• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trends in carbon sink along the Belt and Road in the future under high emission scenario

    2022-06-07 06:25:02JingPengLiDnXiTngFuqingYng

    Jing Peng , Li Dn , , Xi Tng , Fuqing Yng

    a CAS Temperate East Asia Regional Center and Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Beijing, China

    Keywords:Carbon sink Soil respiration Climate change CO 2 concentration Biological nitrogen fixation Atmospheric nitrogen deposition

    ABSTRACT Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP).Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO 2 , climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region.The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr ? 2 under present conditions (1936–2005) to ? 0.023 Pg C yr ? 2 under future conditions.In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr ? 2 under present conditions to ? 0.009 Pg C yr ? 2 under future conditions.This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future.The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP.Considering the responses of soil respiration (RH)or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from 0.01°C yr ? 1 under present conditions to 0.05°C yr ? 1 under future conditions.CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP.In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered.It is important to estimate the direction and magnitude of C sinks under the C neutrality target.

    1.Introduction

    The carbon (C) cycle at regional scales is one of the main sources of uncertainty identified in the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) ( Canadell et al., 2021 ).For example, disputes are ongoing about whether the Amazon basin –one of the most important regions globally in terms of gross primary production (GPP) –is a C sink or source ( Phillips et al., 2009 ; Brienen et al.,2015 ; Gatti et al., 2021 ).Therefore, regions with more complex climate and topography, including East Asia, northern Africa, and western Europe, are affected by the strong interaction between land and atmosphere ( Dan et al., 2020 ).Thus, it is very important to accurately quantify the size and direction of C sinks ( Friedlingstein et al., 2006 ,2020 ; Cox et al., 2013 ; Ahlstr?m et al., 2015 ; Fernández-Martínez et al.,2019 ).IPCC AR6 shows that, due to the lack of long-term, continuous and intensive temporal and spatial observed data of regional biogeochemical fluxes and C pool sizes ( Zhao et al., 2005 ; Le Quéré et al.,2009 , 2013 ; Phillips et al., 2009 ), there is great uncertainty regionally in C sink trends ( Canadell et al., 2021 ).Therefore, it is difficult to accurately assess the trends of regional C sinks at present, and especially in the future.Overall, this line of study is one of the important ways to improve the prediction and projection capabilities of earth system models(ESMs).

    Over the past few decades, Chinese scientists have carried out a series of studies, including assessments of GPP, net primary production (NPP),soil respiration (RH), and net ecosystem production (NEP) ( Piao et al.,2009 ; Hu et al., 2010 ; Peng et al., 2014 ; Peng and Dan, 2015 ; He et al.,2019 ; Yuan et al., 2019 ).The results have shown that there are large uncertainties from different models ( Friedlingstein et al., 2013 ; Fernández-Martínez et al., 2019 ; Arora et al., 2020 ).At the same time, most lack the ability to quantitatively estimate the contribution of atmospheric nitrogen (N) deposition and biological N fixation (BNF) ( Peng et al., 2020 ).With this in mind, we selected regions (0°–60°N, 0°–150°E) mainly covered by the countries of the so-called “Belt and Road ”, including eastern Asia, central Eurasia, northern Africa, and western Europe.There are about 65 countries along the Belt and Road, together comprising 62%of the world’s population and covering about one third of the world’s total land area.Therefore, under the target of C neutrality, estimation of the C sink trends for such a key region is crucial.Specifically, we used the C sink (NEP = NPP ? RH) to assess the C sink trend in this region under future conditions from 2031 to 2100.Not only does this region contain a large proportion of the world’s population, but it is also home to a diverse range of vegetation types (Fig.S1).Therefore, this region is a useful reference point for numerous types of ecosystems that can also be found in other regions.

    This study is based on the work of Peng et al.(2020) , which used a land-surface model coupled with BNF.The aim was to improve the accuracy of C fluxes through a more complete set of N processes and improve our understanding of future changes in the potential of regional C sinks.This work is expected to serve as a useful reference for accurately assessing the trends in biochemical fluxes in China and its surrounding regions under the C neutral target.

    2.Model, data, and experiments

    CABLE is the abbreviation for the Australian Community Atmosphere–Biosphere–Land Exchange model.CABLE includes a biogeochemical model, which predicts both canopy leaf area index(LAI) and maximal leaf carboxylation rate (Vcmax).It uses a function of leaf C pool size to calculate canopy LAI, and applies leaf N and phosphorus (P) concentrations to estimate Vcmax ( Wang et al, 2010 ).It has previously been used to assess the impact of BNF on terrestrial C ( Peng et al., 2020 ), as well as to estimate annual GPP ( Beer et al.,2010 ), global evapotranspiration ( Zhang et al., 2013 ) and biogeochemical fluxes, and pool sizes of C and N ( Wang et al., 2010 , 2011 ).The version used for this study includes a global N cycle ( Wang et al., 2011 ;Peng et al., 2020 ).Also, N:P ratios were fixed for all pools, meaning the variation in the P cycle was not included.See Peng et al.(2020) for further details.

    The meteorological inputs from 1901 to 2005 were generated by variables of the Global Carbon Project–Trends in the Land Carbon Cycle data ( Qian et al., 2006 ).From 2006 to 2100, they were generated (at the same spatial resolution) using the Community Earth System Model(CESM), version 1.0, under the Representative Concentration Pathway(RCP) 8.5 ( Hurrell et al., 2013 ) high emission scenario.

    Here, we compared the strength of the c sink from CALBE with that of the ensemble from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) ( Table 1 ).To measure the influence of CO2concentration, climate change, BNF, and atmospheric N deposition on C sink trends, we simulated the C sink trends for the periods 1936–2005 and 2031–2100 in several experiments, as follows: with (simulation 1)and without changes in atmospheric CO2concentration (simulation 2),without changes in climate change (simulation 3), without changes in BNF (simulation 4), or without changes in N deposition (simulation 5),after 1901 ( Table 2 ).The differences between simulations 1 and 2, simulations 1 and 3, simulations 1 and 4, and simulations 1 and 5 provide results on the impact of atmospheric CO2, climate change, BNF, and increasing N deposition on the C sink, respectively.

    Table 1 Details of the models used in this study.

    Table 2 Details of five simulations performed using CABLE.

    Fig.1.Annual C sink from 1901 to 2100 estimated by CMIP6 and CABLE across the Belt and Road regions.Effect of varying atmospheric CO 2 (green line), climate change (red line), BNF (orange line), and N deposition (brown line) and all factors combined (blue line) on the C sink during the same period as estimated using CABLE (units: Pg C yr ? 1 ).

    3.Results

    3.1. Estimated C sink

    Under present conditions, the trends in surface air temperature, CO2concentration, and N deposition were estimated as inputs, where BNF was a diagnostic variable simulated by CABLE ( Peng et al., 2020 ).This period was chosen such that our results were comparable with those from the business-as-usual C emissions (RCP 8.5) scenario during future conditions from 2031 to 2100.

    Over the period 1936–2005, the results showed increasing trends of surface air temperature (0.012°C yr?1; Fig.S2), atmospheric CO2concentration (1.02 ppmv yr?1), BNF (0.10 Tg N yr?1), and N deposition(0.45 Tg N yr?1) in the Belt and Road region.By comparison, the estimated trends in this region of surface air temperature, CO2concentration, BNF, and N deposition were found to differ considerably under future conditions (2031–2100), being 0.054°C yr?1, 7.13 ppmv yr?1,0.16 Tg N yr?2, and 0.08 Tg N yr?2, respectively.

    In order to estimate the general capabilities of CABLE, the NEP of the CMIP6 ESM ensemble was compared with the CABLE simulation( Fig.1 ).As can be seen, the trends in the C sink at the regional scale varied considerably among the different simulations in response to these changes.From 1936 to 2005, CABLE predicted a trend in the C sink of 0.015 Pg C yr?2, while the CMIP6 ensemble simulated a slightly smaller increasing trend of regional NEP than CABLE over the same period.In contrast, the regional NEP trend simulated by CALBE and CMIP6 decreased by ? 0.023 and ? 0.009 Pg C yr?2from 2031 to 2100, respectively.

    The trends of NEP simulated by CABLE and the CMIP6 ensemble in the Belt and Road region under future conditions differ to those under the present conditions (Fig.S3).Over the historical period from 1936 to 2005, CABLE simulated a slightly upward trend in the Belt and Road region, as did the CMIP6 ensemble.However, under future conditions,CABLE simulated a clear decreasing trend of NEP, while the CMIP6 ensemble simulated a smaller one.

    Fig.2.Trend of regional (a, b) NPP, (c, d) RH, and (e, f) NEP estimated from the CMIP6 ensemble (CMI) and CABLE (All (all of the factors), CO 2 , Cl (climate), BNF,and ND (nitrogen deposition)) under present conditions from 1936 to 2005 and future conditions form 2031 to 2100.A double asterisk ( * * ) indicates that the trend is statistically significant at the 0.05 level using the Student’s t -test.

    3.2. Changes of trends in C fluxes under future conditions

    To quantify the impact of modeling NPP and RH on the terrestrial C sink, we simulated NPP and RH for the period 1901–2100 in five experiments, in order to separate the effects of CO2concentration, climate change, BNF, and N deposition ( Fig.2 ).Based on the results, we estimate positive trends of 0.064 Pg C yr?2and 0.0489 Pg C yr?2from 1936 to 2005 for NPP and RH simulated by CABLE, respectively.As a result, a positive trend in the regional C sink resulted from the greater increasing trend in NPP.Under future conditions, CABLE estimated an increasing trend in NPP of 0.064 Pg C yr?2over time, whereas it estimated a greater increasing trend in RH of 0.086 Pg C yr?2.

    With increasing atmospheric CO2concentration, CABLE predicted an increasing trend in NPP and RH from 1936 to 2005 of 0.071 and 0.041 Pg C yr?2, respectively ( Fig.1 and Fig.2 ).Both NPP and RH were simulated to have greater increasing trends in the Belt and Road region under future conditions at 0.143 and 0.140 Pg C yr?2, respectively.The increasing trend of RH was smaller than that of NPP in response to the increase in atmospheric CO2from 2031 to 2100.

    In contrast, the responses of the simulated trends of NPP and RH to climate change using CABLE differed considerably in both direction and magnitude for the Belt and Road region ( Fig.2 ).CABLE predicted decreasing trends of NPP under both present and future conditions.The simulated responses of the trend in RH to climate change under present conditions differed to those under future conditions.For example, the slightly increasing trend in RH under present conditions transformed into a significant decreasing trend under future conditions.Under future conditions, CABLE simulated a much greater decrease in the RH trend than the NPP trend.

    Under both present and future conditions, the simulated trends of NPP or RH were less responsive to changes in BNF than atmospheric CO2or climate change.Increased BNF caused a much greater increasing trend of RH than NPP, which in turn resulted in a decreasing trend of NEP.One of the reasons for this might be the positive feedbacks of BNF on terrestrial C ( Peng et al., 2020 ).Changes in the NPP or RH trend caused by N deposition under future conditions correspond well to the changes caused by BNF.

    Fig.3.Response of the trend of (a) NPP, (b) RH, and (c) NEP to surface air temperature (TAIR) under present conditions from 1936 to 2005 (blue) and future conditions from 2031 to 2100 (red).The notation a p means the sensitivity of NPP, RH, or NEP to TAIR under present conditions.a f is similar to a p , except for future conditions.P p indicate the levels of statistical significance of the correlations between NPP and TAIR, RH and TAIR, or NEP and TAIR under present conditions.P f is similar to P p , except for future conditions.

    3.3. Response to CO 2 , climate change, BNF, and N deposition

    Simulations of the effects of changes in climate, atmospheric CO2,BNF and N deposition ( Fig.2 ) on the C sink were performed.With increasing atmospheric CO2concentration, an increasing C sink trend was predicted under present conditions, whereas the trend from 2031 to 2100 caused by CO2concentration for the Belt and Road region was negative.The decreasing trend of NEP from 2031 to 2100 for the Belt and Road region resulted from a greater increasing trend of RH than NPP caused by the increasing CO2concentration.CO2stimulates photosynthesis less than RH, causing a decreasing NEP trend ( Schimel et al.,2015 ; Fernández-Martínez et al., 2019 ).

    The responses of the simulated C sink trend to climate change in the two periods differed considerably in magnitude for the Belt and Road region, although the direction was similar.CABLE predicted a decreasing trend under present and future conditions.Under future conditions,the simulated response of the negative trend of NEP to climate change was greater than that under present conditions.The much greater decreasing trend of NEP was caused by the decreasing trend of NPP being stronger than that of RH under future conditions.The general negative impact of climate on NEP may be due to the fact that higher temperatures have a greater effect on ecosystem respiration than on photosynthesis ( Fernández-Martínez et al., 2019 ).

    The contribution of BNF to the trend of NEP only accounted for 4.3%under present conditions, while BNF resulted in 22.8% of the decreasing trend of NEP under future conditions.The relatively smaller effect of enhanced BNF on the increasing trend of NPP than that on RH resulted in the decreasing trend of NEP in response to increasing BNF.Overall,N deposition was simulated to have the smallest effect on NEP trends across the Belt and Road regions ( Fig.3 ).

    4.Discussion and conclusions

    The trend in NEP simulated by CABLE was estimated to change from 0.015 Pg C yr?2under present conditions to ? 0.023 Pg C yr?2under future conditions, and the greatest influence on the decreasing trend of NEP under future conditions was found to be climate change.

    Under future warming, the response of NPP to surface air temperature can contribute significantly to the predicted decreasing trend of NPP and therefore the decreasing trend of NEP ( Ballantyne et al., 2017 ).Here, we have shown a more positive response of RH to surface air temperature than that of NPP under future conditions ( Fig.3 ).

    The trend of NEP simulated by the CMIP6 ensemble was larger than that simulated by CABLE, which was also reported for the C sink as sim-ulated by CMIP5 models ( Friedlingstein et al., 2013 ; Arora et al., 2020 ).This difference accounts for the present performance of the limitation of N on the modeling of C fluxes.Specifically, four out of the seven CMIP6 ESMs used in this study did not consider the N cycle.This might result in the C sink obtained from the CMIP6 ensemble being greater than that from CABLE.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was funded by the National Natural Science Foundation of China [grant numbers 41630532 , 41975112 , 42175142 , and 42175013 ].

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.aosl.2022.100149 .

    日本午夜av视频| av.在线天堂| 丝瓜视频免费看黄片| 好男人视频免费观看在线| 久久ye,这里只有精品| 日韩精品有码人妻一区| 亚洲精品日韩在线中文字幕| 久久鲁丝午夜福利片| 亚洲国产看品久久| 久久久精品区二区三区| 中文字幕精品免费在线观看视频| 亚洲成国产人片在线观看| 亚洲天堂av无毛| 国产在线免费精品| 久久久a久久爽久久v久久| 少妇人妻精品综合一区二区| 午夜福利视频精品| 各种免费的搞黄视频| 波多野结衣一区麻豆| 亚洲av电影在线进入| 成人午夜精彩视频在线观看| 国产精品国产三级国产专区5o| 久久久精品94久久精品| 日本av免费视频播放| 天堂中文最新版在线下载| 久久毛片免费看一区二区三区| 18禁动态无遮挡网站| 我要看黄色一级片免费的| 午夜福利影视在线免费观看| 各种免费的搞黄视频| 欧美日韩视频精品一区| videosex国产| 两个人免费观看高清视频| 国产乱人偷精品视频| 久久人人爽人人片av| 99久久综合免费| 成人漫画全彩无遮挡| 99热网站在线观看| 免费高清在线观看视频在线观看| 国产白丝娇喘喷水9色精品| 宅男免费午夜| 精品亚洲成国产av| 最近2019中文字幕mv第一页| 啦啦啦视频在线资源免费观看| 中文字幕人妻熟女乱码| 纵有疾风起免费观看全集完整版| 久久久欧美国产精品| 丁香六月天网| 麻豆乱淫一区二区| 国产精品久久久久久av不卡| 黑人欧美特级aaaaaa片| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区三区综合在线观看| 国产乱人偷精品视频| 日韩中文字幕欧美一区二区 | 亚洲一区二区三区欧美精品| 高清黄色对白视频在线免费看| 久久精品人人爽人人爽视色| 老汉色av国产亚洲站长工具| 午夜免费男女啪啪视频观看| 日韩欧美一区视频在线观看| 国产精品久久久av美女十八| 晚上一个人看的免费电影| 国产日韩欧美视频二区| 国产精品99久久99久久久不卡 | 国产免费视频播放在线视频| 久久97久久精品| 久久精品久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 久久久久视频综合| 性少妇av在线| 一区二区av电影网| 欧美日韩视频精品一区| 制服诱惑二区| 国产精品成人在线| 这个男人来自地球电影免费观看 | 久久久欧美国产精品| 91成人精品电影| 国产精品久久久久久久久免| 亚洲国产精品成人久久小说| 9191精品国产免费久久| 亚洲精品av麻豆狂野| 黑人猛操日本美女一级片| 亚洲av.av天堂| 精品国产乱码久久久久久小说| 麻豆av在线久日| 国产精品av久久久久免费| 国产成人一区二区在线| 久久精品aⅴ一区二区三区四区 | 精品一品国产午夜福利视频| 亚洲三级黄色毛片| 精品亚洲成a人片在线观看| 女人高潮潮喷娇喘18禁视频| 国产免费又黄又爽又色| 国产精品麻豆人妻色哟哟久久| 熟妇人妻不卡中文字幕| 老女人水多毛片| 妹子高潮喷水视频| 在线免费观看不下载黄p国产| 老司机影院成人| 免费黄色在线免费观看| 久久久久久久国产电影| 久久久久久免费高清国产稀缺| 国精品久久久久久国模美| 国产1区2区3区精品| 亚洲色图综合在线观看| 熟女少妇亚洲综合色aaa.| 欧美少妇被猛烈插入视频| 黑人猛操日本美女一级片| 制服人妻中文乱码| 国产精品一区二区在线不卡| 国产视频首页在线观看| 久久久久国产网址| 国产淫语在线视频| 国产成人午夜福利电影在线观看| 亚洲成av片中文字幕在线观看 | 男人添女人高潮全过程视频| 免费看av在线观看网站| 国产精品国产三级国产专区5o| a级毛片黄视频| 国产精品熟女久久久久浪| 男人爽女人下面视频在线观看| 久久青草综合色| 日韩成人av中文字幕在线观看| 黄色毛片三级朝国网站| 精品国产国语对白av| 一级片'在线观看视频| av免费在线看不卡| 精品国产乱码久久久久久小说| 99香蕉大伊视频| 日本av免费视频播放| 日本午夜av视频| 日韩大片免费观看网站| 十分钟在线观看高清视频www| 亚洲精品乱久久久久久| 高清av免费在线| 在线观看美女被高潮喷水网站| 青春草亚洲视频在线观看| 久久久久视频综合| 男女国产视频网站| 亚洲精品国产色婷婷电影| 97在线视频观看| 中文精品一卡2卡3卡4更新| 日本wwww免费看| 久久久精品国产亚洲av高清涩受| 国产熟女午夜一区二区三区| 国产精品一国产av| 国产黄频视频在线观看| av在线观看视频网站免费| 亚洲天堂av无毛| 亚洲精品日韩在线中文字幕| 日韩人妻精品一区2区三区| 欧美精品人与动牲交sv欧美| 国产成人精品无人区| 制服丝袜香蕉在线| 免费女性裸体啪啪无遮挡网站| 中文字幕人妻丝袜制服| 丝袜美腿诱惑在线| 在线看a的网站| 国产女主播在线喷水免费视频网站| 永久免费av网站大全| 亚洲av日韩在线播放| 高清黄色对白视频在线免费看| 天天操日日干夜夜撸| 日韩人妻精品一区2区三区| 精品人妻偷拍中文字幕| 天天躁夜夜躁狠狠久久av| 久久精品亚洲av国产电影网| 精品国产乱码久久久久久小说| av片东京热男人的天堂| 成年女人毛片免费观看观看9 | 国产欧美亚洲国产| 大陆偷拍与自拍| 亚洲欧美一区二区三区黑人 | a 毛片基地| 亚洲av综合色区一区| 三上悠亚av全集在线观看| 国产亚洲精品第一综合不卡| kizo精华| 亚洲av电影在线进入| 亚洲av中文av极速乱| 日本av免费视频播放| 欧美日韩一级在线毛片| 国产综合精华液| 美国免费a级毛片| 97人妻天天添夜夜摸| 精品国产一区二区三区久久久樱花| 女人久久www免费人成看片| 成年美女黄网站色视频大全免费| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 国产精品免费大片| 最近手机中文字幕大全| 最近2019中文字幕mv第一页| 18禁观看日本| av在线app专区| 欧美97在线视频| 亚洲第一青青草原| 成人亚洲欧美一区二区av| 最新的欧美精品一区二区| 日本午夜av视频| 欧美日韩亚洲国产一区二区在线观看 | 熟妇人妻不卡中文字幕| 亚洲伊人色综图| 国产精品国产av在线观看| 欧美日韩视频高清一区二区三区二| 精品少妇久久久久久888优播| 日本爱情动作片www.在线观看| 久久精品国产综合久久久| 国产黄色视频一区二区在线观看| 中文字幕亚洲精品专区| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| 五月开心婷婷网| 亚洲欧美精品自产自拍| 大香蕉久久成人网| 极品人妻少妇av视频| 久久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 午夜老司机福利剧场| 国产黄色视频一区二区在线观看| 免费看av在线观看网站| av在线app专区| 久久亚洲国产成人精品v| 九草在线视频观看| 一级毛片黄色毛片免费观看视频| 国产精品国产三级专区第一集| 成人国产av品久久久| av有码第一页| 久久国产精品大桥未久av| 国产黄频视频在线观看| 国产精品一区二区在线不卡| 久久久久国产精品人妻一区二区| 男人添女人高潮全过程视频| 欧美日韩综合久久久久久| 女人久久www免费人成看片| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区| 人人妻人人澡人人看| 成人国语在线视频| 色视频在线一区二区三区| 在现免费观看毛片| 欧美日韩亚洲高清精品| 免费在线观看完整版高清| 午夜福利在线观看免费完整高清在| 欧美精品一区二区免费开放| av又黄又爽大尺度在线免费看| 综合色丁香网| 亚洲三区欧美一区| av在线老鸭窝| 国产成人一区二区在线| 精品国产乱码久久久久久男人| 欧美精品一区二区免费开放| 一本—道久久a久久精品蜜桃钙片| 成人漫画全彩无遮挡| 国产精品久久久久成人av| 在线观看www视频免费| 欧美精品高潮呻吟av久久| 亚洲,欧美,日韩| 久久99一区二区三区| av福利片在线| 久久久久国产一级毛片高清牌| 9色porny在线观看| 色婷婷久久久亚洲欧美| 香蕉精品网在线| 国产精品香港三级国产av潘金莲 | av片东京热男人的天堂| 国产高清国产精品国产三级| 性色avwww在线观看| 麻豆精品久久久久久蜜桃| tube8黄色片| 欧美日本中文国产一区发布| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 日本猛色少妇xxxxx猛交久久| av卡一久久| 97精品久久久久久久久久精品| 一级爰片在线观看| 90打野战视频偷拍视频| 黄片无遮挡物在线观看| 大片电影免费在线观看免费| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆| 亚洲国产日韩一区二区| 精品人妻偷拍中文字幕| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久精品精品| 欧美日韩av久久| 免费黄频网站在线观看国产| 免费大片黄手机在线观看| 这个男人来自地球电影免费观看 | 五月伊人婷婷丁香| 熟女少妇亚洲综合色aaa.| 99久国产av精品国产电影| 97在线人人人人妻| 黑丝袜美女国产一区| 欧美精品一区二区免费开放| 欧美精品国产亚洲| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 春色校园在线视频观看| 亚洲伊人色综图| 亚洲,欧美,日韩| 亚洲精品自拍成人| 久久久国产一区二区| 咕卡用的链子| 乱人伦中国视频| 日本-黄色视频高清免费观看| 最黄视频免费看| 久久精品久久精品一区二区三区| 男人爽女人下面视频在线观看| 国产成人精品婷婷| 久久精品久久精品一区二区三区| 激情视频va一区二区三区| 免费在线观看完整版高清| 在线看a的网站| 国产成人91sexporn| 亚洲成人手机| 天天躁夜夜躁狠狠躁躁| 精品少妇黑人巨大在线播放| 人成视频在线观看免费观看| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 欧美av亚洲av综合av国产av | 十八禁高潮呻吟视频| 久久精品人人爽人人爽视色| 最新中文字幕久久久久| 黄色毛片三级朝国网站| 国产精品蜜桃在线观看| 18+在线观看网站| 亚洲av中文av极速乱| 欧美另类一区| 在线免费观看不下载黄p国产| 日韩电影二区| 国产女主播在线喷水免费视频网站| 日韩大片免费观看网站| 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 日本黄色日本黄色录像| 波多野结衣一区麻豆| 欧美精品av麻豆av| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲| 欧美xxⅹ黑人| av网站在线播放免费| 男人爽女人下面视频在线观看| 午夜影院在线不卡| 男女免费视频国产| 久久久久视频综合| 成年人午夜在线观看视频| 巨乳人妻的诱惑在线观看| 欧美xxⅹ黑人| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 极品少妇高潮喷水抽搐| 久久女婷五月综合色啪小说| 精品国产一区二区久久| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 一区在线观看完整版| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 男女免费视频国产| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 大香蕉久久网| 日韩制服骚丝袜av| 好男人视频免费观看在线| 午夜福利视频在线观看免费| 熟女电影av网| 中文字幕色久视频| 欧美日韩av久久| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 国产成人精品久久二区二区91 | 在线天堂最新版资源| xxx大片免费视频| 国产精品99久久99久久久不卡 | 一级爰片在线观看| 永久免费av网站大全| 精品一区在线观看国产| 日韩中文字幕欧美一区二区 | 色视频在线一区二区三区| 悠悠久久av| 久久中文字幕人妻熟女| 大码成人一级视频| 黄色成人免费大全| 88av欧美| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 精品人妻在线不人妻| 99香蕉大伊视频| 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 午夜91福利影院| 免费少妇av软件| 一区二区三区精品91| 国产精品野战在线观看 | 亚洲一区二区三区欧美精品| 99精品在免费线老司机午夜| 国产野战对白在线观看| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 黑人巨大精品欧美一区二区蜜桃| 日本a在线网址| 成人影院久久| 久久欧美精品欧美久久欧美| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 亚洲美女黄片视频| av超薄肉色丝袜交足视频| 看免费av毛片| 亚洲成人免费av在线播放| 亚洲五月天丁香| 色综合婷婷激情| 午夜福利欧美成人| 久久性视频一级片| 窝窝影院91人妻| 亚洲成人免费av在线播放| av超薄肉色丝袜交足视频| 亚洲 欧美一区二区三区| 久久久国产欧美日韩av| 精品福利永久在线观看| 18禁黄网站禁片午夜丰满| 精品熟女少妇八av免费久了| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 村上凉子中文字幕在线| 电影成人av| av国产精品久久久久影院| 久久人人精品亚洲av| 一边摸一边抽搐一进一小说| 真人做人爱边吃奶动态| 午夜福利欧美成人| 男人操女人黄网站| 亚洲专区字幕在线| 日本精品一区二区三区蜜桃| 国产97色在线日韩免费| 国产亚洲精品久久久久久毛片| 美女高潮喷水抽搐中文字幕| 操美女的视频在线观看| 中文亚洲av片在线观看爽| 亚洲性夜色夜夜综合| 多毛熟女@视频| ponron亚洲| 免费搜索国产男女视频| 窝窝影院91人妻| 一二三四社区在线视频社区8| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲精品久久久久5区| 国产av一区在线观看免费| 纯流量卡能插随身wifi吗| 在线观看午夜福利视频| 色综合婷婷激情| 国产欧美日韩一区二区三| 三级毛片av免费| 欧美精品亚洲一区二区| 琪琪午夜伦伦电影理论片6080| 免费av中文字幕在线| 好男人电影高清在线观看| 大型av网站在线播放| 高潮久久久久久久久久久不卡| 亚洲成人精品中文字幕电影 | 久久这里只有精品19| 精品福利观看| videosex国产| 黑人欧美特级aaaaaa片| 在线观看一区二区三区| 免费在线观看亚洲国产| 三上悠亚av全集在线观看| 日韩大码丰满熟妇| 亚洲中文日韩欧美视频| 日韩欧美三级三区| av网站在线播放免费| 国产av在哪里看| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| av在线天堂中文字幕 | 中文亚洲av片在线观看爽| 满18在线观看网站| 亚洲av片天天在线观看| 人妻丰满熟妇av一区二区三区| 午夜a级毛片| 夜夜夜夜夜久久久久| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区免费| 美女高潮喷水抽搐中文字幕| av网站在线播放免费| 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 久热爱精品视频在线9| 中文字幕另类日韩欧美亚洲嫩草| 日日爽夜夜爽网站| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 国产精品影院久久| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 国产精品自产拍在线观看55亚洲| av国产精品久久久久影院| 亚洲成人国产一区在线观看| 夫妻午夜视频| 国产一区在线观看成人免费| 操美女的视频在线观看| 18禁观看日本| 两性夫妻黄色片| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 黄片播放在线免费| 美女大奶头视频| aaaaa片日本免费| 999久久久国产精品视频| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 亚洲av熟女| 欧美 亚洲 国产 日韩一| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 欧美黑人欧美精品刺激| 亚洲男人的天堂狠狠| 丁香欧美五月| 欧美黄色淫秽网站| 亚洲美女黄片视频| 免费在线观看亚洲国产| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 日本黄色视频三级网站网址| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 亚洲九九香蕉| 91九色精品人成在线观看| 黄色视频不卡| 国产成人av激情在线播放| a级片在线免费高清观看视频| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 十分钟在线观看高清视频www| 18禁观看日本| 99热国产这里只有精品6| 动漫黄色视频在线观看| 又大又爽又粗| 侵犯人妻中文字幕一二三四区| www.www免费av| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 午夜亚洲福利在线播放| 亚洲一区中文字幕在线| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| 久久人妻福利社区极品人妻图片| 欧美乱码精品一区二区三区| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 日韩欧美免费精品| 香蕉久久夜色| 叶爱在线成人免费视频播放| 91在线观看av| 亚洲人成77777在线视频| 精品卡一卡二卡四卡免费| 日韩视频一区二区在线观看| 亚洲一区二区三区不卡视频| 免费高清在线观看日韩| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| 国产av精品麻豆| 精品国产国语对白av| 日韩欧美免费精品| 色老头精品视频在线观看| 亚洲国产欧美一区二区综合| 侵犯人妻中文字幕一二三四区| 国产成人影院久久av| 精品一区二区三区视频在线观看免费 | 国产精品香港三级国产av潘金莲| 国内久久婷婷六月综合欲色啪| 男女床上黄色一级片免费看| 搡老熟女国产l中国老女人| 午夜福利,免费看| 久久 成人 亚洲| 丝袜美腿诱惑在线| 欧美日韩瑟瑟在线播放| 在线看a的网站| 国产精品一区二区精品视频观看| 日韩人妻精品一区2区三区| 精品少妇一区二区三区视频日本电影| 中国美女看黄片| 久久香蕉精品热| 桃红色精品国产亚洲av| 99久久久亚洲精品蜜臀av| 国产国语露脸激情在线看| 免费看a级黄色片| 可以免费在线观看a视频的电影网站|