• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameterizations of different hydrometeor spectral relative dispersion in the convective clouds

    2022-06-07 06:24:54QinyoZouLeiZhuChunsongLuGungZhngXioqiXuQinChenDnLi

    Qinyo Zou , Lei Zhu , Chunsong Lu , , Gung J.Zhng , Xioqi Xu , Qin Chen , Dn Li

    a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

    b Scripps Institution of Oceanography University of California, La Jolla, San Diego, CA, United States

    Keywords:Hydrometeors Relative dispersion Cloud Volume-mean diameter

    ABSTRACT Spectral relative dispersion of different hydrometeors is vital to accurately describe sedimentation.Here, the Weather Research and Forecasting model with spectral bin microphysics is used to simulate convective clouds in Shouxian of Anhui province in China to study the spectral relative dispersion of different hydrometeors.Firstly,regardless of clean or polluted conditions, the relative dispersion of ice crystal spectra and its volume-mean diameter are negatively correlated, while the relative dispersion of other hydrometeor spectra is positively related to their respective volume-mean diameter.The correlations for cloud droplets and raindrops are affected by the process of collision–coalescence; the correlations for ice crystals, graupel particles, and snow particles could be affected by the deposition, riming, and aggregation processes, respectively.Secondly, relative dispersion parameterizations are developed based on a comprehensive consideration of the relationships between the relative dispersion and volume-mean diameter under both polluted and clean conditions.Finally, the relative dispersion parameterizations are applied to terminal velocity parameterizations.The results show that for cloud droplets, ice crystals, graupel particles, and snow particles, assuming the shape parameter in the Gamma distribution is equal to 0 underestimates the shape parameter and overestimates the relative dispersion; and for raindrops, assuming the shape parameter is equal to 0 is close to the relative dispersion parameterizations.The most appropriate constant shape parameters are recommended for different hydrometeors.The relative dispersion parameterizations developed here shed new light for further optimizing the terminal velocity parameterizations in models.

    1.Introduction

    Clouds cover approximately two-thirds of the Earth’s surface and are essential for the balance of heat, moisture, and momentum of the Earth’s atmosphere ( Liu et al., 2011 ; Zhao et al., 2019 ).The physical processes of clouds and precipitation are important components of the atmospheric water cycle, in which the influence of cloud microphysical processes cannot be ignored ( Xie and Liu, 2015 ; Fu and Lei, 2017 ).Hence, it is necessary to accurately describe the microphysical processes ( Huang et al., 2016 ).Parameterizations of microphysical processes are mainly used to describe microphysical processes in models, and the terminal velocity during the sedimentation process is an important parameter ( Lord and Lord, 1988 ).The gamma distribution is often used in models to represent the hydrometeor spectra,and the terminal velocity is a function of the spectral shape parameter( Milbrandt and Yau, 2005a ).The shape parameter is often assumed to be 0 in models ( Morrison and Gettelman, 2008 ; Morrison et al., 2009 ).Also, Milbrandt and Yau (2005b) assumed the cloud shape parameter as 1 and the rain shape parameter as 2.However,in-situobservations also show that the shape parameter is not a fixed constant ( Yin et al., 2011 ),and it is unable to reasonably calculate the terminal velocity when the shape parameter is set as a fixed constant ( McTaggart-Cowan and Milbrandt, 2010 ).Milbrandt and Yau (2005a) proposed a diagnosis equation for the shape parameter and further analyzed the relationship between the shape parameters of precipitation particles and their meanmass diameters with model simulations.Seifert (2008) found that the shape parameter of raindrops and its volume-mean diameter are not simply positively correlated.Because of the limitations in current research on the terminal velocity using the shape parameter, it is necessary to parameterize the shape parameter and optimize the parameterization of terminal velocity.

    Since the square of relative dispersion is inversely related to the shape parameter in the gamma distribution plus 1 ( Tas et al., 2012 ),it is easy to calculate the relative dispersion from the shape parameter.Using relative dispersion is equivalent to using the shape parameter, and many studies on the spectral width of droplets have used it( Liu and Daum, 2000 ; Liu et al., 2017 ).Existing studies of relative dispersion versus microphysical properties focus mainly on cloud droplet spectra ( Zhao et al., 2006 ) and raindrop spectra ( Seifert, 2008 ).However, even for the most studied relative dispersion of cloud droplet spectra, there are still many uncertainties ( Liu et al., 2006 , 2014 ).For example, some studies found that the relative dispersion of cloud droplet spectra is negatively correlated with the volume-mean radius( Liu et al., 2008 ), while others found positive correlations ( Tas et al.,2012 ).Lu et al.(2020) found that the relationship between relative dispersion and the volume-mean radius of cloud droplets changes from positive to negative as the volume-mean radius increases under different cloud microphysical processes.However, in-depth observational analyses on the relationship between the relative dispersion of ice-phase particle spectra and their microphysical properties are lacking.

    To overcome the insufficiency of observational research on relative dispersion, especially for ice-phase particles, the Weather Research and Forecasting (WRF) model with the spectral bin microphysics (SBM)scheme is used here to simulate convective processes.Unlike the bulk scheme, which often assumes that the distributions of hydrometeors follow gamma distributions, the distributions of hydrometeors in the SBM scheme are predicted, which is convenient for analyzing the relative dispersion of different hydrometeor spectra ( Khain and Lynn, 2009 ).Given the important influence of aerosol particles on the cloud microphysical processes and hydrometeor spectra ( Peng and Lohmann, 2003 ; Jia et al.,2019 ), we discuss the relationships between the relative dispersion of different spectra and their volume-mean diameters and the related microphysical processes, under both polluted and clean conditions.Then,based on these relationships, relative dispersion parameterizations for different hydrometeor spectra are developed.Finally, the impacts of the relative dispersion parameterizations in the terminal velocity parameterizations are preliminarily evaluated.To be consistent with previous studies in which the relationship between relative dispersion and volume-mean radius was analyzed ( Liu et al., 2008 ; Tas et al., 2012 ),relative dispersion is used here.

    2.Model and methods

    2.1. Numerical model experiments

    The WRF model, version 3.2, coupled with a fast version of the SBM scheme (Fast-SBM) is used to simulate convective clouds over Shouxian (32.58°N, 116.78°E) of Anhui Province in China ( Chen et al., 2015 ).Each hydrometeor size distribution contains 33 bins, where the mass in bini+ 1 is twice that in bini.The mass of the initial hydrometeor bin is 3.35 × 10?14kg, and the corresponding diameter is 4μm (assuming that the hydrometeor is spherical).The simulation area is centered in Shouxian, complete with two-way nesting using two nested domains.The horizontal resolutions of the two domains are 12 km and 2.4 km,and there are 110 × 90 and 251 × 201 grid points, respectively.In the vertical direction, there are 41 levels.The simulations are run from 1800 UTC 16 July 2008 to 1200 UTC 17 July 2008, and the first 6 h of the simulation is taken as the spin-up time.The six-hourly National Centers for Environmental Prediction FNL (Final) global reanalysis data with a resolution of 1° × 1° are used to produce the initial and boundary conditions.The primary physics schemes include the Grell–Devenyi cumulus parameterization in the outer domain ( Grell and Dévényi, 2002 )(no cumulus parameterization in the inner domain), the Noah landsurface scheme ( Chen and Dudhia, 2001 ), the Yonsei University planetary boundary layer scheme ( Hong et al., 2006 ), and the Rapid Radiative Transfer Model for global climate models shortwave and longwave radiation schemes ( Iacono et al., 2008 ).The clean and polluted conditions have initial aerosol concentrations of 280 and 6 × 280 cm?3, respectively ( Chen et al., 2020 ).The model simulation outputs three types of particles –namely, liquid droplets, graupel particles, and snow particles.The liquid droplets are divided into cloud droplets and raindrops by the diameter of 50μm ( Lu et al., 2012 ), and the snow particles are divided into ice crystals and snow particles by the diameter of 250μm( Eidhammer et al., 2014 ).The simulation is sampled according to the mixing ratio (qx) and number concentration (Nx), where the subscript“x” represents cloud droplets (c), raindrops (r), ice crystals (i), graupel particles (g), and snow particles (s).The cloud grid points are selected with the criterionqc+qi>0.01 g kg?1.After that,qc>0.01 g kg?1andNc>10 cm?3are applied to select cloud droplet spectra; for raindrops, ice crystals, graupel particles, and snow particles, their mixing ratios and number concentrations need to be larger than 0.01 g kg?1and 10 m?3, respectively.

    2.2. Calculation of microphysical quantities

    Relative dispersion (εx) is defined as the ratio of the standard deviation (SDx) to the mean diameter

    where

    Here,Dxis the diameter of hydrometers in each bin,nx(Dx) is the number density corresponding to each hydrometeor bin,Nxis the total number concentration,Dxminis the minimum diameter, andDxmaxis the maximum diameter.

    The volume-mean diameter (Dvx) is calculated by:

    The expression of the autoconversion threshold function (T) is( Liu et al., 2005 )

    whereDcis the critical diameter ofT.The range ofTis 0–1.The larger the value ofT, the greater the probability of the collision–coalescence process ( Niu et al., 2010 ; Lu et al., 2013 ).The analytical expression ofDcriis ( Liu et al., 2004 )

    whereβcon= 1.15 × 1023is an empirical constant and LWCcis the cloud liquid water content.

    2.3. Calculation of terminal velocity

    The gamma distribution is the most commonly used particle size distribution in models ( Milbrandt and Yau, 2005a ):

    wheren0xis the intercept parameter,μxis the shape parameter, andλxis the slope parameter.Combination of Eqs.(1) and (4) yields theλx:

    The terminal velocity (Vx) is defined as ( Locatelli and Hobbs, 1974 )

    whereaxandbxare the coefficients of the terminal velocity (Table S1)( Ferrier, 1994 ; Morrison and Gettelman, 2008 ).The particle mass (mx)is

    wherecxanddxare constants.The gamma function is defined as

    wheresandtare two parameters.

    Combination of Eqs.(4) , (6) –(8) yields the equations for the massweighted terminal velocity (Vmx) and the number-weighted terminal velocity (Vnx) ( Ferrier, 1994 ; Morrison and Gettelman, 2008 ),

    whereγis the ratio of the surface air density to the air density at a certain level andμxis related to theεx( Tas et al., 2012 ):

    To optimize the terminal velocity parameterizations of hydrometeors,μxis firstly obtained from the parameterizedεxthrough Eq.(14) .Secondly,λxis calculated according to the relationship betweenλxandμx( Eq.(8) ).Finally,VmxandVnxare calculated, assumingγis equal to 1 ( Eqs.(12) and (13) ).

    3.Results and discussion

    3.1. Relationship between relative dispersion and volume-mean diameter

    Fig.S1 shows the relationships betweenεxandDvxfor different hydrometeors under polluted and clean conditions.To ensure statistically significant conclusions and sufficient samples, only the data points in Fig.S1 with their average probability density greater than 0.05% are selected.

    To identify the mechanisms responsible for the positive correlations for the liquid-phase hydrometeors (cloud and rain, Fig.S1(a–d)),Tis calculated according to Eqs.(5) and (6) .Previous studies indicate thatTcan represent the intensity of the collision–coalescence process and its impact on cloud microphysical quantities ( Liu et al., 2004 ; Lu et al.,2013 ).Here,Tis 0.82 for the polluted condition and 0.90 for the clean condition, which indicates the collision-coalescence process is more significant in clean air than in polluted air ( Albrecht, 1989 ).During the collision–coalescence process, the cloud droplet spectra expand toward the large droplets ( Lu et al., 2018 ), increasing theεc, which is consistent with the conclusion in Tas et al.(2012) .The collision–coalescence process also causes cloud droplets to grow into raindrops ( Dagan et al.,2015 ).Due to the collision–coalescence process of raindrops with cloud droplets, theεrof the raindrop spectra increases with the increasingDvr.In addition, the maximumDvcin the polluted condition is smaller than that in the clean condition ( Rosenfeld, 1999 ; Cheng et al., 2009 ),because more aerosol increases the cloud droplet number concentration( Albrecht, 1989 ; Shi et al., 2010 ).

    Unlike the liquid-phase hydrometeors, different ice-phase hydrometeors have different relationships betweenεxandDvx(Fig.S1(e–j)).The negative correlation betweenεiandDvicould be caused by the deposition process of ice crystals.Small ice crystals grow faster than large ones during deposition, which narrows the spectral width.Therefore,εidecreases with the increase ofDvi.In contrast,εgis positively correlated withDvg.Riming is the main process for the growth of graupel ( Rutledge and Hobbs, 1984 ; Gayatri et al., 2017 ), which increasesεgandDvgat the same time.Gayatri et al.(2017) also found that the spectrum of graupel particles broadens during the riming process.The positive correlation betweenεsandDvscould be related to the aggregation growth.Similar to the effect of collision–coalescence and riming,the process of aggregation leads to a broadening of the snow particle spectrum ( Heymsfield et al., 2002 ) and an increase ofεs.

    3.2. Development of relative dispersion parameterizations

    After analyzing the relationships betweenεxandDvxof different hydrometeor spectra, we hope to quantify these relationships.An interesting point is that the relationship betweenεxandDvxis similar for the polluted and clean conditions, which facilitates the development of parameterizations ofεx.Fig.1 combines the results in both polluted and clean conditions, which are fitted using the equationy=axb+c, wherea,b,andcare three constant parameters; andxandyare independent and dependent variables, respectively.The relative dispersion parameterizations are:

    for cloud droplets, where the unit ofDvcisμm;

    for raindrops, where the unit ofDvris mm;

    for ice crystals, where the unit ofDviis mm;

    for graupel particles, where the unit ofDvgis mm; and

    for snow particles, where the unit ofDvsis mm.The correlation coeffi-cients (R) of the above equations for raindrops, ice crystals, and snow particles show that the correlations between variables are all higher than 0.90, whereas theRvalues for cloud droplets and graupel particles are relatively lower, at 0.33 and 0.25, respectively.Thepvalues for indicating the statistical significance ( Hung et al., 1997 ) are smaller than 0.01 for all the fitting equations, which indicates high significance.

    3.3. Application of the relative dispersion parameterizations in the terminal velocity parameterizations

    Previous studies have shown thatμxplays an important role in the sedimentation process of hydrometeors ( Milbrandt and Yau, 2005a ).Fig.2 compares the terminal velocity calculated by the relative dispersion parameterizations with that calculated assumingμxis constant.As a first step,μx= 0, 1, 2, 3 is used for all hydrometeors; if the lines assuming theseμxvalues are still too far away from the line using the relative dispersion parameterization, then moreμxvalues are added.For example,μc= 4–5 is used for cloud.As expected,VmxandVnxincrease with the increase ofDvx, andVmxis larger thanVnx.For cloud droplets, ice crystals, graupel particles, and snow particles, theμxcalculated by the relative dispersion parameterizations is larger than 0; therefore, assumingμx= 0 in models underestimatesμx, and therefore overestimatesεx;while for raindrops, assumingμx= 0 is close to the relative dispersion parameterizations.

    Fig.1.Joint probability density function of the relationships between the relative dispersion ( ε x ) and volume-mean diameter ( D v x ) of different hydrometeor spectra based on combined results under both clean and polluted conditions: (a) cloud droplets, (b) raindrops, (c) ice crystals, (d) graupel particles, and (e) snow particles.The black lines show the fitting functions, with R and the p -value representing the correlation coefficient and significance level, respectively.In the fitting functions,x and y represent the abscissa and ordinate, respectively.

    The uncertainties of assuming constantμxandεxon terminal velocity are quantitatively evaluated with respect to using the relative dispersion parameterizations (Fig.S2).The relative deviation ofVmx,i.e.,100% , is calculated, whereis the terminal velocity calculated with the relative dispersion parameterization, andi s the terminal velocity calculated with the fixedμx.Similarly, the relative deviation ofVnxis also calculated.In Fig.S1, the relationships between relative deviation andDvxare positive for cloud, rain, graupel,and snow, and negative for ice –similar to the relationships betweenεxandDvxfor different hydrometeors.The comparisons confirm that the constantμxunderestimates theVmxandVnxin small volume-mean diameter bins, except for ice crystals.If we have to assume a constantμxin models, several suggestions based on the comparisons ( Figs.2 and S2) are given as follows:μc= 4 or 5,μr= 0,μi= 3 or 4,μg= 4 or 5, andμs= 2.

    Since there is no observational terminal velocity for comparison, the results from the relative dispersion parameterization are taken to be the“true ” values in the above discussion.Whenin-situobservations of terminal velocity are available, it is necessary to evaluate the performance of the relative dispersion parameterization and fixed shape parameters.

    4.Conclusion

    Convective clouds in Shouxian of Anhui province in China are simulated with the fast version of WRF-SBM and the relationship between the relative dispersion and volume-mean diameter of each hydrometeor is analyzed for both polluted and clean conditions.Relative dispersion parameterizations are developed and their effects on terminal velocity evaluated.

    It is found that the relationship between the two quantities is negative for ice crystals and positive for cloud droplets, raindrops, graupel particles, and snow particles.The reason for the different relationships is that different hydrometeors are affected by different microphysical processes.The ice crystals could be mainly affected by the deposition process, which tends to narrow the ice crystal spectra when the volumemean diameter increases.Cloud droplets and raindrops are affected by the process of collision–coalescence, and graupel and snow particles could be affected by riming and aggregation, respectively, increasing the volume-mean diameters and broadening the hydrometeor spectra.

    The above relationships are similar under polluted and clean conditions; therefore, relative dispersion parameterizations are developed based on the data under both polluted and clean conditions.After applying the parameterizations, calculation of the mass-weighted terminal velocity and number-weighted terminal velocity indicates that for cloud droplets, ice crystals, graupel particles, and snow particles, assuming the constant shape parameter in the gamma distribution is equal to 0 underestimates the shape parameter and overestimates the relative dispersion;while for raindrops, assuming the shape parameter is equal to 0 is close to the relative dispersion parameterizations.If constant shape parameters have to be used, the most appropriate values are recommended for different hydrometeors.The relative dispersion parameterizations developed here can be used to optimize the terminal velocity parameterizations in models.

    Although this simulation is dominated by convective cloud precipitation, it also includes stratiform cloud precipitation, according to the analysis of the same case in Fan et al.(2013) and Chen et al.(2020) .Furthermore, the results are based on a large dataset simulated with the SBM scheme; there are 44561, 261612, 100027, 10042, and 1171186 size distributions for cloud, rain, ice, graupel, and snow, respectively.Therefore, generally speaking, we think that the results can be applied in other precipitation events.It would be interesting to test the parameterizations, especially for simulations of extreme rain events.

    Funding

    This research was supported by the National Natural Science Foundation of China [Grant Nos.41822504 , 41775131 , 42027804 , 42075073 ,41975181, and 41775136 ].

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.aosl.2021.100141 .

    av在线观看视频网站免费| 嘟嘟电影网在线观看| av专区在线播放| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久精品电影| 久久久久久大精品| 国产黄色视频一区二区在线观看 | 成年女人看的毛片在线观看| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲在线自拍视频| 天堂中文最新版在线下载 | 欧美色欧美亚洲另类二区| 啦啦啦观看免费观看视频高清| 亚洲人成网站在线播放欧美日韩| 高清日韩中文字幕在线| 精品久久久久久久末码| 丝袜喷水一区| 国产老妇女一区| 日韩精品有码人妻一区| 一区二区三区免费毛片| 亚洲图色成人| 亚洲电影在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 免费观看人在逋| 最近2019中文字幕mv第一页| 亚洲国产日韩欧美精品在线观看| 精华霜和精华液先用哪个| 免费大片18禁| 欧美极品一区二区三区四区| www.av在线官网国产| 久久国产乱子免费精品| 亚洲国产精品成人综合色| 国产精品伦人一区二区| 特级一级黄色大片| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 成熟少妇高潮喷水视频| 免费av不卡在线播放| 亚洲欧洲国产日韩| 最近手机中文字幕大全| 国产久久久一区二区三区| 国产精品一区二区三区四区免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 性色avwww在线观看| 亚洲久久久久久中文字幕| 成人高潮视频无遮挡免费网站| 日韩欧美精品v在线| 欧美性感艳星| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 丰满的人妻完整版| 亚洲欧美日韩高清专用| 少妇的逼水好多| 亚洲精品亚洲一区二区| 欧美性猛交黑人性爽| 狂野欧美白嫩少妇大欣赏| 国产精品电影一区二区三区| av在线观看视频网站免费| 18禁在线播放成人免费| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 久久这里只有精品中国| 在现免费观看毛片| 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 两个人的视频大全免费| 国产精品精品国产色婷婷| 人妻系列 视频| 中国美白少妇内射xxxbb| av天堂在线播放| 舔av片在线| 夜夜夜夜夜久久久久| 亚洲性久久影院| 亚洲精品久久久久久婷婷小说 | 久久午夜福利片| 国产精品永久免费网站| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 久久草成人影院| 九草在线视频观看| 亚洲精品色激情综合| 国产精华一区二区三区| 亚洲精华国产精华液的使用体验 | 精品人妻一区二区三区麻豆| 欧美一区二区精品小视频在线| 国产成人福利小说| 成人二区视频| 看十八女毛片水多多多| 天堂√8在线中文| 久久久色成人| 国产精品99久久久久久久久| 高清日韩中文字幕在线| 久久人人爽人人片av| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄 | av黄色大香蕉| 男女啪啪激烈高潮av片| 中国国产av一级| 干丝袜人妻中文字幕| 久久久久国产网址| 深夜精品福利| 一进一出抽搐动态| 色综合色国产| 国产成人精品婷婷| 亚洲精品456在线播放app| 少妇熟女aⅴ在线视频| avwww免费| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 少妇人妻一区二区三区视频| av卡一久久| 久久久a久久爽久久v久久| 亚洲欧美精品自产自拍| 一级二级三级毛片免费看| 99久国产av精品| 人人妻人人澡人人爽人人夜夜 | 不卡一级毛片| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| 中文亚洲av片在线观看爽| 欧美高清性xxxxhd video| .国产精品久久| 国产一区亚洲一区在线观看| 国产视频内射| 黄色配什么色好看| 天堂√8在线中文| 日韩一区二区三区影片| 网址你懂的国产日韩在线| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av香蕉五月| 99久久精品国产国产毛片| 99久久精品一区二区三区| 免费观看在线日韩| 欧美一区二区亚洲| 内地一区二区视频在线| 国产乱人视频| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂 | 成人午夜精彩视频在线观看| 国产不卡一卡二| 久久久久九九精品影院| 欧美变态另类bdsm刘玥| 国内精品美女久久久久久| 国产一级毛片七仙女欲春2| 久久国内精品自在自线图片| 久久久久九九精品影院| 国产精品久久久久久av不卡| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 成人午夜精彩视频在线观看| 看免费成人av毛片| 欧美一区二区精品小视频在线| 精品久久久久久久久亚洲| 亚洲欧美成人综合另类久久久 | 国产精品无大码| 日韩欧美一区二区三区在线观看| 又粗又硬又长又爽又黄的视频 | 女的被弄到高潮叫床怎么办| 观看免费一级毛片| 欧美潮喷喷水| 日韩国内少妇激情av| 神马国产精品三级电影在线观看| 五月玫瑰六月丁香| 一个人观看的视频www高清免费观看| 成人鲁丝片一二三区免费| 久久久欧美国产精品| 两个人的视频大全免费| 深夜精品福利| 免费观看的影片在线观看| 尤物成人国产欧美一区二区三区| 色综合色国产| 日韩精品有码人妻一区| 中国美女看黄片| 中文字幕久久专区| avwww免费| 国产人妻一区二区三区在| 不卡视频在线观看欧美| 久久精品综合一区二区三区| 国产av一区在线观看免费| 中文字幕av成人在线电影| 91在线精品国自产拍蜜月| 十八禁国产超污无遮挡网站| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 亚洲国产高清在线一区二区三| 亚洲最大成人av| 亚洲图色成人| 精品人妻视频免费看| 久久国内精品自在自线图片| 国内精品一区二区在线观看| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 99久久九九国产精品国产免费| 亚洲国产欧美在线一区| 亚洲不卡免费看| 欧美一区二区精品小视频在线| 久久6这里有精品| 国产色婷婷99| av免费观看日本| 亚洲欧美日韩高清专用| 黄色配什么色好看| 欧美性感艳星| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 人妻少妇偷人精品九色| 日本黄色视频三级网站网址| 91久久精品国产一区二区成人| 欧美最黄视频在线播放免费| 一区福利在线观看| 美女高潮的动态| 亚洲中文字幕一区二区三区有码在线看| 我要搜黄色片| 亚洲人成网站高清观看| 美女大奶头视频| 亚洲精品久久国产高清桃花| 久久鲁丝午夜福利片| 长腿黑丝高跟| av黄色大香蕉| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕一区二区三区有码在线看| 校园人妻丝袜中文字幕| 波多野结衣巨乳人妻| 久久久成人免费电影| 中文字幕精品亚洲无线码一区| 精品不卡国产一区二区三区| 亚洲av熟女| av专区在线播放| 久久99热这里只有精品18| 精品无人区乱码1区二区| 中文亚洲av片在线观看爽| 天美传媒精品一区二区| 日韩大尺度精品在线看网址| www.色视频.com| 久久99热6这里只有精品| 日本黄色视频三级网站网址| av卡一久久| 久久亚洲国产成人精品v| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| eeuss影院久久| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 久久久久久久久中文| 免费电影在线观看免费观看| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 最后的刺客免费高清国语| 欧美人与善性xxx| 九色成人免费人妻av| 国产av一区在线观看免费| 亚洲自拍偷在线| 乱系列少妇在线播放| 女同久久另类99精品国产91| 天天躁日日操中文字幕| 久久久久国产网址| 一个人免费在线观看电影| 青春草视频在线免费观看| 亚洲美女视频黄频| 中文字幕制服av| 日产精品乱码卡一卡2卡三| 我的女老师完整版在线观看| 秋霞在线观看毛片| 国产成人精品久久久久久| 少妇猛男粗大的猛烈进出视频 | 夜夜爽天天搞| 不卡视频在线观看欧美| 成人特级av手机在线观看| 十八禁国产超污无遮挡网站| 国产精品一及| 在线播放国产精品三级| 热99在线观看视频| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 两个人视频免费观看高清| 日韩在线高清观看一区二区三区| 免费电影在线观看免费观看| 国产精品永久免费网站| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 99久久久亚洲精品蜜臀av| 日韩高清综合在线| 成人亚洲欧美一区二区av| av视频在线观看入口| av在线亚洲专区| 亚洲国产欧美人成| 天堂av国产一区二区熟女人妻| 黑人高潮一二区| 亚洲国产精品国产精品| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| av视频在线观看入口| 国产伦在线观看视频一区| 九九热线精品视视频播放| 联通29元200g的流量卡| 国产av不卡久久| 亚洲久久久久久中文字幕| 美女大奶头视频| 麻豆乱淫一区二区| 最好的美女福利视频网| 美女高潮的动态| 久久欧美精品欧美久久欧美| 麻豆乱淫一区二区| 日本与韩国留学比较| 亚洲人与动物交配视频| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 国产女主播在线喷水免费视频网站 | 日本色播在线视频| 婷婷色av中文字幕| 久久国产乱子免费精品| 国产69精品久久久久777片| 日日啪夜夜撸| 99热这里只有是精品在线观看| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 国产一级毛片七仙女欲春2| 一本久久精品| 不卡一级毛片| 国产淫片久久久久久久久| 精品熟女少妇av免费看| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 97热精品久久久久久| 人人妻人人澡人人爽人人夜夜 | 美女国产视频在线观看| 高清在线视频一区二区三区 | 国产亚洲91精品色在线| 联通29元200g的流量卡| 97在线视频观看| 成人欧美大片| 狂野欧美激情性xxxx在线观看| 99久久精品一区二区三区| 国产黄a三级三级三级人| 国产成人精品一,二区 | 看免费成人av毛片| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 久久韩国三级中文字幕| 亚洲色图av天堂| 亚洲国产精品成人综合色| 大香蕉久久网| 国产精品久久视频播放| 九九在线视频观看精品| 久久九九热精品免费| 永久网站在线| 成人性生交大片免费视频hd| 日韩精品青青久久久久久| 午夜激情福利司机影院| 亚洲欧美精品专区久久| 国产单亲对白刺激| 精品久久久久久久久亚洲| 欧美成人免费av一区二区三区| av免费观看日本| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av.av天堂| 亚洲天堂国产精品一区在线| av又黄又爽大尺度在线免费看 | 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 色5月婷婷丁香| 免费看美女性在线毛片视频| 国产毛片a区久久久久| 日韩av在线大香蕉| 日本成人三级电影网站| 国内精品宾馆在线| 大型黄色视频在线免费观看| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 日韩中字成人| 亚洲第一电影网av| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 色哟哟·www| 日韩欧美在线乱码| 超碰av人人做人人爽久久| 久久久久久久久久成人| 国产高清有码在线观看视频| 在线a可以看的网站| 国产成人影院久久av| 亚洲中文字幕日韩| 久久久国产成人免费| 久久热精品热| 欧美丝袜亚洲另类| 少妇丰满av| 久久精品国产鲁丝片午夜精品| 99久久中文字幕三级久久日本| 老女人水多毛片| 精品午夜福利在线看| 亚洲丝袜综合中文字幕| 深爱激情五月婷婷| 三级经典国产精品| 久久九九热精品免费| 一区二区三区高清视频在线| 99热这里只有是精品在线观看| 亚洲国产精品sss在线观看| 特大巨黑吊av在线直播| 91麻豆精品激情在线观看国产| 国产成人精品一,二区 | 波野结衣二区三区在线| 毛片女人毛片| 波多野结衣高清无吗| 日本黄色片子视频| 色噜噜av男人的天堂激情| 99久久成人亚洲精品观看| 亚洲国产欧美在线一区| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 伦理电影大哥的女人| 精品久久久久久久末码| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 91狼人影院| 69人妻影院| 在线观看66精品国产| 亚洲最大成人手机在线| 2022亚洲国产成人精品| 国产91av在线免费观看| 黑人高潮一二区| 麻豆一二三区av精品| 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 久久久久网色| 日韩欧美精品v在线| 内地一区二区视频在线| 亚洲av成人av| 麻豆成人av视频| av卡一久久| 亚洲中文字幕一区二区三区有码在线看| 国产高清视频在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最新中文字幕久久久久| 99热这里只有是精品50| 中文字幕熟女人妻在线| 婷婷亚洲欧美| 美女cb高潮喷水在线观看| 中文字幕av成人在线电影| 国产精品伦人一区二区| 免费电影在线观看免费观看| 人人妻人人看人人澡| 亚洲av熟女| 日本黄色视频三级网站网址| 99热全是精品| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 国产黄色小视频在线观看| 国产黄片美女视频| 国产真实乱freesex| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 大型黄色视频在线免费观看| 人妻久久中文字幕网| 日日撸夜夜添| 国产又黄又爽又无遮挡在线| 免费电影在线观看免费观看| 看片在线看免费视频| 搡老妇女老女人老熟妇| 亚洲电影在线观看av| 少妇熟女欧美另类| 久久99热这里只有精品18| 免费人成在线观看视频色| 日本免费a在线| 夫妻性生交免费视频一级片| 最近2019中文字幕mv第一页| 色噜噜av男人的天堂激情| 国产成人精品一,二区 | 国产精品久久久久久久电影| 韩国av在线不卡| 国产精品av视频在线免费观看| 青春草视频在线免费观看| 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 日韩强制内射视频| 赤兔流量卡办理| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 日本色播在线视频| 如何舔出高潮| 国产精品无大码| 国产单亲对白刺激| 久久99蜜桃精品久久| 麻豆乱淫一区二区| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 国产精品电影一区二区三区| 国产男人的电影天堂91| 99久久人妻综合| 国内揄拍国产精品人妻在线| 国产精品美女特级片免费视频播放器| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 久久精品91蜜桃| 插阴视频在线观看视频| 成人特级黄色片久久久久久久| 性插视频无遮挡在线免费观看| 成人亚洲欧美一区二区av| 精品欧美国产一区二区三| 亚洲国产精品sss在线观看| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| 身体一侧抽搐| 人妻久久中文字幕网| 99在线人妻在线中文字幕| 日本熟妇午夜| 亚洲av免费高清在线观看| 久久国产乱子免费精品| 成人综合一区亚洲| 欧美zozozo另类| 一区二区三区高清视频在线| 成年av动漫网址| 欧美一区二区国产精品久久精品| 国产精品一区二区在线观看99 | 日韩强制内射视频| 美女脱内裤让男人舔精品视频 | 22中文网久久字幕| 国产久久久一区二区三区| 久久久精品94久久精品| 夫妻性生交免费视频一级片| 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲18禁久久av| 天天一区二区日本电影三级| 成人av在线播放网站| 色噜噜av男人的天堂激情| 国产伦精品一区二区三区四那| 国产成人a∨麻豆精品| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 超碰av人人做人人爽久久| 天堂中文最新版在线下载 | 久久99精品国语久久久| 国产高清三级在线| 精品免费久久久久久久清纯| 欧美精品一区二区大全| 日本在线视频免费播放| av在线天堂中文字幕| 日韩,欧美,国产一区二区三区 | 国产探花极品一区二区| 国产视频首页在线观看| 少妇的逼水好多| 国产精品精品国产色婷婷| 国产亚洲精品av在线| 亚洲av熟女| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 身体一侧抽搐| 国产人妻一区二区三区在| 国产极品天堂在线| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 亚洲av不卡在线观看| 最新中文字幕久久久久| 级片在线观看| 国产国拍精品亚洲av在线观看| 看片在线看免费视频| 日本av手机在线免费观看| h日本视频在线播放| 免费观看的影片在线观看| 日韩人妻高清精品专区| 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 亚洲国产欧美人成| 99视频精品全部免费 在线| 国产精品伦人一区二区| 男女边吃奶边做爰视频| 欧美区成人在线视频| 国产精品久久久久久久久免| 国产一区二区激情短视频| 欧美区成人在线视频| 晚上一个人看的免费电影| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三| 精品日产1卡2卡| 亚洲精品国产成人久久av| 亚洲第一区二区三区不卡| 99热这里只有精品一区| 听说在线观看完整版免费高清| 国产成人精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区亚洲| 欧美一区二区精品小视频在线| 亚洲天堂国产精品一区在线| 一区二区三区四区激情视频 | 精品99又大又爽又粗少妇毛片| 国产一区二区三区在线臀色熟女| 国内精品美女久久久久久| 国产精品永久免费网站|