• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prospects of Huygens’ Metasurfaces for Antenna Applications

    2022-06-11 09:03:10GeorgeEleftheriadesMinseokKimVasileiosAtaloglouAymanDorrah
    Engineering 2022年4期

    George V. Eleftheriades, Minseok Kim, Vasileios G. Ataloglou, Ayman H. Dorrah

    Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

    1. Introduction

    In recent years,there has been an intense research effort by the international community in the field of‘‘artificial”electromagnetic materials,or‘‘metamaterials.”Metamaterials are engineered structures that induce a tailored arrangement of magnetic and electric dipole moments when excited by an incident electromagnetic field. Under certain conditions, such as when the comprising unit cells are sub-wavelength, metamaterials can be homogenized and described in terms of macroscopic constitutive parameters such as permeability, permittivity, and refractive index. A summary of the early work on ‘‘artificial dielectrics” can be found in Ref.[1].In the over 20-year-old field of metamaterials,the desired macroscopic parameters correspond to extreme properties such as negative permittivity,negative permeability,and a negative refractive index. Perhaps the most recognized metamaterial is that which realizes a negative refractive index,originally demonstrated at microwaves and based on a unit cell made out of a split-ring resonator and a wire [2]. In the engineering community, a transmission-line approach was developed for implementing metamaterials with significant advantages, such as reduced transmission losses and wider operating bandwidths [3,4].

    In the context of metamaterials, metasurfaces can be considered as two-dimensional (2D) metamaterials. It is perhaps noteworthy that most of the research on metasurfaces was conducted following the work on three-dimensional (3D) metamaterials [5–9].In this article,we focus on the concept of the Huygens’metasurface (HMS) and its application to antenna engineering. HMSs are composed of 2D arrays of Huygens’ scatterers or sources, giving rise to passive and active HMSs, respectively. In their most basic form,these HMSs are implemented by co-located orthogonal electric and magnetic dipole moments (or currents) [6,7]. Such 2D metasurfaces are homogenized with macroscopic parameters such as surface susceptibility or impedance/admittance tensors, since there is no volume to properly define constitutive parameters such as permeability or permittivity. The important aspect here is that the wave nature of light can be understood using secondary sources(Huygens’sources)and emanating wavelets,as envisioned by Christiaan Huygens dating back to the 17th century. Hence,HMSs offer a powerful method to engineer and control electromagnetic wavefronts at will.Consequently,there is ample opportunity to apply these HMSs to antenna theory and practice, as will be highlighted in the remainder of this short article.

    2. Basic HMS theory

    Fig. 1 shows the basic setup for formulating the theory of an HMS. As shown, an incident electromagnetic wave consisting of an electric field E1and a magnetic field H1is transformed into a desired transmitted wave with electric field E2and a magnetic field H2by passing through a thin HMS surface. This transformation is achieved by exciting suitable orthogonal electric and magnetic currents, denoted by Jsand Msrespectively, as shown in Eq. (1).

    Fig.1. Schematicofa genericHMS.The surfacecurrentdensities Js and Ms allowfor adiscontinuityinthe fields (E1,H1)and (E2,H2)atthetwosides of the HMS.E1 and H1 are the electric and magnetic fields at the input side (region 1),respectively. E2 and H2 are the electricand magnetic fields at the transmittedside (region 2),respectively.n︿ istheunitvector normalto the HMS pointingtowards region 2.

    where Re refers to the real part of the normal power density.The extra degree of freedom offered by omega-bianisotropy enables the total control of the reflections in region 1(Fig.1).For example,O-BHMs have been used to demonstrate reflectionless refraction even when the angle of incidence and refraction are greatly different, which is a significant milestone in the development of such metasurfaces [11].

    3. Antenna beamforming

    One appealing application of HMSs in antennas is antenna beamforming. In particular, HMSs can be utilized for antenna beamforming with precise pattern control,but without the explicit utilization of a feeding network as in conventional antenna arrays.Although the general formulation in Eq. (2) would seem to allow for arbitrary amplitude and phase control over a given metasurface aperture, the requirement of local power conservation in Eq. (3)imposes a severe restriction on such arbitrary magnitude and phase control. One solution to this issue is to allow reflections to occur in order to taper the amplitude of the refracted waves to become arbitrary. In order to recover this otherwise lost reflected power, the metasurface can be enclosed in an oversized cavity[12]. As shown in Fig. 2 [12], the cavity is excited by a current source element in close proximity to the radiating metasurface aperture. It should also be noted that the reflections in the cavity permit the efficient illumination of the aperture, thus providing an increased gain as desirable.

    4. Electronic beamforming and steering

    Fig. 2. Cavity-excited HMS for antenna beamforming [12]. (a) Sketch of the structure. x,y,and z refer to a cartesian coordinate system. δ is the Dirac function. θout is a desirable transmission angle. A current source J with amplitude I0 is placed at y=y′, z=z′ within a cavity of length L and depth d. Radiation towards θout is obtained.(b)Fabricated antenna for highly directive radiation at the broadside.λ is the free-space wavelength.(c)Measured,theoretical,and simulated patterns at 20 GHz in decibels(dB).

    Fig.3. Single O-BHMS for beamforming applications through auxiliary surface waves.(a)Sketch of the configuration[16].Incident electric field Einc and magnetic field Hinc is transformed to desired output electric field Eout and magnetic field Hout by means of auxiliary surface waves characterized by an electric field Esw and magnetic field Hsw.(b)Sample unit cell to realize the HMS parameters.Four dogbone layers with widths W1,W2,W3,and W4 are etched on Rogers RO3010 substrates.(c)Radiation pattern from physical structure simulations for a Taylor pattern with a –20 dB sidelobe level.φ represents the angle in the azimuthal (x–y) plane.

    As previously mentioned, one of the unique field manipulation capabilities of O-BHMSs is ‘‘perfect” refraction, in which an incident electromagnetic (EM) wave can be arbitrarily refracted even at extreme angles without producing any spurious diffraction[11,17]. For example, by asymmetrically placing a wire and a loop to form an omega-bianisotropic Huygens’ unit cell, Chen and Eleftheriades [17] experimentally demonstrated the refraction of a normally incident EM wave at 72° with negligible reflections,as shown in Fig. 4 [17]. Such an unusual field manipulation capability is of particular interest in many antenna applications,since it can be used as a new paradigm for realizing a wide-angle scanning antenna. Indeed, Abdo-Sánchez et al. [18] utilized the unique refraction properties of O-BHMS in the implementation of a leaky-wave antenna (LWA) to demonstrate arbitrary control of the guided and leaky modes.In their work,these scholars replaced the top perfect electric conductor plate of a parallel-plate waveguide with an O-BHMS such that an arbitrarily stipulated guided mode could be transformed into a certain desired leaky mode.Since the guided mode and the leaky mode are user-defined quantities, their proposed LWA can radiate in any direction (including broadside) with arbitrary leakage constants. The ability to control the leakage constant also implies that a certain amplitude tapering can be synthesized on the O-BHMS to realize complex radiation patterns (e.g., a Dolph–Chebyshev pattern). Notwithstanding,many practical applications such as high-speed communications,radar, and remote sensing also require the dynamic control of radiation patterns. Consequently, significant effort has been devoted recently to the implementation of reconfigurable metasurfaces for the dynamic shaping of EM waves [19–23]. For example,Chen et al. [19] demonstrated a tunable Huygens’ metalens by incorporating three varactor diodes in each of their wire-loop unit cells. By individually biasing these diodes, the researchers could independently control the electric and magnetic resonances,thereby achieving the required phase control for tailoring the focused beam profiles. In comparison, so-called ‘‘1-bit” tunable metasurfaces have also been frequently demonstrated to dynamically steer multiple beams, which typically utilize positive–intrinsic–negative (PIN) diode switches in their unit-cell design [20,21].These surfaces, however, inevitably produce more than one beam when they are excited by normally incident plane waves,and most of the reported 1 bit metasurfaces are reflective,as the biasing network can easily be integrated behind a ground plane.In addition to these phase-only tunable metasurfaces, it should be briefly mentioned that surfaces that can dynamically alter the polarization state have also been demonstrated [22,23]. While the aforementioned tunable metasurfaces are capable of dynamic beam shaping,they still provide limited wave-control capabilities due to their inability to independently modulate the amplitude of the scattered field. Such functionality is highly desirable, as it would offer extreme capability for precise beamforming. In addition, most of the reported tunable surfaces have focused on dynamically manipulating free-space waves, which requires an external excitation source to be placed sufficiently far away from the surfaces. To address these issues, Kim and Eleftheriades [24] introduced a reconfigurable O-BHMS that can be integrated with a wave-guiding structure to realize a compact wave-control platform,as shown in Fig.5[24].The proposed tunable O-BHMS is capable of independently controlling the amplitude and phase of its reflection and transmission coefficients, thereby supporting an arbitrarily stipulated guided mode (i.e., there is no cutoff frequency) and any desired radiations.To be specific,this is achieved by cascading four tunable impedance surfaces.Each tunable impedance surface consists of dual-loop unit cells in which a varactor diode is integrated with the outermost loop to acquire the necessary tunability (Fig.5(a) [24]). The unique feature of their proposed unit cell is that its reactance can be widely tuned from inductance to capacitance as a function of the applied bias voltage, which makes it possible to synthesize arbitrary scattering parameters for the cascaded structure.As a proof of concept,Fig.5(c)shows the numerical simulation results of wide-angle scanning from–70°to 70°at the fixed operating frequency of 5 GHz. In contrast to traditional phased arrays,which struggle to scan at extreme angles due to the mutual coupling between elements, wide-angle scanning could be achieved,since the O-BHMS directly satisfies the necessary boundary conditions for any given field distributions to be fully Maxwellian.These unique attributes of a tunable O-BHMS are particularly interesting for various emerging applications such as the fifth generation mobile communication technology (5G)/the sixth generation mobile networks (6G) telecommunications, radars for autonomous vehicles, and traffic control.

    Fig. 4. Reflectionless wide-angle refraction based on an O-BHMS. (a) Electric field distribution of one period of the O-BHMS showing anomalous refraction of a normally incident wave at 72°;(b)the physical realization of the O-BHMS based on the asymmetric wire-loop design.Reproduced from Ref.[17]with permission from IEEE, ? 2020.

    Fig. 5. O-BHMS-assisted LWA. (a) The proposed unit cell design and (b) the schematic of the LWA that integrates the tunable O-BHMS [24]. SMA: subminiature version A.(c) Full-wave simulation results on gain variation at various scan angles. (d–f) The fabrication of the proposed reconfigurable LWA.

    5. The peripherally excited Huygens’ box antenna

    One of the first reports on HMSs involved the usage of an active HMS for cloaking applications [7,10]. This concept has also been utilized to excite unusual electromagnetic modes in an oversized metallic cavity lined by active Huygens’sources[25,26].For example,Wong and Eleftheriades[26]experimentally show how such a Huygens’ box arrangement can produce traveling waves at arbitrary angles in a rectangular closed metallic cavity(box).It is worth highlighting that these traveling waves are not from the inherent modes of metallic cavities,which are typically only capable of supporting standing waves. This feat becomes possible since the excited fields inside the metallic cavity of the Huygens’ box can be controlled by the peripheral Huygens’ sources (along the perimeter of the cavity) according to the equivalence principle.This Huygens’box device has been utilized to demonstrate the formation of sub-wavelength focal spots and cloaking [26]. More recently,the same concept was exploited to realize reconfigurable aperture antennas with a reduced number of active elements, as the number of active elements therein is no longer dependent on the area of the radiating aperture (N2dependence, where N2is the number of antenna elements) and is instead solely dependent on its circumference (N dependence) [27,28]. Fig. 6(a) shows a possible realization of this peripherally excited phased array(PEX-PA)concept.As shown,a cavity is lined up by active Huygens’sources,which can comprise simple dipole antennas backed up by the cavity side walls.The top surface of the cavity is a perforated or suitably slotted metallic plate that allows radiation to leak out. A prototype of the PEX-PA concept was fabricated using standard printed-circuit board fabrication technology, as shown in Fig. 6(b);the side walls of the cavity were constructed using metallic vias connecting the top and bottom plates of the board, and the radiating perforations were arranged in a 2D square lattice.Sample measured radiation patterns are depicted in Fig. 7 for single-beam operation and in Fig. 8 for multiple-beam operation. It is observed that the designed structure is capable of generating single and multiple pencil beams at broadside and tilted angles in different scan planes. This finding demonstrates the flexibility of the PEX-PA concept and the possibility of generating directive pencil beams solely from peripheral Huygens’ sources excitations. In principle, by controlling the phase and/or magnitude of these peripheral sources, the generated beam(s) can be scanned over a considerable range of angles.

    6. Discussion and conclusions

    HMSs offer great opportunities for advances in antenna theory and practice. Some opportunities have been highlighted in this article and include static beamforming without a feeding network but still with precise aperture and phase control.HMSs can also be used for dynamic beamforming and beam steering with an inherent capability of wide-angle scanning. We expect this latter attribute to be further exploited and demonstrated in the future.Another important characteristic of these surfaces is that they can be designed to achieve all-pass filtering characteristics [29].This attribute can be exploited in the future for ultra-wideband antenna applications with ultra-thin HMS apertures. Dynamic HMSs also permit low power consumption due to their compatibility with simple controlling elements, such as varactors. Moreover,the concept of the peripherally excited (PEX) Huygens’ box antenna offers an alternative to phased arrays but with a drastically reduced number of active elements.This concept is also likely to be further exploited and demonstrated in the future.Finally,time-modulated HMSs can be envisioned as offering opportunities for non-reciprocal antenna applications, such as for fullduplex 6G wireless networks [30].

    Fig. 6. The peripherally excited cavity antenna. (a) Demonstration of the concept. θ: the elevation angle. (b) Fabricated square prototype.

    Fig. 7. Examples of measured radiation patterns at 13 GHz. (a) Broadside; (b) titled close to the x–z plane; (c) titled close to the y–z plane.

    Fig.8. Examples of measured multiple-beam radiation patterns at 13.1 GHz.These plots show the normalized 3D radiation field intensity patterns to an arbitrary value of 100(V?m-1) in linear scale.

    欧美国产精品va在线观看不卡| 国产片内射在线| 美女国产视频在线观看| 99热网站在线观看| 精品午夜福利在线看| 亚洲av福利一区| 多毛熟女@视频| 国产片内射在线| 啦啦啦中文免费视频观看日本| 国产精品久久久久久av不卡| 午夜激情av网站| 99热全是精品| 春色校园在线视频观看| 黄频高清免费视频| 免费大片黄手机在线观看| 成年动漫av网址| 1024香蕉在线观看| 国产一区二区激情短视频 | 精品少妇内射三级| 久久精品国产综合久久久| 亚洲国产最新在线播放| 亚洲综合精品二区| 777久久人妻少妇嫩草av网站| 在线 av 中文字幕| 超碰97精品在线观看| 亚洲精品一区蜜桃| 亚洲av欧美aⅴ国产| 看十八女毛片水多多多| av.在线天堂| 精品人妻偷拍中文字幕| 91aial.com中文字幕在线观看| 最黄视频免费看| 午夜日本视频在线| 亚洲精品久久久久久婷婷小说| av免费观看日本| 午夜日本视频在线| 91aial.com中文字幕在线观看| 日本av免费视频播放| 亚洲精品日韩在线中文字幕| 大香蕉久久成人网| 国产一区二区三区av在线| 99热国产这里只有精品6| 高清欧美精品videossex| 少妇猛男粗大的猛烈进出视频| 嫩草影院入口| 国产成人精品婷婷| 久久国产精品男人的天堂亚洲| 国产深夜福利视频在线观看| 777久久人妻少妇嫩草av网站| 精品99又大又爽又粗少妇毛片| 青春草国产在线视频| 久久久久网色| 久久国内精品自在自线图片| 日韩欧美精品免费久久| 黄片播放在线免费| 在线观看国产h片| 精品午夜福利在线看| 久久久久精品久久久久真实原创| 十分钟在线观看高清视频www| 色吧在线观看| 国产成人av激情在线播放| 国产老妇伦熟女老妇高清| 国产无遮挡羞羞视频在线观看| 国产免费又黄又爽又色| 国产在线免费精品| 日韩av不卡免费在线播放| 哪个播放器可以免费观看大片| 免费高清在线观看视频在线观看| 亚洲激情五月婷婷啪啪| 最新的欧美精品一区二区| 91aial.com中文字幕在线观看| 国产97色在线日韩免费| 又粗又硬又长又爽又黄的视频| 久久人人爽av亚洲精品天堂| 中国国产av一级| 久久综合国产亚洲精品| 一级毛片我不卡| 国产乱来视频区| av在线app专区| 午夜福利乱码中文字幕| 亚洲成人av在线免费| 亚洲精品自拍成人| 91aial.com中文字幕在线观看| 亚洲美女视频黄频| 一本色道久久久久久精品综合| 两个人看的免费小视频| 一级毛片我不卡| 免费看av在线观看网站| 日韩精品免费视频一区二区三区| 久久精品人人爽人人爽视色| 五月伊人婷婷丁香| 只有这里有精品99| 国产精品亚洲av一区麻豆 | 黄色配什么色好看| 大话2 男鬼变身卡| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 亚洲成人手机| 建设人人有责人人尽责人人享有的| 久久久a久久爽久久v久久| 欧美+日韩+精品| 亚洲欧美精品自产自拍| av福利片在线| 国产人伦9x9x在线观看 | 黄频高清免费视频| 日韩制服骚丝袜av| 青青草视频在线视频观看| 人人妻人人添人人爽欧美一区卜| 狠狠精品人妻久久久久久综合| 久久女婷五月综合色啪小说| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 国产探花极品一区二区| 可以免费在线观看a视频的电影网站 | 免费在线观看视频国产中文字幕亚洲 | 国产精品偷伦视频观看了| 午夜免费鲁丝| 丝瓜视频免费看黄片| 欧美日韩综合久久久久久| 精品久久蜜臀av无| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 日日撸夜夜添| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av涩爱| 少妇人妻 视频| 婷婷色综合www| 一区二区日韩欧美中文字幕| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 久久精品aⅴ一区二区三区四区 | 五月天丁香电影| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲国产成人精品v| 满18在线观看网站| 精品第一国产精品| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 一级毛片电影观看| 秋霞在线观看毛片| 黄片小视频在线播放| 亚洲精品,欧美精品| 男女国产视频网站| 女的被弄到高潮叫床怎么办| 男女下面插进去视频免费观看| av网站在线播放免费| 一二三四在线观看免费中文在| 高清视频免费观看一区二区| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 新久久久久国产一级毛片| 中文字幕人妻丝袜一区二区 | 久久久久国产一级毛片高清牌| 女人精品久久久久毛片| 亚洲av电影在线观看一区二区三区| 春色校园在线视频观看| 亚洲精品一区蜜桃| 精品一品国产午夜福利视频| 观看美女的网站| 精品国产国语对白av| 欧美日韩av久久| 亚洲美女搞黄在线观看| 90打野战视频偷拍视频| 日日撸夜夜添| 亚洲精品日本国产第一区| 国产xxxxx性猛交| 叶爱在线成人免费视频播放| 成人国产麻豆网| 一级毛片我不卡| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 欧美日韩一区二区视频在线观看视频在线| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 最近2019中文字幕mv第一页| 婷婷色av中文字幕| 国产又色又爽无遮挡免| 欧美xxⅹ黑人| 精品一区二区免费观看| 看免费av毛片| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 天天操日日干夜夜撸| 久久久久视频综合| 午夜福利影视在线免费观看| 自线自在国产av| 日本黄色日本黄色录像| 只有这里有精品99| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 黄网站色视频无遮挡免费观看| 亚洲中文av在线| 熟女少妇亚洲综合色aaa.| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 少妇精品久久久久久久| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 中文字幕人妻丝袜制服| 亚洲,一卡二卡三卡| 欧美97在线视频| 欧美人与性动交α欧美精品济南到 | 亚洲一区中文字幕在线| 大陆偷拍与自拍| 国产精品一区二区在线不卡| 国产色婷婷99| 日韩制服骚丝袜av| 欧美亚洲日本最大视频资源| 久久免费观看电影| 一本大道久久a久久精品| 国产精品二区激情视频| 97在线视频观看| 亚洲精品一区蜜桃| 国产黄频视频在线观看| 亚洲综合精品二区| 性高湖久久久久久久久免费观看| 国产精品三级大全| 免费少妇av软件| 亚洲熟女精品中文字幕| 久久精品夜色国产| 久久99一区二区三区| 一区二区三区四区激情视频| 免费在线观看完整版高清| 日韩大片免费观看网站| 亚洲美女搞黄在线观看| 69精品国产乱码久久久| 韩国av在线不卡| 叶爱在线成人免费视频播放| 卡戴珊不雅视频在线播放| av视频免费观看在线观看| 极品人妻少妇av视频| 青春草国产在线视频| 在线天堂最新版资源| 国产精品女同一区二区软件| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 熟妇人妻不卡中文字幕| 一区在线观看完整版| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 国产成人一区二区在线| 激情五月婷婷亚洲| 午夜福利乱码中文字幕| 午夜激情久久久久久久| 国产亚洲av片在线观看秒播厂| 国产精品一国产av| 欧美成人午夜精品| 电影成人av| 精品久久久精品久久久| 亚洲经典国产精华液单| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 丝袜喷水一区| 极品人妻少妇av视频| 免费看av在线观看网站| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 91在线精品国自产拍蜜月| av视频免费观看在线观看| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 男女边摸边吃奶| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜爱| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 女性被躁到高潮视频| 久久久久久久久久久免费av| 午夜免费鲁丝| 亚洲久久久国产精品| √禁漫天堂资源中文www| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 九九爱精品视频在线观看| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 丝袜美腿诱惑在线| 丝袜美足系列| 女人久久www免费人成看片| 久久热在线av| kizo精华| 国产片内射在线| 精品国产一区二区三区四区第35| 各种免费的搞黄视频| 欧美成人午夜免费资源| 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 大香蕉久久成人网| 水蜜桃什么品种好| av有码第一页| 亚洲国产欧美在线一区| 欧美日韩av久久| 亚洲精品日本国产第一区| 色婷婷久久久亚洲欧美| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 2021少妇久久久久久久久久久| 国产av一区二区精品久久| 最新的欧美精品一区二区| 免费观看性生交大片5| 国产在线一区二区三区精| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 中文字幕亚洲精品专区| 日本免费在线观看一区| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 伦理电影免费视频| 免费黄网站久久成人精品| 大话2 男鬼变身卡| 黄色怎么调成土黄色| 18禁观看日本| 国产又色又爽无遮挡免| 国产乱人偷精品视频| 五月开心婷婷网| 成人黄色视频免费在线看| 好男人视频免费观看在线| 日本91视频免费播放| 免费高清在线观看视频在线观看| 亚洲,一卡二卡三卡| 精品亚洲成国产av| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 成年人午夜在线观看视频| 亚洲精品中文字幕在线视频| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 午夜日本视频在线| 建设人人有责人人尽责人人享有的| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| freevideosex欧美| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 最黄视频免费看| 中文字幕制服av| 一区在线观看完整版| 国产成人欧美| 亚洲欧美成人综合另类久久久| 精品99又大又爽又粗少妇毛片| 欧美日韩一级在线毛片| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品国产亚洲| 午夜福利一区二区在线看| 色哟哟·www| 国产精品香港三级国产av潘金莲 | 最近最新中文字幕大全免费视频 | 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| a级毛片黄视频| 成人毛片a级毛片在线播放| 亚洲国产色片| 人成视频在线观看免费观看| 侵犯人妻中文字幕一二三四区| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 久久这里只有精品19| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区三区四区第35| av一本久久久久| kizo精华| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 青春草国产在线视频| 制服诱惑二区| 久久精品国产a三级三级三级| 精品久久久久久电影网| 日本欧美视频一区| 伦理电影免费视频| 国产在线视频一区二区| 亚洲欧美一区二区三区久久| av.在线天堂| 亚洲一区中文字幕在线| av在线观看视频网站免费| 超碰97精品在线观看| 亚洲天堂av无毛| 天天躁夜夜躁狠狠躁躁| 性少妇av在线| 日韩视频在线欧美| 久久久久人妻精品一区果冻| 成年人免费黄色播放视频| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩av久久| 2022亚洲国产成人精品| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 伦理电影免费视频| 在线天堂中文资源库| 国产免费一区二区三区四区乱码| 亚洲av日韩在线播放| 久久精品夜色国产| av免费观看日本| av线在线观看网站| 亚洲av福利一区| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 99热网站在线观看| 青春草视频在线免费观看| 国产人伦9x9x在线观看 | 欧美 亚洲 国产 日韩一| 中文天堂在线官网| 国产精品久久久久久精品古装| 人人妻人人澡人人看| tube8黄色片| www.精华液| 熟女av电影| 久久97久久精品| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 最新的欧美精品一区二区| 国产精品蜜桃在线观看| 亚洲精品乱久久久久久| 亚洲精品日本国产第一区| 黄色一级大片看看| 亚洲,一卡二卡三卡| 熟女电影av网| 亚洲欧美日韩另类电影网站| 欧美日韩一级在线毛片| 午夜影院在线不卡| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 久久精品国产综合久久久| 黄频高清免费视频| 麻豆精品久久久久久蜜桃| 国产极品粉嫩免费观看在线| 国产免费又黄又爽又色| 天堂8中文在线网| 大香蕉久久网| 欧美 亚洲 国产 日韩一| 亚洲av国产av综合av卡| 九九爱精品视频在线观看| 亚洲国产欧美在线一区| 亚洲男人天堂网一区| 精品卡一卡二卡四卡免费| 边亲边吃奶的免费视频| 国产精品久久久久久久久免| 中国三级夫妇交换| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| www.av在线官网国产| 久久97久久精品| 国产一区二区激情短视频 | 亚洲国产色片| 你懂的网址亚洲精品在线观看| 毛片一级片免费看久久久久| 国产av一区二区精品久久| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 中文字幕色久视频| 国产成人欧美| 大香蕉久久成人网| 建设人人有责人人尽责人人享有的| 欧美精品一区二区大全| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 久久人人爽av亚洲精品天堂| 亚洲,欧美,日韩| 黄色怎么调成土黄色| 久久久久精品人妻al黑| 久久97久久精品| 成人免费观看视频高清| 国产免费视频播放在线视频| 伦理电影大哥的女人| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 91精品伊人久久大香线蕉| 欧美最新免费一区二区三区| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 欧美精品一区二区大全| 免费黄色在线免费观看| 亚洲精品视频女| 亚洲国产成人一精品久久久| 国产男女内射视频| 看免费成人av毛片| www日本在线高清视频| 日本av免费视频播放| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 精品国产露脸久久av麻豆| 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频| 亚洲精品一二三| 性色avwww在线观看| 亚洲精品,欧美精品| 午夜福利视频在线观看免费| 国产成人av激情在线播放| 午夜福利在线观看免费完整高清在| 国产无遮挡羞羞视频在线观看| 女人精品久久久久毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品熟女亚洲av麻豆精品| 啦啦啦在线免费观看视频4| 久久99一区二区三区| 久久久久久久大尺度免费视频| 一级片'在线观看视频| 黄色一级大片看看| 国产精品免费视频内射| 精品久久久久久电影网| 国产伦理片在线播放av一区| av不卡在线播放| 五月伊人婷婷丁香| 久久这里有精品视频免费| 精品少妇内射三级| 欧美亚洲 丝袜 人妻 在线| 日本91视频免费播放| 观看美女的网站| 国产成人精品久久二区二区91 | 巨乳人妻的诱惑在线观看| 91在线精品国自产拍蜜月| 成人毛片a级毛片在线播放| 伊人久久大香线蕉亚洲五| 精品一区在线观看国产| 在线天堂最新版资源| 999精品在线视频| 日韩av免费高清视频| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 日韩中文字幕视频在线看片| 欧美激情极品国产一区二区三区| 国产黄色视频一区二区在线观看| 久久久久久伊人网av| 国产精品二区激情视频| av女优亚洲男人天堂| 久久这里只有精品19| 尾随美女入室| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| 午夜福利乱码中文字幕| 丰满少妇做爰视频| 成人黄色视频免费在线看| 精品一品国产午夜福利视频| av国产久精品久网站免费入址| 青草久久国产| 久久婷婷青草| 午夜老司机福利剧场| 波多野结衣一区麻豆| 久久精品aⅴ一区二区三区四区 | 免费大片黄手机在线观看| 97精品久久久久久久久久精品| 亚洲av男天堂| 国产一区二区三区综合在线观看| 下体分泌物呈黄色| 99热网站在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美 亚洲 国产 日韩一| 看非洲黑人一级黄片| 亚洲精华国产精华液的使用体验| 2021少妇久久久久久久久久久| 最新中文字幕久久久久| 亚洲,欧美精品.| 美女国产高潮福利片在线看| 精品一区二区免费观看| 久久精品国产亚洲av涩爱| 最近2019中文字幕mv第一页| 亚洲一级一片aⅴ在线观看| 九草在线视频观看| 国产日韩欧美视频二区| 国产成人精品婷婷| 大陆偷拍与自拍| 国产精品蜜桃在线观看| 国产人伦9x9x在线观看 | 亚洲av综合色区一区| 黑人猛操日本美女一级片|