夜操网爽| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| 999久久久精品免费观看国产| 在线天堂中文资源库| 一级作爱视频免费观看| 国产成人免费无遮挡视频| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 91av网站免费观看| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 久热这里只有精品99| 色精品久久人妻99蜜桃| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 老司机福利观看| 老司机在亚洲福利影院| 欧美黄色片欧美黄色片| 国内精品久久久久久久电影| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 亚洲自拍偷在线| 日本a在线网址| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| 亚洲人成电影免费在线| 亚洲va日本ⅴa欧美va伊人久久| 美女午夜性视频免费| 亚洲国产精品成人综合色| 日韩欧美在线二视频| 久热爱精品视频在线9| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 欧美精品啪啪一区二区三区| 欧美激情极品国产一区二区三区| 色av中文字幕| 亚洲专区中文字幕在线| av视频在线观看入口| 中文字幕最新亚洲高清| 亚洲精品一区av在线观看| 满18在线观看网站| 国产激情欧美一区二区| av在线播放免费不卡| 国产色视频综合| 热re99久久国产66热| 国产又爽黄色视频| 国产麻豆成人av免费视频| 欧美日韩瑟瑟在线播放| 美女高潮到喷水免费观看| 91麻豆av在线| 老熟妇仑乱视频hdxx| 黄频高清免费视频| 国产精品野战在线观看| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女 | 亚洲一区中文字幕在线| 久久久久久国产a免费观看| 中文字幕色久视频| 成人av一区二区三区在线看| 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 国产精品香港三级国产av潘金莲| 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 18禁美女被吸乳视频| 正在播放国产对白刺激| 国产男靠女视频免费网站| 欧美在线一区亚洲| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| 亚洲精品中文字幕在线视频| 一a级毛片在线观看| 国产精华一区二区三区| www日本在线高清视频| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 成人特级黄色片久久久久久久| 成人免费观看视频高清| 亚洲在线自拍视频| 国产蜜桃级精品一区二区三区| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 91在线观看av| 亚洲av成人av| 国产精品永久免费网站| 免费少妇av软件| 如日韩欧美国产精品一区二区三区| 国产亚洲精品一区二区www| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 国产成人av激情在线播放| 搡老岳熟女国产| 久久午夜亚洲精品久久| 757午夜福利合集在线观看| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 麻豆成人av在线观看| 精品久久久久久久毛片微露脸| 高清在线国产一区| 国产成人系列免费观看| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 久久精品成人免费网站| 亚洲最大成人中文| 天天添夜夜摸| 国产激情欧美一区二区| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 女人高潮潮喷娇喘18禁视频| 一级作爱视频免费观看| 国产午夜福利久久久久久| а√天堂www在线а√下载| 欧美最黄视频在线播放免费| 欧美黑人精品巨大| 91麻豆av在线| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 久久香蕉精品热| 亚洲欧美一区二区三区黑人| 精品久久久精品久久久| 久久久久久大精品| 精品国产乱子伦一区二区三区| av欧美777| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| 久久亚洲真实| 757午夜福利合集在线观看| 久久久久久久午夜电影| 夜夜躁狠狠躁天天躁| 亚洲精品久久成人aⅴ小说| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 这个男人来自地球电影免费观看| 97人妻天天添夜夜摸| 黄色视频,在线免费观看| 欧美久久黑人一区二区| 久久精品国产清高在天天线| www国产在线视频色| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说| 亚洲一区中文字幕在线| 成在线人永久免费视频| 在线国产一区二区在线| 女性生殖器流出的白浆| 啦啦啦观看免费观看视频高清 | 精品第一国产精品| 免费av毛片视频| 中文字幕色久视频| 精品久久久久久,| 国产成人av教育| 亚洲熟女毛片儿| 69av精品久久久久久| 亚洲国产欧美网| АⅤ资源中文在线天堂| 怎么达到女性高潮| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 99re在线观看精品视频| 亚洲欧美精品综合久久99| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 亚洲熟女毛片儿| 夜夜爽天天搞| 午夜激情av网站| 男女之事视频高清在线观看| 91九色精品人成在线观看| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 午夜福利高清视频| 69精品国产乱码久久久| 女同久久另类99精品国产91| 亚洲精品久久国产高清桃花| av免费在线观看网站| 欧美日韩乱码在线| 欧美 亚洲 国产 日韩一| videosex国产| 精品高清国产在线一区| 国产成人精品在线电影| 99久久99久久久精品蜜桃| 国产精品九九99| 日韩大尺度精品在线看网址 | 精品久久久久久久人妻蜜臀av | 多毛熟女@视频| 日本欧美视频一区| www国产在线视频色| av天堂在线播放| 精品熟女少妇八av免费久了| 亚洲一区二区三区色噜噜| 免费看十八禁软件| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品久久二区二区免费| 淫秽高清视频在线观看| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 黑人欧美特级aaaaaa片| 99热只有精品国产| 亚洲在线自拍视频| 长腿黑丝高跟| 国产成人免费无遮挡视频| АⅤ资源中文在线天堂| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出| 午夜免费鲁丝| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 久久精品影院6| 午夜免费鲁丝| 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av | 精品第一国产精品| 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频| 欧美激情 高清一区二区三区| www.熟女人妻精品国产| 亚洲,欧美精品.| 国产片内射在线| 日韩欧美一区视频在线观看| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 黄片播放在线免费| 在线免费观看的www视频| 九色国产91popny在线| 18禁国产床啪视频网站| 欧美一级a爱片免费观看看 | avwww免费| 99久久综合精品五月天人人| 99re在线观看精品视频| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 亚洲第一电影网av| 欧美激情 高清一区二区三区| 91大片在线观看| 他把我摸到了高潮在线观看| 人人澡人人妻人| 中文字幕人妻丝袜一区二区| 久久青草综合色| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 搡老熟女国产l中国老女人| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 免费观看人在逋| 中文字幕精品免费在线观看视频| 日韩av在线大香蕉| 亚洲欧美激情在线| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 午夜福利成人在线免费观看| 一a级毛片在线观看| www.精华液| 欧美黑人精品巨大| 亚洲情色 制服丝袜| 午夜福利,免费看| 人妻丰满熟妇av一区二区三区| 99国产精品免费福利视频| 欧美最黄视频在线播放免费| 免费高清在线观看日韩| 天天一区二区日本电影三级 | 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 99久久久亚洲精品蜜臀av| 日韩有码中文字幕| 色在线成人网| 日韩欧美在线二视频| 久久天堂一区二区三区四区| 脱女人内裤的视频| 天天添夜夜摸| 成人国产综合亚洲| 欧美成人一区二区免费高清观看 | 91国产中文字幕| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 国产精品久久电影中文字幕| 亚洲av美国av| 国产激情欧美一区二区| 俄罗斯特黄特色一大片| 亚洲色图av天堂| a在线观看视频网站| 丝袜在线中文字幕| 99久久精品国产亚洲精品| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美老熟妇乱子伦牲交| 免费在线观看日本一区| 丝袜美腿诱惑在线| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 一本综合久久免费| 91成年电影在线观看| 热re99久久国产66热| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 一进一出好大好爽视频| av天堂久久9| 亚洲成av片中文字幕在线观看| 黄色毛片三级朝国网站| 香蕉丝袜av| 又黄又爽又免费观看的视频| 亚洲精品久久国产高清桃花| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 淫妇啪啪啪对白视频| 亚洲精品美女久久久久99蜜臀| 久久 成人 亚洲| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 给我免费播放毛片高清在线观看| 亚洲伊人色综图| e午夜精品久久久久久久| 国产精品香港三级国产av潘金莲| 黄片播放在线免费| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点 | 黄色 视频免费看| 午夜老司机福利片| 日本欧美视频一区| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 18美女黄网站色大片免费观看| 久久久久久免费高清国产稀缺| 女警被强在线播放| 亚洲国产看品久久| 精品国产乱子伦一区二区三区| 嫩草影院精品99| 手机成人av网站| 嫁个100分男人电影在线观看| 91字幕亚洲| 91麻豆av在线| 亚洲成av片中文字幕在线观看| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 国产精品秋霞免费鲁丝片| 亚洲国产看品久久| 免费观看精品视频网站| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 亚洲精品一区av在线观看| 国产精品 欧美亚洲| 亚洲熟妇熟女久久| 又黄又粗又硬又大视频| 夜夜爽天天搞| 午夜精品国产一区二区电影| 中出人妻视频一区二区| 欧美老熟妇乱子伦牲交| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美精品永久| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 男人的好看免费观看在线视频 | 一区二区三区激情视频| 亚洲成a人片在线一区二区| 国产av一区二区精品久久| 黄色毛片三级朝国网站| 亚洲黑人精品在线| 999久久久国产精品视频| 成年女人毛片免费观看观看9| 欧美激情 高清一区二区三区| 亚洲午夜理论影院| 一边摸一边抽搐一进一小说| 亚洲伊人色综图| 国产精品永久免费网站| 久久精品人人爽人人爽视色| 九色亚洲精品在线播放| 久久亚洲真实| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片 | 老汉色∧v一级毛片| 性欧美人与动物交配| 亚洲第一青青草原| 国产亚洲精品av在线| 久久精品成人免费网站| 精品人妻1区二区| 亚洲欧洲精品一区二区精品久久久| 国产三级黄色录像| 激情在线观看视频在线高清| 操出白浆在线播放| 婷婷六月久久综合丁香| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 自线自在国产av| 国产精品久久电影中文字幕| 国产亚洲欧美在线一区二区| 欧美精品亚洲一区二区| 日本一区二区免费在线视频| 黄色女人牲交| 91在线观看av| 午夜福利视频1000在线观看 | 国产aⅴ精品一区二区三区波| 大陆偷拍与自拍| 又紧又爽又黄一区二区| av片东京热男人的天堂| 亚洲av美国av| 99国产精品一区二区三区| 男人操女人黄网站| 国产精品香港三级国产av潘金莲| 国产1区2区3区精品| av超薄肉色丝袜交足视频| 97碰自拍视频| 天堂影院成人在线观看| 国产精品自产拍在线观看55亚洲| 黄网站色视频无遮挡免费观看| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| 757午夜福利合集在线观看| 99香蕉大伊视频| 久久精品aⅴ一区二区三区四区| 成人精品一区二区免费| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 一区二区三区高清视频在线| 日本三级黄在线观看| 嫩草影院精品99| 久久精品91蜜桃| 欧美一级毛片孕妇| av有码第一页| 精品不卡国产一区二区三区| 成人国语在线视频| 在线天堂中文资源库| 亚洲欧美精品综合一区二区三区| 国产成人一区二区三区免费视频网站| 国产av一区二区精品久久| 欧美乱码精品一区二区三区| 如日韩欧美国产精品一区二区三区| 国产又色又爽无遮挡免费看| 中文字幕高清在线视频| 视频在线观看一区二区三区| 久久人人精品亚洲av| 黄片播放在线免费| 亚洲aⅴ乱码一区二区在线播放 | 国产一级毛片七仙女欲春2 | 97人妻天天添夜夜摸| 日本vs欧美在线观看视频| 精品乱码久久久久久99久播| 久久精品亚洲熟妇少妇任你| 女警被强在线播放| 亚洲成人国产一区在线观看| 天天一区二区日本电影三级 | 国产精品香港三级国产av潘金莲| 色综合婷婷激情| 青草久久国产| 一区福利在线观看| 韩国av一区二区三区四区| 男人操女人黄网站| 午夜福利一区二区在线看| 国产亚洲精品一区二区www| 久9热在线精品视频| 国产精品久久久人人做人人爽| 无限看片的www在线观看| 波多野结衣一区麻豆| 日韩欧美一区视频在线观看| 亚洲一区二区三区不卡视频| 好男人在线观看高清免费视频 | www.www免费av| 久久国产精品男人的天堂亚洲| 看黄色毛片网站|