胡北,公平,2,于慶杰,薛林林
(1.中國(guó)航發(fā)哈爾濱軸承有限公司,哈爾濱 150025;2.西北工業(yè)大學(xué),西安 710072)
國(guó)內(nèi)航空發(fā)動(dòng)機(jī)分為同向旋轉(zhuǎn)和反向旋轉(zhuǎn)兩類(lèi)雙轉(zhuǎn)子結(jié)構(gòu),中介軸承是雙轉(zhuǎn)子發(fā)動(dòng)機(jī)高、低壓轉(zhuǎn)子之間支承的關(guān)鍵部件:同向旋轉(zhuǎn)的中介軸承內(nèi)圈與低壓轉(zhuǎn)子連接,外圈與高壓轉(zhuǎn)子連接,外圈轉(zhuǎn)速高于內(nèi)圈;反向旋轉(zhuǎn)的中介軸承外圈與低壓轉(zhuǎn)子連接,內(nèi)圈與高壓轉(zhuǎn)子連接,內(nèi)圈轉(zhuǎn)速高于外圈。
中介軸承是傳遞運(yùn)動(dòng)和承受載荷的重要部件,工作游隙直接影響其載荷分布和壽命。若軸與內(nèi)圈實(shí)際過(guò)盈量不大于0,配合松動(dòng),有磨損風(fēng)險(xiǎn)。在此以某同向旋轉(zhuǎn)的圓柱滾子中介軸承為研究對(duì)象,分析軸承與其配合件的實(shí)際配合關(guān)系,再考慮配合、溫升、離心效應(yīng)、載荷等因素精確計(jì)算軸承徑向游隙。
中介軸承主要結(jié)構(gòu)參數(shù)見(jiàn)表1,內(nèi)圈轉(zhuǎn)速為9 000 r/min,外圈轉(zhuǎn)速為15 000 r/min。假設(shè)軸承內(nèi)部為穩(wěn)態(tài)溫度場(chǎng),各點(diǎn)溫度相同,均為180 ℃,環(huán)境溫度為20 ℃。內(nèi)、外圈和滾子材料線膨脹系數(shù)為11.84×10-6,配合件材料線膨脹系數(shù)為13.00×10-6。
表1 中介軸承主要結(jié)構(gòu)參數(shù)
軸承運(yùn)轉(zhuǎn)過(guò)程中,內(nèi)、外圈原始配合會(huì)受離心效應(yīng)、溫升、徑向載荷以及配合面形貌的影響,軸承配合示意圖如圖1所示。
圖1 軸承內(nèi)、外圈配合示意圖
根據(jù)彈性理論,離心效應(yīng)引起的內(nèi)、外圈配合過(guò)盈量變化分別為
(1)
(2)
式中:ρsi,ρse分別為與內(nèi)、外圈配合的軸材料密度;ω1,ω2分別為內(nèi)、外圈角速度;Esi,Ese分別為與內(nèi)、外圈配合的軸材料彈性模量;νsi,νse分別為與內(nèi)、外圈配合的軸材料泊松比;ρ1,ρ2分別為內(nèi)、外圈材料密度;E1,E2分別為內(nèi)、外圈材料彈性模量;ν1,ν2分別為內(nèi)、外圈材料泊松比;dh1,Dh1分別為與內(nèi)、外圈配合的軸內(nèi)徑;D,D1分別為外圈外、內(nèi)徑;d,d1分別為內(nèi)圈內(nèi)、外徑。
軸承高速運(yùn)轉(zhuǎn)時(shí),滾子與套圈之間的滾動(dòng)摩擦、保持架與滾子和套圈之間的滑動(dòng)摩擦以及潤(rùn)滑油的攪拌作用均會(huì)產(chǎn)生大量的熱。由于套圈和軸材料不同,隨溫度升高,其變形不同,進(jìn)而引起配合過(guò)盈量變化,溫升引起的內(nèi)、外圈配合過(guò)盈量變化分別為
Δsi2=α1ΔT1d-αsiΔTsid,
(3)
Δse2=αseΔTseD-α2ΔT2D,
(4)
式中:α1,α2分別為內(nèi)、外圈材料線膨脹系數(shù);ΔT1,ΔT2分別為內(nèi)、外圈溫升;αsi,αse分別為與內(nèi)、外圈配合的軸材料熱膨脹系數(shù); ΔTsi,ΔTse分別為與內(nèi)、外圈配合的軸溫升。
徑向載荷引起的配合過(guò)盈量減小量為
(5)
式中:B為軸承寬度;Fr為徑向載荷;C0r為徑向額定靜載荷。
已知徑向載荷為2 kN,徑向額定靜載荷為150 kN,通過(guò)(5)式可得ΔF=1.65 μm。
軸承配合面一般為超精加工,但配合面并非理想表面,表面粗糙度會(huì)使內(nèi)、外圈過(guò)盈量至少減小2 μm[1]。
軸承內(nèi)、外圈實(shí)際過(guò)盈量為
(6)
(7)
式中:h1,h2分別為內(nèi)、外圈理論配合過(guò)盈量;Δci,Δce分別為表面粗糙度引起的內(nèi)、外圈過(guò)盈量變化量。
通過(guò)(1)—(7)式可得各因素對(duì)軸承過(guò)盈量的影響見(jiàn)表2,溫升和離心效應(yīng)對(duì)軸承過(guò)盈量影響較大。
表2 中介軸承過(guò)盈量的影響因素
根據(jù)厚圓環(huán)理論,過(guò)盈配合會(huì)使套圈變形,從而引起軸承徑向游隙變化[2-5],內(nèi)、外圈過(guò)盈配合引起的軸承徑向游隙減小量為
ΔGr1=ΔGi1+ΔGe2,
(8)
對(duì)于高速運(yùn)轉(zhuǎn)的中介軸承,內(nèi)、外圈均會(huì)產(chǎn)生較大的離心力,離心力會(huì)使套圈與其配合件產(chǎn)生徑向和環(huán)向(切向)應(yīng)力,進(jìn)而膨脹,引起軸承徑向游隙變化。根據(jù)彈性力學(xué)理論,外圈內(nèi)表面的膨脹量使軸承徑向游隙增加,內(nèi)圈外表面的膨脹量使軸承徑向游隙減小,則離心效應(yīng)引起的軸承徑向游隙變化量為
ΔGr2=ΔGi2-ΔGe2,
(9)
式中:ΔGi2,ΔGe2分別為內(nèi)、外圈離心膨脹引起的軸承徑向游隙變化量。
內(nèi)圈轉(zhuǎn)速為9 000 r/min,外圈轉(zhuǎn)速為0~15 000 r/min時(shí),離心效應(yīng)引起的軸承徑向游隙的變化如圖2所示。
圖2 軸承徑向游隙變化量隨外圈轉(zhuǎn)速的變化曲線
由圖2可知:1)隨外圈轉(zhuǎn)速升高,軸承徑向游隙增大;2)當(dāng)外圈靜止時(shí),內(nèi)圈離心效應(yīng)引起軸承徑向游隙減小20 μm;3)當(dāng)外圈轉(zhuǎn)速增大到6 000 r/min,在內(nèi)、外圈離心效應(yīng)作用下,軸承徑向游隙無(wú)變化;4)當(dāng)內(nèi)、外圈轉(zhuǎn)速相同時(shí),軸承徑向游隙增加22.27 μm。故在其他因素不變的條件下,外圈轉(zhuǎn)速高于內(nèi)圈的圓柱滾子軸承更易打滑。
軸承高速運(yùn)轉(zhuǎn)時(shí),溫度升高,外圈膨脹使軸承徑向游隙增大,內(nèi)圈和滾子膨脹使軸承徑向游隙減小。假設(shè)軸承各零件受熱均勻,溫升引起的軸承徑向游隙增加量為
ΔGrT=D1ΔT2α2-dh1ΔT1α1-2DwΔT3α3,
(10)
式中:Dw為滾子直徑;ΔT3為滾子溫升;α3為滾子材料線膨脹系數(shù)。
在徑向載荷Fr作用下,內(nèi)圈會(huì)產(chǎn)生彈性變形,使軸承徑向游隙減小,減小量為
(11)
外圈也會(huì)產(chǎn)生彈性變形,使軸承徑向游隙增大,增大量為
(12)
式中:Z為滾子數(shù)量;Lw為滾子有效長(zhǎng)度。
徑向載荷引起的軸承徑向游隙增大量為
ΔGrF=ΔGeF-ΔGiF。
(13)
各因素對(duì)軸承徑向游隙的影響見(jiàn)表3。軸承初始徑向游隙為60.000 μm,考慮配合過(guò)盈量、離心效應(yīng)、溫升、徑向載荷的影響,得到軸承實(shí)際徑向游隙為70.062 μm。
表3 軸承徑向游隙的影響因素
軸承專(zhuān)業(yè)分析軟件COBRA是高級(jí)球軸承和滾子軸承系統(tǒng)優(yōu)化分析軟件,屬于擬靜力學(xué)分析軟件,結(jié)合軸承的結(jié)構(gòu)參數(shù)及工況條件,可得軸承徑向游隙為69.86 μm,與理論分析誤差較小,說(shuō)明了上述理論分析的正確性。
以某航空發(fā)動(dòng)機(jī)中介軸承為研究對(duì)象,考慮離心效應(yīng)、溫升、徑向載荷、表面粗糙度的影響,分析軸承實(shí)際配合關(guān)系影響的基礎(chǔ)上,并在考慮過(guò)盈配合、離心效應(yīng)、溫升、徑向載荷影響的基礎(chǔ)上精確計(jì)算軸承徑向游隙,分析結(jié)果可為該類(lèi)軸承的設(shè)計(jì)和應(yīng)用提供參考。